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Abstract—A novel simultaneous localization and radio mapping
(SLARM) framework for communication-aware connected robots
in the unknown indoor environment is proposed, where the
simultaneous localization and mapping (SLAM) algorithm and the
global geographic map recovery (GGMR) algorithm are leveraged
to simultaneously construct a geographic map and a radio map
named a channel power gain map. Specifically, the geographic
map contains the information of a precise layout of obstacles and
passable regions, and the radio map characterizes the position-
dependent maximum expected channel power gain between the
access point and the connected robot. Numerical results show
that: 1) The pre-defined resolution in the SLAM algorithm and
the proposed GGMR algorithm significantly affect the accuracy
of the constructed radio map; and 2) The accuracy of radio map
constructed by the SLARM framework is more than 78.78% when
the resolution value smaller than 0.15m, and the accuracy reaches
91.95% when the resolution value is pre-defined as 0.05m.

I. INTRODUCTION

In the wake of the advancement of computer technology and

mechanical crafts, the mobile robots equipped with actuators

and sensors with controllers turn into automatic mechanism

apparatus progressively [1]. Robots can befriend humans to

implement miscellaneous even dangerous works. However, the

video data or the 3D point cloud data is inevitably pulled into

when the robot using the equipped computation resources to

handle assigned special missions. And the consumption of a

large number of computing resources renders the sky-high cost

of the hardware when robots are applied for repeatedly handling

high dimensional data locally. Accordingly, the introduction of

a cloud control center can assist robots to compute the results

for policy-making, namely, communication-aware connected

robot, to support reducing the complexity of local calculations.

Additionally, in the past few years, the explosive growth of

user access throughput and data throughput has spawned fifth-

generation (5G) and beyond 5G (B5G) networks [2]. The high

speed, high reliability and low latency of the 5G network enable

the creation of the shared link between robots and access points

(APs). Thus, 5G cellular networks aided autonomous robots can

fulfill the demand for efficient work.

Localization and geographic map constructions are the essen-

tial components for robot navigation for accomplishing various

tasks [3]. In pace with the maturity of various sensing technolo-

gies, robot localization studies becomes appealing. The authors

in [4] proposed an algorithm runs in time linear in the number

of landmarks by making efficient use of the representation of

the landmarks by complex numbers, which is described as an

efficient method for localizing a mobile robot in an environment

with landmarks. An indoor inertial navigation system (INS)

integrated with light detection and ranging (LiDAR) robot local-

ization system is proposed in [5] to provide accurate information

about the robot location. In [6], a novel approach for mobile

robot localization from images is proposed based on supervised

learning using topological representations for the environment,

where the spatial Moments combined with Bayes classifier is the

best performing model, providing high accuracy rate and small

computational time. The utilization of internet of things (IoT)

for the development of a system aimed for localization mobile

robots employing convolutional neural networks (CNN) in the

process of feature extraction of the images, according to the

concept of transfer learning is evidenced in [7]. In [8], a fault-

tolerance architecture is proposed for mobile robot localization

and a differential drive mobile robot is investigated. The effec-

tiveness of the fault-tolerance architecture is verified in several

experiments conducted in the robot prototype. An indoor robot

VLP localization system based on Robot Operating System

(ROS) is presented in [9] for the first time, aiming at promoting

the application of VLP in mature robotic system. The authors

in [10] presented an improved observation model for Monte-

Carlo localization (MCL), which improves the robustness of

localization by reliable reflector prediction in the ambiguous

environments caused by incorrect reflectors detection.

While the aforementioned research contributions have laid

a solid foundation on robot localization, the investigations

on the localizations for communication-aware connected robot

are still quite open, especially in unknown environment. The

limitations and challenges are summarized as follows: 1) For the

communication-aware connected robot, the propagation channel

between the AP and the connected robot can become weak

when the communication link is blocked by the obstacles. The

resulting position-dependent channel model challenges the ap-

plication of the connected robots since they are communication-

sensitive. 2) For the unknown environment, the move security

for robots should be well guaranteed.

