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Abstract—We present Affine Frequency Division Multiplexing
(AFDM), a new chirp-based multicarrier transceiver scheme
for high mobility communications in next-generation wireless
systems. AFDM is based on discrete affine Fourier transform
(DAFT), a generalization of discrete Fourier transform character-
ized with two parameters that can be adapted to better cope with
doubly dispersive channels. Based on the derived input-output
relation, the DAFT parameters underlying AFDM are set in such
a way to avoid that time domain channel paths with distinct
delays or Doppler frequency shifts overlap in the DAFT domain.
The resulting DAFT domain impulse response thus conveys a
full delay-Doppler representation of the channel. We show that
AFDM can achieve the full diversity of linear time-varying (LTV)
channels. Our analytical results are validated through numerical
simulations, which evince that AFDM outperforms state-of-the-
art multicarrier schemes in terms of bit error rate (BER) in
doubly dispersive channels.

Index Terms—AFDM, affine Fourier transform, chirp mod-
ulation, diversity order, linear time-varying channels, doubly
dispersive channels.

I. INTRODUCTION

Next generation wireless systems (beyond 5G/6G) are en-
visioned to support a wide spectrum of services and ap-
plications, including reliable communications at high carrier
frequencies in high mobility environments (e.g., high-speed
railway systems, vehicular-to-infrastructure, and vehicular-to-
vehicular communications). Various multicarrier techniques,
such as orthogonal frequency division multiplexing (OFDM)
and single-carrier frequency division multiple access (SC-
FDMA), have been deployed in standardized communication
systems. These schemes have been shown to achieve satisfac-
tory or even optimal performance in time-invariant frequency
selective channels. However, orthogonality among subcarriers
is destroyed due to large Doppler frequency shifts in high
mobility scenarios, resulting in deteriorated performance.

The optimal way to cope with time-varying multipath (also
called doubly dispersive) channels is to let the information
symbols modulate a set of orthogonal eigenfunctions of the
channel (input/output relation) and project the received signal
over the same set of eigenfunctions at the receiver. However,
in contrast to linear time-invariant (LTI) systems in which
complex exponentials are eigenfunctions, finding an orthonor-
mal basis for general linear time-varying (LTV) channels is
not trivial. Polynomial phase models that generalize complex
exponentials are often used as alternative bases. Interestingly,

there are special cases for which an orthonormal basis is
formed by chirps, i.e., complex exponentials with linearly
varying instantaneous frequencies. Despite not being optimal
in general, chirp-based techniques can be adjusted to the
channel characteristics as a means to achieve near-optimal
performance [1]. Using a chirp basis instead of the sine basis
for transmission over time-varying channels is first introduced
in [2], where fractional Fourier transform (FrFT) is used
to generate multi-chirp signals. However, the approximation
used for discretizing the continuous-time FrFT leads to im-
perfect orthogonality among chirp subcarriers and hence to
performance degradation. A multicarrier technique based on a
specific discretization of the affine Fourier transform (AFT) is
proposed in [1]. Discrete AFT (DAFT) parameters are properly
tuned using partial channel state information (CSI), namely
the delay-Doppler profile of the channel (known delays and
the Doppler shifts of channel paths). That way, the resulting
multicarrier waveform, referred to as DAFT-OFDM in the
sequel, is equivalent to OFDM with reduced inter-carrier
interference (ICI) on doubly dispersive channels. While this
property enables low-complexity detection, being equivalent
to OFDM implies a diversity order close to or equal to that of
OFDM (which is known to be low without channel coding).
Moreover, the delay-Doppler profile of the channel is required
at the transmitter side to properly tune the DAFT-OFDM
parameters. Orthogonal chirp division multiplexing (OCDM)
[3], which is based on the discrete Fresnel transform - a
special case of DAFT, is shown to outperform OFDM in
time-dispersive channels thanks to a higher diversity order.
However, OCDM cannot achieve full diversity in general
LTV channels, since its diversity order depends on the delay-
Doppler profile of the channel. Orthogonal time frequency
space (OTFS) modulation [4], a recently proposed waveform
for high mobility communications, is a two-dimensional (2D)
modulation technique that uses the delay-Doppler domain for
multiplexing information. Its diversity order without channel
coding is shown to be one [5], however OTFS can be made
to achieve full diversity with a phase rotation scheme using
transcendental numbers. The concept of effective diversity
order, i.e., the diversity order in the finite signal-to-noise ratio
(SNR) regime, is introduced in [6], showing that OTFS may
achieve full effective diversity.

ar
X

iv
:2

10
4.

