
Meta-ViterbiNet: Online Meta-Learned Viterbi
Equalization for Non-Stationary Channels

Tomer Raviv, Sangwoo Park, Nir Shlezinger, Osvaldo Simeone, Yonina C. Eldar, and Joonhyuk Kang

Abstract—Deep neural networks (DNNs) based digital re-
ceivers can potentially operate in complex environments. How-
ever, the dynamic nature of communication channels implies
that in some scenarios, DNN-based receivers should be pe-
riodically retrained in order to track temporal variations in
the channel conditions. To this aim, frequent transmissions of
lengthy pilot sequences are generally required, at the cost of
substantial overhead. In this work we propose a DNN-aided
symbol detector, Meta-ViterbiNet, that tracks channel variations
with reduced overhead by integrating three complementary
techniques: 1) We leverage domain knowledge to implement
a model-based/data-driven equalizer, ViterbiNet, that operates
with a relatively small number of trainable parameters; 2)
We tailor a meta-learning procedure to the symbol detection
problem, optimizing the hyperparameters of the learning algo-
rithm to facilitate rapid online adaptation; and 3) We adopt a
decision-directed approach based on coded communications to
enable online training with short-length pilot blocks. Numerical
results demonstrate that Meta-ViterbiNet operates accurately
in rapidly-varying channels, outperforming the previous best
approach, based on ViterbiNet or conventional recurrent neural
networks without meta-learning, by a margin of up to 0.6dB in
bit error rate in various challenging scenarios. Index terms—
Viterbi algorithm, meta-learning.

I. INTRODUCTION

Deep learning systems have demonstrated unprecedented
success in various applications, ranging from computer vision
to natural language processing, and recently also digital com-
munications and receiver design [1]–[4]. While traditional
receiver algorithms are model-based, relying on mathemat-
ical modeling of the signal transmission, propagation, and
reception, deep neural networks (DNNs) are model-agnostic,
and are trained from data. DNN-aided receivers can operate
efficiently in scenarios where the channel model is unknown,
highly complex, or difficult to optimize for [5].

Despite its potential in implementing digital receivers [6],
[7], deep learning solutions are subject to several challenges
that limit their applicability in important communication

This project has received funding from the European Union’s Horizon
2020 research and innovation program under grants No. 646804-ERC-
COG-BNYQ, the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agree-
ment No. 725731). It was supported by the Institute of Information &
Communications Technology Planning & Evaluation (IITP) grant funded
by the Korea Government (MSIT) (No.2018-0-00170, Virtual Presence in
Moving Objects through 5G) and by the Ministry of Science and ICT
(MSIT), South Korea, through the Information Technology Research Center
(ITRC) Support Program supervised by the Institute of Information and
Communications Technology Planning and Evaluation (IITP) under Grant
IITP-2020-0-01787. Support is also acknowledged from a gift by Huawei
Technologies, and from the Israel Science Foundation under grant No.
0100101. T. Raviv is with the School of EE, Tel-Aviv University, Tel-
Aviv, Israel (e-mail: tomerraviv95@gmail.com). S. Park and O. Sime-
one are with the Department of Engineering, King’s College London,
U.K. (email: {sangwoo.park; osvaldo.simeone}@kcl.ac.uk). N. Shlezinger
is with the School of ECE, Ben-Gurion University of the Negev, Beer-
Sheva, Israel (e-mail: nirshl@bgu.ac.il). Y. C. Eldar is with the Faculty
of Math and CS, Weizmann Institute of Science, Rehovot, Israel (e-mail:
yonina.eldar@weizmann.ac.il). J. Kang is with the School of EE, KAIST,
Daejeon, South Korea (e-mail: jhkang@ee.kaist.ac.kr).

scenarios. A fundamental difference between digital com-
munications and traditional deep learning applications stems
from the dynamic nature of communication systems, and
particularly of wireless channels. DNNs consist of highly-
parameterized models that can represent a broad range of
mappings. As such, massive data sets are typically required
to learn a desirable mapping. The dynamic nature of com-
munication channels implies that the statistical model can
change considerably over time, and thus a DNN trained for
a given channel may no longer perform well on a future
channel. DNN-aided receivers are thus likely to require
frequent retraining, at the cost of degraded spectral efficiency
due to pilot transmissions.