In response to the above limitations and challenges, our study

draws on the SLAM algorithm and extends to simultaneous

localization and radio mapping (SLARM) framework. In this
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framework, a geographic map and a radio map can be con-

structed simultaneously, which both ensure the move security

and communication quality of the connected robots. Specifi-

cally, a global geographic map recovery (GGMR) algorithm is

developed for determining the geographic map, which contains

the information of a precise layout of obstacles and passable

regions. Based on the geographic map, a radio map is simul-

taneously constructed to characterizes the spatial distribution

of the maximum expected channel power gain between the

AP and the robot. Numerical results show that the resolutions

of the SLARM algorithm plays a significant role in possible

communication area utilization.
II. SYSTEM MODEL
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Fig. 1: Illustration of the communication-aware connected robot

system in an unknown indoor environment.

In this paper, we consider a communication-aware connected

robot system in an unknown indoor environment. As shown in

Fig. 1, the environment consists of one single-antenna AP and

one single-antenna mobile robot. Without loss of generality, we

assume that the floor is smooth with slight undulation, whose

impact led to the system can be negligible. When a three-

dimensional (3D) Cartesian coordinate system is established

based on the plane of the ground, the mobile space and the po-

sitions of AP are specified by [−xMMMmax, xMMMmax] × [−yMMMmax, yMMMmax]

and (0MMM , yMMMmax, h1). MMM ∈ R
X×Y denotes the passable move

space by the robot exploration. Among them, xMMMmax and yMMMmax

denote the maximum bound of the x and y coordinate of the

moving space, respectively. Additionally, let hm denote the

vertical height of the received antenna equipped on the robot,

and mark SMMM = (xMMM , yMMM , hm) denote the position of the robot.

The equivalent baseband Rician channel between the AP and

the robot at position SMMM can be expressed as

hhh(SMMM ) =

√

αs(SMMM )

αs(SMMM ) + 1
h̃hh+

√

1

αs(SMMM ) + 1
ĥhh, (1)

where αs(S
MMM ), h̃hh and ĥhh denote the position-dependent Ri-

cian factor, position-dependent LoS components, and position-

dependent LoS components, respectively. Specifically, if the

the communication link between the AP and the robot at the

location SMMM is blocked, αs(S
MMM ) = 0; otherwise, αs(S

MMM ) = α,

which is a constant value. Note that the hhh(SMMM ) is a random

variable, and it is position-dependent with respect to SMMM .

Thus, we consider the expected channel power gain denoted

by E[|hhh(SMMM )|2], which can be expressed as

E[|HHH(SMMM )|2] = E[|LLL(SMMM )hhh(SMMM )|2] = E[|LLL(SMMM )|2]·

(
αs(S

MMM )

αs(SMMM ) + 1
E[|h̃hh|2] +

1

αs(SMMM ) + 1
E[|ĥhh|2]) = E[LLL(SMMM )].

(2)

where the LLL(SMMM ) denotes the distance-dependent path loss

between the AP and the robot. In this paper, our goal is to

identify the passable region MMM , which avoids collisions, and

the position-dependent channel power gain. These regions help

prevent connected robots from being out of control. To handle

this task, a novel framework, namely simultaneous localization

and radio mapping (SLARM), is proposed.

III. SLARM: SIMULTANEOUS LOCALIZATION AND RADIO

MAPPING FRAMEWORK IN THE UNKNOWN ENVIRONMENT

In this section, we will introduce the SLARM framework. The

SLARM framework integrates the geographic map construction

and radio map construction algorithms, which ensures to si-

multaneously build both two maps for communication-aware

connected robots in the unknown environment.

A. Geographic map construction algorithm

For ease of exposition, the two-dimensional (2D) space of the

X-Y plane of the geographic map for the robot is discretized as
4xmaxymax

δ2
grids at first. The δ denotes the discrete resolution

for space, which is small enough to make the size of the grid

approximate to the center point of the grid. Thus, the center of

(a,b)-th grid can be expressed as

Sa,b =SI + [a− 1, b− 1]δ,

a ∈ {1, 2, · · · ,
2xmax

δ
}, b ∈ {1, 2, · · · ,

2ymax

δ
}. (3)

1) Simultaneous localization and mapping algorithm for sub-

maps construction: Dissimilar with performing tasks on a

precise map, the robot is confronted with an unaccounted-for

environment. Thus, laser-based simultaneous localization and

mapping (L-SLAM) algorithms can be leveraged for geographic

map founded, which is based on an optimized way of particle

filtering. Considering the gmapping scheme [11], gmapping

improves the proposed distribution and selective resampling

according to Rao-Blackwellized Particle Filters (RBPF) [12],

thereby reducing the number of particles and preventing particle

degradation. In the RBPF, the problem to be resolved is to

seek the joint distribution of pose and map p(x1:t, m̂|o1:t, l1:t),
while the sensor data l1:t and observation data o1:t are obtained.