11
33

1v
1 

 [
cs

.I
T

] 
 2

2 
A

pr
 2

02
1



In this paper, we take a fresh look at chirp-based multicarrier
systems and propose Affine Frequency Division Multiplexing
(AFDM), a novel DAFT-based waveform using multi-chirp
signals. We first derive the input-output relation, which allows
us to adapt the AFDM parameters in a way to avoid that
time domain channel paths with distinct delays or Doppler
frequency shifts overlap in the DAFT domain. We analytically
show that AFDM achieves the full diversity of LTV channels,
as opposed to OFDM, DAFT-OFDM, and OCDM. Compared
with OTFS, AFDM has comparable performance in terms of
BER with lower complexity though. In contrast to the simpler,
one-dimensional (1D) transform in AFDM, the 2D transform
in OTFS has several drawbacks in terms of pilot overhead and
multiuser multiplexing overhead [7]. In a nutshell, AFDM is
a promising new waveform for high-mobility communications
in next generation wireless networks.

II. AFFINE FOURIER TRANSFORM

In this section, we introduce the AFT and the DAFT, which
form the basis of AFDM. The AFT, also known as the linear
canonical transform [8] or generalized Fresnel transform, is a
continuous transformation that maps a continuous-time signal
s(t) into S(f) as follows [9]:

S(f) =


∫ +∞
−∞ s(t) e−j(

a
2b
f2+ 1

b
ft+ d

2b
t2)√

2π|b|
dt, b 6= 0

s(df) e
−j cd

2
f2

√
a

, b = 0
(1)

provided that parameters (a, b, c, d) form an invertible matrix

M =

[
a b
c d

]
with determinant ad − bc = 1. AFT is

an integral transformation that generalizes many standard
transforms, such as Fourier transform (0,1,-1,0), Laplace
transform (0,j,j,0), and θ-order fractional Fourier transform
(cos θ, sin θ,− sin θ, cos θ). Gauss-Weierstrass, Fresnel, and
Bargmann transforms are also special cases. It can be visu-
alized as the action of the special linear group SL2(R) on the
time–frequency plane and is a particular case of a phase space
transform, the special affine Fourier transform (SAFT) [10].

Possible discretizations of the AFT have been discussed in
[1], [11], [12]. In the remainder, we employ the DAFT from
[1], for which it is shown that the periodicity considerations
in Fourier analysis while sampling s(t) and S(f) can be
generalized by ensuring that the following constraints hold

s(nT + kTp)e
−j2πk1(nT+kTp)2 = s(nT )e−j2πk1(nT )2 , (2)

S(nF + kFp)e
−j2πk2(nF+kFp)2 = S(nF )e−j2πk2(nF )2 (3)

where T and F are sampling quanta, Tp and Fp are signal
periods (Tp = NT and Fp = NF ), and N is the number
of samples. The relation between F and T is F = 1/βTp =
1/βNT and k1 = d

4πb , k2 = a
4πb and β = 1

2πb . For our
purposes, only the constraint (2) matters, whose sole practical
effect is on the kind of prefix one should add to a DAFT-based
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Fig. 1. AFDM block diagram

multicarrier symbol. Arranging samples s(nT ) and S(nF ) in
the period [0, N) in vectors

s = (s0, s1, ..., sN−1), sn = s(nT )

S = (S0, S1, ..., SN−1), Sn = S(nF ),
(4)

DAFT is expressed as

S = As, A = Λc2FΛc1 (5)

where F is the discrete Fourier transform (DFT) matrix with
entries e−j2πmn/N/

√
N and

Λc = diag(e−j2πcn
2

, n = 0, 1, . . . , N − 1), (6)

with c1 = k1T
2 and c2 = k2F

2 and

A−1 = AH = ΛH
c1F

HΛH
c2 . (7)

III. AFFINE FREQUENCY DIVISION MULTIPLEXING

In this section, we introduce AFDM, a DAFT-based multi-
carrier transceiver concept. Inverse DAFT (IDAFT) is used
to map data symbols into the time domain and DAFT is
performed at the receiver to obtain the effective discrete affine
Fourier domain channel response to the transmitted data, as
shown in Fig. 1.