Various strategies have been proposed in the literature
to facilitate the application of DNNs to receiver design in
dynamic channel conditions. The first type avoids retraining,
attempting instead to learn a single mapping that is applicable
to a broad range of channel conditions. This class of methods
includes the straightforward approach of training a DNN
using data corresponding to a broad set of expected channel
conditions, which is commonly referred to as joint learning
[4], [8]. Alternatively, one can train in advance a different
network for each expected statistical model, and combine
them as a deep ensemble [9]. However, these strategies
typically require large training data, and deviating from the
training setup can greatly harm performance [10].

The alternative strategy is to periodically retrain the net-
work. To provide data for retraining, one must either transmit
frequent pilots, or, alternatively, use decoded data for training.
Such self-supervised training can be implemented by either
using successfully decoded forward error correction (FEC)
codewords, as in [11], [12], or by providing a measure
of confidence per each symbol and selecting those with
the highest confidence for retraining, as proposed in [13].
Nonetheless, the volumes of data one can obtain in real-
time, either from pilots or from decoded transmissions, are
limited and are not at the scale of typical data volumes
used for training DNNs. Retrained DNN-aided receivers
should thus utilize compact DNN architectures. This can be
achieved without compromising accuracy by using hybrid
model-based/data-driven receivers, that incorporate domain
knowledge. Following this principle, data-driven implemen-
tations of the Viterbi scheme [14], BCJR method [15], and
iterative soft interference cancellation [16] were proposed in
[11], [17], [18], respectively.

The ability to retrain quickly is highly dependent on the
selection of a suitable initialization of the iterative training
algorithm. While the common strategy is to use random
weights, the work [11] used the previous learned weights
as an initial point for retraining. An alternative approach is
to optimize the initial point via meta-learning [10], [19]–
[21]. Following this approach, one not only retrains, but

ar
X

iv
:2

10
3.

13
48

3v
1

 [
cs

.I
T

]
 2

4
M

ar
 2

02
1

Fig. 1: Transmission model. The channel is constant within each block and changes across blocks, i.e., tf times within a
frame.

also optimizes the hyperparameters that dictate the retraining
process. In particular, it was shown in [21] that by optimizing
the initial weights used in the training algorithm, rather than
using random weights or the current ones, the receiver can
quickly adapt to varying channel-conditions.

In this work we propose Meta-ViterbiNet, which is a
hybrid model-based/data-driven symbol detection mechanism
for finite-memory channels, that is capable of tracking time-
varying conditions quickly and with minimal overhead. Meta-
ViterbiNet enables DNN-aided equalization with rapid re-
training by combining dedicated designs of the system ar-
chitecture, training algorithm, and data used for training:
• Architecture - Meta-ViterbiNet employs the ViterbiNet

architecture proposed in [11], leveraging domain knowl-
edge about optimal detectors for finite-memory channels
in the presence of channel state information (CSI) to
reduce the number of trainable parameters.

• Training algorithm - We tailor the model-agnostic
meta-learning (MAML) method [22] to incorporate tem-
poral evolution over a sequence of symbols. The goal is
to optimize the initialization of the training algorithm,
such that training on the last decoded data block mini-
mizes the error on the next data block.

• Data - Apart from the pilots, the data used for training
is acquired from the local FEC decoder as in [11], [12],
enabling the use of self-generated labels that extend the
availability of supervised data beyond the pilot blocks.

The rest of this paper is organized as follows: Section II de-
tails the system model. Section III presents Meta-ViterbiNet.
Experimental results are presented in Section IV. Finally,
Section V provides concluding remarks.

Throughout the paper, we use boldface letters for vectors,
e.g., x; the ith element of x is written as (x)i. We use upper-
case letters for random variables (RVs), and lower-case letters
for deterministic quantities. Calligraphic letters, such as X ,
are used for sets, and R is the set of real numbers.

II. SYSTEM MODEL

Here, we describe the system model for which Meta-
ViterbiNet is designed. We first detail the time-varying chan-
nel model in Subsection II-A, after which we discuss the
transmission model and formulate the problem in Subsec-
tion II-B.