To make the problem briefless, the conditional probability can

be disassembled as position probability estimation and map

drawing. Thus, it can be written as

p(x1:t, m̂|o1:t, l1:t) = p(m̂|x1:t, o1:t) · p(x1:t|o1:t, l1:t−1), (4)

where the x1:t and m̂ denote the robot’s positions and sub-maps

from 1 to t, respectively. It is worth noting that the positions

of the robot in equation (4) are estimation by importance

sampling algorithm (ISA). According to the ISA, after the

robot’s positions at the moment t are predicted, the state value

can be sampled while the value is obtained. Next, the weight
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for each particle and the iterative process for the weight can be

calculated as

w
(i)
t =

p(x
(i)
1:t|o1:t, l1:t−1)

q(x
(i)
1:t|o1:t, l1:t−1)

=
ηp(ot|x

(i)
1:t, o1:t−1)p(x

(i)
t |x

(i)
t−1, lt−1)

q(x
(i)
t |x

(i)
1:t−1, o1:t, l1:t−1)

·
p(x

(i)
1:t−1|z1:t−1, l1:t−2)

q((x
(i)
1:t−1|z1:t−1, l1:t−2))

︸ ︷︷ ︸

w
(i)
t−1

∝
p(ot|m̂

(i)
t−1, x

(i)
t )p(x

(i)
t |x

(i)
t−1, lt−1)

q(x
(i)
t |x

(i)
1:t−1, o1:t, l1:t−1)

· w
(i)
t−1, (5)

where the w
(i)
t and η denote the weight at time t of the i-th

iteration and scale factor, respectively. q(x
(i)
t |x

(i)
1:t−1, o1:t, l1:t−1)

is the key indicator which assists weight determination. After

the robot carries out resampling, particles can be redistributed

according to the particle weights obtained by the sampling

results, which provides input values for the next prediction. If

the particles are directly sampled from the target distribution,

merely one particle is needed to obtain the position estimation

of the robot. If sampling from the sensor, the equation (5) can

be rewritten as

w
(i)
t = w

(i)
t−1 ·

p(ot|m̂
(i)
t−1, x

(i)
t )p(x

(i)
t |x

(i)
t−1, lt−1)

p(x
(i)
t |x

(i)
t−1, lt−1)

∝ w
(i)
t−1 · p(ot|m̂

(i)
t−1, x

(i)
t ). (6)

In this model, the number of particles to simulate the state

distribution are with limitation. It is essential to discard the

particles with low weight and let the particles with large weight

replicate to achieve the convergence of the particles to the

real state. However, particle degradation will be exposed while

frequent re-sampling is implemented. Therefore, the further

improved proposed distribution can be expressed as

p(xt|m̂
(i)
t−1, x

(i)
t1
, ot, lt−1) =

p(ot|m
(i)
t−1, xt)p(xt|x

(i)
t−1, lt−1)

p(ot|m̂
(i)
t−1, x

(i)
t1
, lt−1)

,

(7)

and then particle weight can be recalculated as

w
(i)
t = w

(i)
t−1 ·

ηp(ot|m̂
(i)
t−1, xt)p(xt|x

(i)
t−1, lt−1)

p(xt|m̂
(i)
t−1, x

(i)
t1
, ot, lt−1)

∝ w
(i)
t−1 ·

p(ot|m̂
(i)
t−1, x

(i)
t )p(xt|x

(i)
t−1, lt−1)

p(ot|m̂
(i)
t−1,x

(i)
t

)p(xt|x
(i)
t−1,lt−1)

p(ot|m̂
(i)
t−1,x

(i)
t1

,lt−1)

= w
(i)
t−1 · p(ot|m̂

(i)
t−1, x

(i)
t1
, lt−1)

= w
(i)
t−1 ·

∫

p(ot|x
′)p(x′|x

(i)
t−1, lt−1)dx

′. (8)

The sampling method can be used to simulate the proposed

distribution since an approximate form of accurate target distri-

bution is unavailable. There is a few peaks but one peak in most

case in the target distribution, while it can be sampled from the

peak directly. Thus, the Gaussian function can be simulated as

a proposed distribution after z values are selected near the peak.