A. Modulation

Let x ∈ AN×1 denote the vector of (QAM) information
symbols in the discrete affine Fourier domain, where A =
{a0, · · · , aQ−1} represents the QAM alphabet. Note that A ⊂
Z[j] where Z[j] denotes the number field whose elements have
the form zr+jzi, with integer zr and zi. The modulated signal
can be written as

sn =

N−1∑
m=0

xmφn(m), n = 0, · · · , N − 1 (8)

where φn(m) = ej2π(c1n
2+c2m

2+nm/N)/
√
N . In matrix form,

(8) becomes
s = ΛH

c1F
HΛH

c2x. (9)

Similarly to OFDM, the proposed scheme needs some kind
of prefix to deal with multipath propagation and to make the
channel seemingly lie in a periodic domain. However, due to
different signal periodicity, a chirp-periodic prefix (CPP) has
to be used instead of an OFDM cyclic prefix (CP). Indeed,
an L-long prefix occupying the positions of the negative-
index time-domain samples should be transmitted, where L



is any integer greater than or equal to the value in samples of
the maximum delay spread of the wireless channel. With the
periodicity defined in (2), the prefix is

sn = sN+ne
−j2πc1(N2+2Nn), n = −L, · · · ,−1. (10)

Note that a CPP is simply a CP whenever 2Nc1 is an integer
value and N is even.

B. Channel

After parallel to serial conversion and transmission over the
channel, the received samples are

rn =

∞∑
l=0

sn−lgn(l) + wn, (11)

where wn ∼ CN (0, N0) is additive Gaussian noise and

gn(l) =

P∑
i=1

hie
−j2πfinδ(l − li) (12)

is the impulse response of channel at time n and delay l, where
P ≥ 1 is the number of paths, δ(·) is the Dirac delta function,
and hi, fi and li are the complex gain, Doppler shift (in digital
frequencies), and the integer delay associated with the i-th
path, respectively. Note that this model is general and covers
the case where each delay tap can have a Doppler frequency
spread by simply allowing for different paths i, j ∈ {1, . . . , P}
to have the same delay li = lj while satisfying fi 6= fj . We
define νi , Nfi = αi + ai, where νi ∈ [−νmax, νmax] is
the Doppler shift normalized with respect to the subcarrier
spacing, αi ∈ [−αmax, αmax] is its integer part while ai is the
fractional part satisfying −1

2 < ai ≤ 1
2 . For the sake of simpli-

fying the diversity analysis, we assume that the fractional parts
ai are zero, which is reasonable since ai can be neglected for
large values of N . In addition, we assume that the maximum
delay of the channel satisfies lmax , max(li) < N , and that
the CPP length is greater than lmax − 1 (L > lmax − 1).

After discarding the CPP, we can write (11) in the matrix
form

r = Hs + w (13)

where w ∼ CN (0, N0I) and H is the N ×N matrix

H =

P∑
i=1

hiΓCPPi∆fiΠ
li (14)

where Π is the permutation matrix

Π =


0 · · · 0 1
1 · · · 0 0
...

. . . . . .
...

0 · · · 1 0


N× N

, (15)

∆fi is the N ×N diagonal matrix

∆fi = diag(e−j2πfin, n = 0, 1, . . . , N − 1) (16)

and ΓCPPi is a N ×N diagonal matrix

ΓCPPi =

diag(

{
e−j2πc1(N2−2N(li−n)) n < li

1 n ≥ li
, n = 0, . . . , N − 1).

(17)
We can see from (17) that whenever 2Nc1 is an integer and
N is even, ΓCPPi = I.

C. Demodulation

At the receiver side, the DAFT domain output symbols are
obtained by

ym =

N−1∑
n=0

rnφ
∗
n(m). (18)

In matrix representation, the output can be written as

y =Λc2FΛc1r

=

P∑
i=1

hiΛc2FΛc1ΓCPPi∆fiΠ
liΛH

c1F
HΛH

c2x + w̃

=Heffx + w̃

(19)

where Heff , Λc2FΛc1HΛH
c1F

HΛH
c2 and w̃ is Λc2FΛc1w.

Since Λc2FΛc1 is a unitary matrix, w̃ and w have the same
covariance.