A. Channel Model
We consider communications over causal finite-memory

blockwise-stationary channels. Accordingly, the channel out-
put depends on the last L > 0 transmitted symbols, where
L is the memory length. The channel is constant within a
block of B channel uses, which corresponds to the coherence

duration of the channel. Let Si,j ∈ S , with |S| = M ,
be the symbol transmitted from constellation S at the ith
time instance i ∈ {1, 2, . . . , B} := B of the jth block.
The corresponding channel output, denoted Y i,j , is given
by a stochastic function of the last L transmitted symbols
S̄i,j := [Si−L+1,j , . . . , Si,j]

T . Specifically, by defining the
jth transmitted block as SB

j := {Si,j}i∈B and its corre-
sponding observations as Y B

j := {Y i,j}i∈B, the conditional
distribution of the channel output given its input satisfies

pY B
j |SB

j

(
yB
j |sBj

)
=

B∏
i=1

pY i,j |S̄i,j

(
yi,j |s̄i,j

)
. (1)

In (1), the lower-case notations yi,j and s̄i,j represent the
realizations of the RVs Y i,j and S̄i,j , respectively. We set
Si,j ≡ 0 for i < 0, i.e., we assume a guard interval at least L
time instances between blocks. Each symbol Si,j is uniformly
distributed over the set S of M constellation points.

B. Problem Formulation

We consider the transmission scenario illustrated in Fig. 1,
where a total of T blocks, indexed j ∈ {0, . . . , T − 1}, are
transmitted sequentially. Each consecutive tf blocks consti-
tute a frame; e.g., the first frame is comprised of blocks
j ∈ {0, . . . , tf − 1}. The first block of each frame is a
known pilot, while the remaining tf − 1 blocks contain
coded data. We denote the set of pilot blocks indices as
Jp = {n · tf |n ∈ N}. Each coded data block sBj of B
symbols conveys a k bit random message mj ∈ {0, 1}k,
encoded using both FEC coding and error detection codes.
Error detection codes, such as cyclic redundancy check, allow
the receiver to determine if decoding of the message mj is
successful or erroneous.

Our goal is to design a symbol detection mechanism for
recovering the data symbols. A symbol detector can be
written as a mapping ŝBj : YB 7→ SB , and the design
objective is the symbol error rate on the data blocks, i.e.,

1

B

B∑
i=1

Pr
(
ŝi,j(Y

B
j) 6= Si,j

)
, j /∈ Jp. (2)

III. META-VITERBINET

In this section we present Meta-ViterbiNet, which is
a DNN-aided receiver architecture for time-varying finite-
memory channels. We describe the different components of
Meta-ViterbiNet in Subsection III-A. Then, we elaborate on
its main components, which are the ViterbiNet architecture,
codeword-level online training, and the meta-learning pro-
cess, in Subsections III-B, III-C, and III-D, respectively.

Fig. 2: Illustration of the operation of Meta-ViterbiNet.

A. High-Level Description

Meta-ViterbiNet operates without explicit knowledge of
the channel input-output relationship (1), apart from its mem-
ory L and its coherence time duration. The detector for the
jth block is parameterized by the weight vector ϕj . In order
to enable an adaptation mechanism, the receiver maintains at
each block index j a vector of hyperparameters θj , as well
as a labelled data buffer Dj . This buffer contains pairs of
previously received blocks yB

j along with their corresponding
transmitted signal sBj , or an estimated version thereof. The
buffer Dj contains D such pairs, and is managed in a first-
in-first-out mode. Following the MAML approach [22], the
hyperparameter vector θj determines the initialization used to
update the detector’s parameters ϕj for block j via stochastic
gradient descent (SGD) based on recent data.

As illustrated in Fig. 2, upon the reception of a block of
channel outputs yB

j , Meta-ViterbiNet operates in three stages:

1) Detection: Each incoming data block yB
j is first equal-

ized by using the ViterbiNet equalizer parametrized by
the current vector ϕj , as detailed in Subsection III-B.
Then, it is decoded by using an arbitrary hard-input FEC
decoder to produce the decoded message m̂j . When
decoding is correct, as determined by error detection,
the message m̂j is re-encoded and modulated, produc-
ing an estimated transmitted vector sBj . This block is
inserted along with its observations yB

j into buffer Dj .
A pilot block (sBj ,y

B
j) is directly inserted into Dj upon

reception.
2) Online training: In each data block j, if decoding is

successful, the weights of ViterbiNet ϕj+1 are updated
by using the hyperparameters θj+1 and the newly de-
coded block (sBj ,y

B
j), as detailed in Subsection III-C.