The Mean and variance can be calculated as

µ
(i)
t =

1

η(i)
·

z∑

j=1

xj · p(ot|m̂
(i)
t−1, xj) · p(xj |x

(i)
t−1, lt−1), (9)

δ
(i)
t =

1

η(i)
·

z∑

j=1

p(ot|m̂
(i)
t−1, xj) · p(xj |x

(i)
t−1, lt−1)

· (xj − µ
(i)
t )(xj − µ

(i)
t )T . (10)

Thus, the x and y coordinates of each position (x
(i)
t , y

(i)
t )

of the i-th iteration is derived from the Gaussian distribution

N (µ
(i)
t , δ

(i)
t ). Thus, the average coordinate approximation is

calculated as

xt =
1

I

I∑

i=1

x
(i)
t , yt =

1

I

I∑

i=1

y
(i)
t . (11)

where the I denotes the number of the particles. Note that each

particle is responsible for iterating once, The mentioned above

is to method for localization, while the mapping work needs to

be completed according to the Bresenham algorithm [13].

Remark 1. For the basic principle of the Bresenham algorithm,

Construct a set of virtual grid lines from the center of each row

and column of pixels, and calculate the intersection of each

vertical grid line of the straight line from the start point San,bn

to the final point San+1,bn+1 , where n ∈ {1, 2, · · · , N}. The

pixel of the column of pixels closest to this intersection point

can be determined.

Thus, since the method for map discretization, according to

the (11), the coordinates of the (a,b)-th grid can be rewrriten as

xa,b =
1

I

I∑

i=1

x
(i)
a,b, ya,b =

1

I

I∑

i=1

y
(i)
a,b, (12)

with the passible sub-map m(an̂,bn̂)→(an̂+1,bn̂+1)
m(an̂,bn̂)→(an̂+1,bn̂+1) = p(m̂|x1: 2xmax

δV

, o1: 2xmax

δV

), (13)

where the n̂ ∈ {1, 2, · · · , N̂} denotes the number of the

passible grids. Then, we assume the time consumed by SLAM

computation at each grid is negligible. To evaluate the quality of

SLAM, root mean square error (RMSE) can be utilized to count

the absolute trajectory error (ATE) of robots reaching each grid,

which can be expressed as

MSE(XXX,x̃xx) =
1

Q0

Q0∑

q=1

(x
(q)
a,b − x̃

(q)
a,b)

2, (14)

where x
(q)
a,b, x̃

(q)
a,b, XXX and x̃xx denote the observation data for

the q-th measurement at the (a,b)-th grid, real data for the

q-th measurement at the (a,b)-th grid, the set of observation

data and the set of real data, respectively. According to the L-

SLAM algorithm, the MMM can be obtained. Additionally, global

geographic map recovery (GGMR) algorithm can assist the

positions of the robot teetotally shroud the whole environment,

while all sub-maps can be established by L-SLAM algorithm.

The GGMR algorithm is illustrated in the next subsection.
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2) Global geographic map recovery algorithm for sub-maps

connection: As the geographic map are discretized1, all the

accessible grids are expanded in searching for an complete

coverage path. Thus, a search algorithm must constantly make

a decision about which grid to explore next. If it expands grids

which obviously cannot be accessible, it loses the effort. On

the other hand, if it ignores grids that can be admissible, it will

fail to reconstruct the radio map for the indoor environment.

An efficient global geographic map recovery algorithm for sub-

maps connection obviously needs to evaluate available grids to

determine which grid is accessible. Additionally, it is essential

to avoid path duplication and shorten the moving distance

during the robot traversal procedure. The robot shall turn 90

degrees or 180 degrees when it encounters an impassable region

ahead. In the whole path search procedure, finding the optimal

path between grids obeys the A* algorithm.

As mentioned above, when building a geographic map and

channel power gain map, the size of the grid can be ignored.

However, the grid size is the main influencing factor of GGMR

since the positions of the robot are determined by GGMR.