D. Input-Output Relation

Considering Heff =
∑P
i=1 hiHi, (19) can be rewritten as

y =

P∑
i=1

hiHix + w̃ (20)

with

Hi , Λc2F Λc1ΓCPPi∆fiΠ
liΛH

c1︸ ︷︷ ︸
Ai

FHΛH
c2 . (21)

It can be shown that the element of Ai at row n and column
(n− li)N is

Ai(n, (n− li)N ) =
1

hi
gn(li)e

j2πc1(l2i−2nli) (22)

where (·)N is the modulo N operation.
From (21), the element of Hi at row p and column q writes

as

Hi(p, q) =
e−j2πc2(p2−q2)

N

N−1∑
n=0

e−j
2π
N

(pn−q(n−li)N )Ai(n, (n− li)N )

=
1

N
ej

2π
N

(Nc1l
2
i−qli+Nc2(q2−p2))

N−1∑
n=0

e−j
2π
N

((p−q+νi+2Nc1li)n).

(23)

As mentioned before, νi is assumed to be integer valued
for all i ∈ {1, . . . , P}, i.e., νi = αi. Moreover, if c1 is chosen
such that 2Nc1li is an integer, (23) writes as

Hi(p, q) =

{
ej

2π
N (Nc1l

2
i−qli+Nc2(q2−p2)) q = (p+ loci)N

0 otherwise
,

(24)



where loci , αi + 2Nc1li. Hence, there is only one non-zero
element in each row of Hi and its location in the p-th row is
(p+ loci)N . The input-output relation in (20) becomes

yp =

P∑
i=1

hie
j 2π
N (Nc1l

2
i−qli+Nc2(q2−p2))xq+w̃, 0 ≤ p ≤ N−1

(25)
where q = (p+ loci)N .

IV. AFDM PARAMETERS

The performance of DAFT-based modulation schemes crit-
ically depends on the choice of parameters c1 and c2. OCDM
uses c1 = c2 = 1

2N . As shown later, this choice provides
better diversity performance than OFDM, but fails to achieve
full diversity in LTV channels. In DAFT-OFDM, c2 = 0 while
c1 is adapted to the delay-Doppler channel profile to minimize
ICI. While this choice simplifies detection, we show that it
fails to achieve full diversity. In the proposed AFDM, we set
c1 and c2 in a way that the DAFT domain impulse response
constitutes a full delay-Doppler representation of the channel.
This choice allows AFDM to achieve full diversity in LTV
channels, as shown in Section V.

In order for the DAFT domain impulse response to con-
stitute a full delay-Doppler representation of the channel,
the unique non-zero entry in each row of Hi for each path
i ∈ {1, . . . , P} should not coincide with the position of
the unique non-zero entry of the same row of Hj for any
j ∈ {1, . . . , P} such that j 6= i. Referring to (24) shows
that the location of each path depends on its delay-Doppler
information and AFDM parameters. For the integer Doppler
shift case, loci is in the following range

− αmax + 2Nc1li ≤ loci ≤ αmax + 2Nc1li. (26)

Therefore, for the positions of the non-zero entries of Hi and
Hj to not overlap, the intersection of the corresponding ranges
of loci and locj should be empty, i.e,

{−αmax + 2Nc1li, ..., αmax + 2Nc1li}∩
{−αmax + 2Nc1lj , ..., αmax + 2Nc1lj} = ∅. (27)

If two paths have the same delays (li = lj) but different
Doppler shifts, then they always occupy two distinct positions
in the DAFT domain. For the paths with different delays
(li 6= lj) assuming lj > li, satisfying (27) is equivalent to
the constraint

2Nc1 >
2αmax

lj − li
. (28)

If there is no sparsity in the time-domain impulse response of
the channel, then the minimum value of lj − li is one and c1
should satisfy

c1 =
2αmax + 1

2N
. (29)

With this c1, the time-frequency representation of chirps is
shown in Fig. 2. Moreover, the only remaining condition for
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Fig. 2. Time-frequency representation of each chirp in AFDM using its c1
given in (29)
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Fig. 3. Structure of Heff in AFDM

the DAFT-domain impulse response to constitute a full delay-
Doppler representation of the channel is to ensure that the non-
zero entries of any two matrices Himin and Himax correspond-
ing to paths imin and imax with delays limin , mini=1···P li
and limax

, maxi=1···P li respectively do not overlap due to
the modular operation in (24). This overlapping never occurs if
2αmaxlmax + 2αmax + lmax < N . Since the wireless channels
are typically underspread, i.e., lmax � N and αmax � N ,
this condition can be satisfied even with moderate values of N .
With this parameter setting, channel paths with different delay
values or different Doppler frequency shifts get separated in
the DAFT domain, resulting in Heff having the structure shown
in Fig. 3. Thus, we get a delay-Doppler representation of the
channel in the DAFT domain since the delay-Doppler profile
can be determined from the positions of the non-zero entries
in any row of Heff . This feature can neither be obtained
by DAFT-OFDM (since its conceptual target is making the
effective channel matrix as close to being diagonal as possible
to reduce ICI), nor with OCDM (since setting c1 = 1

2N , there
might exist two paths i 6= j such that the non-zero entries
of Hi and Hj coincide under some delay-Doppler profiles of
the channel). We next show that this unique feature of AFDM
translates into its optimality in terms of achievable diversity
order in LTV channels.