Otherwise, no update is carried out. A similar update
takes place for pilot block j with pilot block (sBj ,y

B
j).

3) Online meta-learning: Periodically, i.e., once every K
blocks, the buffer Dj is used to update θj+1 via online
meta-learning, as detailed in Subsection III-D.

If ϕj and/or θj are not updated in a given block index
j, they are preserved for the next block by setting ϕj+1 =
ϕj and/or θj+1 = θj . The online adaptation framework is
detailed in the sequel, and is summarized in Algorithm 1.

Algorithm 1: Online Adaptation on Incoming Block
j

Input: Step sizes η, κ; threshold ε; buffer Dj ;
hyperparameter θj

Output: Hyperparameter θj+1; weights ϕj+1; buffer
Dj+1

1 Receive yB
j // received channel output

2 if j ∈ Jp then
3 Dj ← Dj

⋃
{sBj ,yB

j } // known pilots
4 else
5 Equalize and decode yB

j into m̂j // data
6 if Decoding is correct then
7 Modulate m̂j 7→ sBj
8 Dj ← Dj

⋃
{sBj ,yB

j }
9 end
Online meta-learning (every K
blocks)

10 Set θ(0)
j+1 = θj

11 for i = 1, 2, . . . do
12 Randomly select block {sB

ĵ+1
,yB

ĵ+1
} ∈ Dj

13 if {sB
ĵ
,yB

ĵ
} /∈ Dj then

14 go back to line 11 // invalid data
for meta-learning

15 Locally update ViterbiNet equalizer for block
ĵ + 1 with selected block {sB

ĵ
,yB

ĵ
} via (5) as

ϕ̂ĵ+1 = θ
(i)
j+1 − η∇θ(i)

j+1
Lĵ(θ

(i)
j+1).

16 Evaluate loss at block ĵ + 1, Lĵ+1(ϕ̂ĵ+1)

17 Update hyperparameter θj+1

// meta-update
18

θ
(i+1)
j+1 = θ

(i)
j+1 − κ∇θ(i)

j+1
Lĵ+1(ϕ̂ĵ+1).

19 end
20 Set hyperparameter θj+1 = θ

(i+1)
j+1

Online learning (on each block)
21 if (j ∈ Jp) or (Decoding is correct) then
22 Train ϕj+1 with {sBj ,yB

j } and initialization θj+1

23 via (4)
24 else
25 ϕj+1 ← ϕj // no update
26 end
27 Dj+1 ← Dj // keep buffer

B. ViterbiNet Symbol Detection
The ViterbiNet equalizer, proposed in [11], is a data-driven

implementation of the Viterbi detector for finite-memory
channels of the form (1) [14]. ViterbiNet does not require
prior knowledge of the channel conditional distributions
pY B

j |SB
j

.
For a given data block j, the Viterbi equalizer solves the

maximum likelihood sequence detection problem

ŝBj
(
yB
j

)
= arg min

sB∈SB

{
−

B∑
i=1

log pY i,j |S̄i,j

(
yi,j |s̄i,j

)}
.

(3)

In particular, (3) is solved recursively via dynamic program-
ming, by iteratively updating a path cost ci(s̄) for each
state s̄ ∈ SL for i = 1, 2, . . . , B. ViterbiNet implements
Viterbi detection in a data-driven fashion by training a DNN
to provide a parametric estimate of the likelihood function
pY i,j |S̄i,j

(y|s̄), which is denoted as P̂ϕ (y|s̄), where ϕ are
the model parameters. See [11] for more details.

C. Self-Supervised Online Training
During data block j /∈ Jp, the channel decoder takes as

input the estimated block ŝBj from the ViterbiNet equalizer,
and outputs a decoded message m̂j along with an indication
on the correctness of its decoded message. When decoding is
correct, the decoded message m̂j is encoded and modulated
into the estimated transmitted symbols sBj .