Suppose l0 as the length of each grid and the shape of each

grid is square. On account of executing the GGMR algorithm

in an unknown environment is messy, the problem can be

concise to which rough environmental boundary is stipulated

beforehand. Accordingly, the SLAM algorithm is iteratively

tested in the same physical environment. The calculated MSE

based on the equation (14) is utilized to pre-define the rough

boundary. The proposed GGMR algorithm for exploring the

whole environment is summarized in Algorithm 1.

B. Radio map construction algorithm

Since the geographic map is constructed, the radio map,

namely, the channel power gain map can be simultaneously

obtained, where the channel power gain map is constructed by

exploiting the information of exact channel propagations. Let

FFF ∈ R
X×Y denote the channel power gain map, the path loss

can be patritioned into non-light-of-sight (NLoS) and light-of-

sight (LoS). Thus, the expected effective channel power gain at

(a,b)-th grid is given by

Fa,b = E[LLLa,b] =

{

LLoS, AP− robot link is unblocked,

LNLoS, otherwise,

(15)
where the LLoS and LNLoS denote the path loss between the

AP and (a,b)-th grid with LoS and NLos cases, respectively.

Note that for simplicity, for SLARM, no interference except

for noise power σ2 is introduced into the transmitted signal. So

far, the channel power gain map in the unknown environment

is obtained according to the SLARM framework.

IV. NUMERICAL RESULTS

The gazebo’s model is leveraged to build a simulation en-

vironment, which provides high-fidelity physical simulation.

1In this paper, we do not consider improving the performance of SLAM
algorithm.

Algorithm 1 GGMR algorithm for the whole environment

Input:

1: Environment theoretical size 2xmax× 2ymax, obstacle the-

oretical size set {lo ∗ wo}, Wall theoretical size lw ∗ ww,

numbers of walls N1, number of obstacles N2, MSE for

SLAM algorithm.

Return: Values of all grids and robot trajectory.

2: Initialize:

3: Size (2xmax-MSE)(2ymax-MSE) for environment, move

direction set DDD, map resolution δ, expansion radius Re,

positive direction is positive half x-axis.

4: Randomly select start position S0 and final position Sf .

5: Current position is pre-defined as S0.

6: The moving direction is the positive direction first, followed

by the negative direction.

7: repeat

8: Explore the adjacent grid in the same direction as the

movement at current position.

9: if the adjacent grid = 0.5 or 1 then

10: Explore the three grids above at current grid.

11: if There is one grid = 0 then

12: Select the move direction d from DDD.

13: Next position = current position + d;

14: else if the value of all three grids = 0.5 or 1 then

15: New start position needs to be defined.

16: Go to step 5;

17: end if

18: else if the adjacent grid = 0 then

19: Select the move direction d from DDD.

20: Next position = Current position + d;

21: end if

22: until The value of all grids are 0.5 or 1.

Robot

Wall

Obstacle

AP

10m

7m

2m

3.3m

3.3m

3m

1m

1.3m

Fig. 2: The geographic environment for simulation.

When real robots and corresponding experimental environments

are not available, it can genuinely mirror the real environment.

As shown in Fig. 2, the environment has two layers of walls and

three regular cuboid obstacles. The rest of the ground between

the two layers of walls is the possibly accessible regions for the

robot. Also, the designated size was demonstrated, where the

width, length, and ceiling height of the room are 10m, 7m, and
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3m. Additionally, the obstacles are with a size of 1.3m × 1m ×
1.5m, and the internal wall is with a total outer circumference

of 21m, the thickness of 0.5m, and height of 1.8m. The AP

and is deployed at (0,3.5,2.5). The path loss La,b demonstrated

in equation (15) according to report for the InF-SH scenario in

[14], which can be expressed as

Fa,b = E[LLLa,b] =
{

LLoS = 31.84 + 21.5log10(da,b) + 19log10(fc),

LNLoS = max{LLoS, 32.4 + 23log10(da,b) + 20log10(fc)},

(16)
A. Radio map construction results

Our purpose is that the robot can simultaneously build the

radio map and the geographic map. The gmapping algorithm

and proposed GGMR algorithm are leveraged for geographic

map construction since the environment needs to be explored.