V. DIVERSITY ANALYSIS OF AFDM
We start by rewriting (19) as

y =

P∑
i=1

hiHix + w̃ = Φ(x)h + w̃ (30)



where h = [h1, h2, . . . , hP ]T is a P × 1 vector and Φ(x) is
the N × P concatenated matrix

Φ(x) = [H1x | . . . | HPx]. (31)

The conditional pairwise error probability (PEP) between xm
and xn, i.e., transmitting symbol xm and deciding in favor of
xn at the receiver, is given by

P (xm → xn|h,xm) = Q

√‖Φ(xm − xn)h‖2
2N0

. (32)

By averaging over the channel realizations, the PEP becomes

P (xm → xn) = Eh

Q
√ ‖Φ(δ(m,n))h‖2

2N0

 (33)

where δ(m,n) , xm − xn. Assuming his are i.i.d and
distributed as CN (0, 1/P ), it can be shown that [13]

P (xm → xn) ≤
r∏
l=1

1

1 +
λ2
l

4PN0

(34)

where r is the rank of matrix Φ(δ(m,n)) and λl is its lth
singular value. Moreover, (34) implies that at high values of
the signal-to-noise ratio SNR , 1

N0
, the overall bit error rate

(BER) is dominated by the PEP with the minimum value of
r, for all pairs (m,n),m 6= n. Hence, the diversity order of
AFDM is given by

ρ , min
m,n m 6=n

rank(Φ(δ)(m,n)) ≤ P . (35)

For exposition convenience, we drop (m,n) from δ(m,n). The
following theorem states that AFDM achieves full diversity
provided that N is large enough.

Theorem 1. For a linear time-varying channel with a max-
imum delay lmax and maximum normalized Doppler shift
αmax, AFDM with c1 satisfying (29) achieves full diversity
i.e., ρ = P if

2αmax + lmax + 2αmaxlmax < N (36)

Proof. To prove Theorem 1, we show that when (29) and
(36) hold, there exist values of c2 such that the rank of Φ(δ)
should be P i.e., such that the P columns of Φ(δ) are linearly
independent. For the sake of clarity of presentation under the
constraint on the number of pages, we give the proof in the
special case of a two-path channel (P = 2). The proof in
the general case follows the same steps but requires a longer
development. Assuming P = 2, Φ(δ) is written in (37) at the
bottom of the page. We now show that there exists c2 such

that the rank of matrix Φ(δ) is two. Given that we exclude
the case δ = 0 (xm 6= xn), there is at least one non-zero entry
δz 6= 0 of δ for some z ∈ {0, · · · , N − 1}. Assume without
loss of generality that loc2 < z < N − αmax. Matrix Φ(δ) is
of rank two if the following matrix constructed with two rows
of Φ(δ) is full rank[

Heff(z − loc2, z − locd)δz−locd Heff(z − loc2, z)δz
Heff(z − loc1, z)δz Heff(z − loc1, z + locd)δz+locd

]
(38)

where locd = loc2− loc1. Since a matrix
[
t1 t2
t3 t4

]
is of full

rank if t1t4 6= t2t3, we need c2 to guarantee that the following
inequality holds

δ2
z 6=ej

2π
N (l2−l1)locdej4πc2loc2dδz−locdδz+locd (39)

Note that δ ∈ Z[j]N×1. Therefore, since δz ∈ Z[j] then the
right-hand side of (39) should not be in Z[j] for the inequality
to hold. Now, since loc2

d 6= 0, setting c2 to be either an
arbitrary irrational number or a rational number sufficiently
smaller than 1

2N guarantees that the right-hand side of (39)
is not in Z[j] and thus makes the inequality in (39) hold.
Therefore, Φ(δ) is a full-rank matrix and AFDM achieves the
full diversity of the channel.