Owing to the errors of the SLAM algorithm and the GGMR

algorithm, the position-dependent based channel power gain

map in the exploration environment also has a bias. The two

cases (theoretical and simulational) are considered, while the

three different resolutions are enacted for comparison. The

theoretical results are shown in Fig. 2, where the size of

the environment is pre-assumed as ideal, the channel power

gain map turns blurry with the value of resolutions increased.

Specifically, when the resolutions reach 0.25m, the size of

some grids are not proper to approximate to the centers of

grids. Thus, the channel power gain map is no longer efficient

for future mission execution under such a resolution case,

where the resource (like passable region space) is unexpected

consumption. Additionally, the simulation results are shown

in Fig. 4, when the SLAM algorithm is employed, it can be

obtained that due to the limitation of the algorithm performance,

some burrs appear on the boundaries and the edges of obstacles.

To resolve this problem, we pre-set an expansion radius near

the boundary and obstacles, which is to prevent the robot from

colliding with the boundary or obstacles. More imperatively, the

positions of the obstacles deviate from the theoretical positions

in the simulation results can bring the error to the channel power

gain calculation, which also makes the large value of resolution

is not permittable. Additionally, we found that according to the

SLAM algorithm, the GGMR algorithm can be influenced to

a certain extent. Then, in order to make the established radio

map serve the future path planning, we have carried out edge

detection and smoothing filtering on the image drawn in Fig. 4

without affecting the passable region since the boundaries and

obstacles turn regular.

B. Accuracy for radio map construction

In the process of building a radio map, the resolution is a

decisive factor. The environment exploration time of the GGMR

algorithm slows down gradually as the resolution decreases.

It is worth noting that SLARM algorithm time is the sum

of GGMR exploration time and radio map measurement time,

where the measurement time can be ignored. It is announced

that the completion time increases as the value of resolution

increases, which is in line with our expectations. But it does

not prove that the accuracy of the SLARM algorithm has

a similar relationship with the size of the resolution, which

should be further discussed. Thus, we define the velocity of

the robot v=0.6m/s and resolution as 0.02 to test it. It should

be emphasized that the accuracy rate is determined by the

MSE of the SLAM algorithm, the GGMR algorithm coverage

grid rate and the robot speed. As shown in Fig. 5, under this

definition, the accuracy is lower than when the resolution is

0.05. Additionally, we changed the velocity of the robot, as

shown in Fig. 5, we can see that when the speed of the robot

reaches 1m/s, SLARM has the highest accuracy 91.95%. As for

the SLAM algorithm, because this article did not improve and

discuss the algorithm, and from the results, the change of MSE

is consistent with the resolution. In this article, the accuracy of

SLARM focuses on the performance of the GGMR algorithm

and the speed of the robot.

C. Performance for SLARM algorithm

As mentioned above, the performance of the SLARM oc-

cupies a pivotal position in the entire radio map establish-

ment process. Furthermore, we analyze the performance of

the GGMR algorithm. The GGMR algorithm proposed in this

paper, let the robot traverses the whole map to explore its

space complexity and time complexity by generating grids with

different resolution values in the map. Its space complexity

is mainly determined by map data, and its space complexity

is O(N2). Time complexity needs to consider the number of

comparisons in the exploration process. In this algorithm, in

the best case, the robot needs to compare the three grids above

its 8-connected area 3 times (3 cycles) for each grid and find

the final position from the first position. In the worst case, the

robot not only needs to perform these 3 comparisons (three-

fold cycle failure), the robot cannot find the final position at

one time, but also needs to perform N position searches. The

logN level is divided and conquered under the final level of

the cycle, and each level needs to be merged and searched N

times. In summary, it can be seen that the best time complexity

is O(N3), and the worst time complexity is O(N(logN)N ).

V. CONCLUSION

A SLARM framework was proposed to comply with the

construction of the radio map in the unknown environment

for communication-aware connected robots. In this framework,

combing the SLAM algorithm with the features of the wire-

less network, simultaneously geographic map and radio map

construction has been implemented. A novel global geographic

map recovery algorithm was responsible for assuring all the

sub-maps can be connected. Numerical results showed that the

resolutions of the SLAM algorithm and GGMR algorithm play a

significant role in possible communication area utilization. The

accuracy reaches 91.95% when the resolution is pre-defined as

0.05m.
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0.25m.

Fig. 3: Theoretical GGMR exploration and radio map construction.
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Fig. 4: Simulational GGMR exploration and radio map construction.
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