VI. SIMULATION RESULTS

In this section, we compare the BER performance of AFDM
to that of DAFT-OFDM [1], OCDM [3] and OTFS [4]. In
all simulations, BER values are obtained using 106 different
channel realizations with complex gains hi generated as inde-
pendent complex Gaussian random variables with zero mean
and 1/P variance.

Fig. 4 shows the BER performance of the four schemes with
N = 8 and NOTFS = 4, MOTFS = 2 1 for OTFS, in a two-
path LTV channel with different delay-Doppler profiles, using
BPSK symbols and maximum likelihood (ML) detection. ML
is employed for the purposes of diversity order comparison;
different detection methods can, of course, be used in practice.
Notation diff designates the distance between the location of
the two non-zero elements in each row of matrix Heff . It is
observed that DAFT-OFDM has always diversity order one,
since it has always one non-zero element in each row of its
associated Heff . The performance of OCDM depends on diff.
When diff = 0, OCDM performs poorly and has the same
diversity (one) as DAFT-OFDM, mainly due to the possible
destructive addition of the two overlapping paths in that case.
Even with two non-zero elements in each row of its Heff

(diff = 2), full diversity cannot be achieved because in OCDM

1NOTFS and MOTFS are used to discretize the time-frequency signal
plane and delay-Doppler plane to MOTFS×NOTFS grids. More details can
be found in [4]

Φ(δ) =

 Heff(0, loc1)δloc1 Heff(0, loc2)δloc2
...

...
Heff(N − 1, (loc1 +N − 1)N )δ(loc1+N−1)N Heff(N − 1, (loc2 +N − 1)N )δ(loc2+N−1)N

 . (37)
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Fig. 4. BER performance of DAFT-OFDM, OCDM, OTFS and AFDM using
BPSK in a two-path LTV channel with lmax = 1 and αmax = 1 for N = 8,
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Fig. 5. BER performance of OCDM, OTFS and AFDM using QPSK in a 21-
path LTV channel with lmax = 2 and αmax = 3 for N = 64, NOTFS = 8
and MOTFS = 8 using MMSE detection.

c2 = 1
2N , which does not guarantee that Φ(δ) is full rank as

shown in the proof of Theorem 1. In sharp contrast, AFDM
achieves full diversity, mainly due to the path separation by
tuning c1 and setting c2 to be an arbitrary irrational number
or a rational number sufficiently smaller than 1

2N . Expectedly,
AFDM has the same BER performance as OTFS.

Fig. 5 shows the performance of OCDM, AFDM with
N = 64 and OTFS with NOTFS = 8 and MOTFS = 8, using
QPSK symbols and minimum mean square error (MMSE)
detection in a 21-path LTV channel with lmax = 2 and
αmax = 3. For each delay tap, there are 7 paths with different
Doppler shifts from -3 to 3. We observe that OCDM exhibits
the worst performance due to the destructive addition of
overlapping paths in the effective channel matrix. In contrast,
AFDM does not experience this destructive effect thanks to its
path separation. Moreover, we can see that AFDM and OTFS
have again the same performance in terms of BER. As men-
tioned before, although OTFS achieves the same effective full
diversity as AFDM, it suffers from excessive pilot overhead

as each pilot symbol needs at least (2lmax +1)(4αmax +1)−1
guard symbols to avoid data/pilot interference [7] due to the
2D structure of its underlying transform. As for AFDM, only
(2lmax + 2)(2αmax + 1)− 2 guard symbols are needed as can
be verified from the structure of Heff given in Fig. 3. This key
difference, which will presented in detail in a longer version
of this paper, entails a significant throughput gap in favor
of AFDM. The throughput gap increases with the number of
required orthogonal pilot transmissions.

VII. CONCLUSIONS

In this paper, we have proposed AFDM, a new wave-
form based on multiple discrete-time orthogonal chirp signals.
Chirps are generated using the discrete affine Fourier transform
that is characterized by two parameters. We have derived its
input-output signal relation on doubly dispersive channels and
have set the AFDM parameters so that the DAFT domain
channel impulse response constitutes a full representation of
its delay-Doppler profile. Our analytical results have shown
that AFDM always achieves full diversity in doubly dispersive
channels. AFDM is a promising next generation waveform
for high mobility communications, which outperforms OFDM
and other DAFT-based multicarrier schemes, while having
advantages over OTFS in terms of pilot and user multiplexing
overhead.
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