At each data block j, given the current initialization hyper-
parameter vector θj+1 (discussed in the next subsection) and
the last successfully decoded block {sB

ĵ
,yB

ĵ
}, the algorithm

updates the model parameters vector ϕj+1 by minimizing the
empirical cross entropy loss:

arg min
ϕ

{
Lĵ(ϕ) = −

B∑
i=1

log P̂ϕ

(
yi,ĵ |s̄i,ĵ

)}
. (4)

The optimization problem in (4) is approximately solved via
gradient descent (GD), i.e., through iterations of the form

ϕj+1 = θj+1 − η∇θj+1Lĵ(θj+1), (5)

where η > 0 is the learning rate. We note that the index ĵ of
the last decoded block may be smaller than j. While (5) de-
scribes a single GD iteration, multiple iterations are similarly
accommodated. Note also that stochastic computation of the
gradient in (5) can be achieved via random sampling among
available B blocks to implement stochastic GD (SGD).

D. Meta-Learning the Initial Weights
The hyperparameter θj+1 should be optimized so as to

enable fast and efficient adaptation of the model parameter
ϕj+1 based on the last successfully decoded block {sB

ĵ
,yB

ĵ
}

using (5). Adopting MAML [22], we leverage the data in the
buffer Dj by considering the problem

θj+1 =arg min
θ

∑
{sB

ĵ+1
,yB

ĵ+1
}∈Dj

Lĵ+1(ϕĵ+1 =θ−κ∇θLĵ(θ)),

(6)

where κ > 0 is the meta-learning rate. The parameters
ϕĵ+1 in (6) follow same update rule in (5) by using the
last available block {sB

ĵ
,yB

ĵ
} in the buffer prior to index

ĵ + 1. Furthermore, in line with (4), the loss Lĵ+1(ϕĵ+1) is
computed based on data from the following available block
{sB

ĵ+1
,yB

ĵ+1
}. When the buffer Dj contains a sufficiently

diverse set of past channel realizations, the hyperparameter
obtained via (6) should facilitate fast training for future
channels via (5) [23].

Discussion: Meta-ViterbiNet is designed to exploit par-
tial domain knowledge regarding both the channel and the
transmission protocol in order to enable quick online training
with minimal overhead. In particular, the finite memory of
the channel allows the use of compact DNNs without com-
promising detection accuracy via the ViterbiNet architecture.

Furthermore, the initial weights of the learning algorithm
are periodically updated via online meta-learning to allow
fast re-training. By meta-learning over subsequent pairs, in
a manner that follows the online retraining procedure, the
detector learns initial weights from which it can rapidly train
based on a buffer of past data. This further reduces the
amount of data needed to adapt the detector as compared
to which used the the last parameter vector ϕi to initialize
the update of ϕi+1.

The current formulation of the online adaptation mecha-
nism accounts only for pilot and data blocks. In practice,
communication protocols induce additional structures not
considered in our design, such as the presence of headers
and management frames, which can also be utilized to
generate data for retraining. Furthermore, one may consider
extracting labels from incorrectly decoded blocks, by keeping
specific uncoded symbols for which one has a high level of
confidence. We leave the study of these extensions for future
work.

IV. NUMERICAL EVALUATIONS

We next detail the simulation study used for evaluating
Meta-ViterbiNet. The source code used in our experiments is
available at https://github.com/tomerraviv95/MetaViterbiNet.

A. Evaluated Equalizers
In order to evaluate Meta-ViterbiNet, we have implemented

the following detectors.
1) Equalizers: We consider two DNN-aided receivers:
• The ViterbiNet equalizer detailed in Subsection III-B,

whose internal DNN is implemented using three fully-
connected layers of sizes 1×100, 100×50, and 50×ML,
with activation functions set to sigmoid (after first layer),
ReLU (after second layer), and softmax output layer.

• A recurrent neural network symbol detector, comprised
of a sliding-window long short-term memory (LSTM)
classifier with two hidden layers of 256 cells and win-
dow size L, representing a black-box DNN benchmark
[24].

2) Training Methods: Before the evaluation phase begins,
we generate a set D0 of Tt pilot blocks. We then use the
following methods for adapting the deep equalizers:
• Joint training: The DNN is trained on D0 only by

minimizing the empirical cross-entropy loss, and no
additional training is done in the evaluation phase.

• Online training [11]: The DNN is initially trained on D0

by minimizing the empirical cross-entropy loss. Then,
during evaluation, the DNN parameters vector ϕj is
re-trained on each successfully decoded data block and
on each incoming pilot block. Precisely, online training
follows (5) by using ϕj in lieu of θj+1.

• Online meta-learning: Here, we first meta-train θ0 with
D0 similar to (6) as

θ0 = arg min
θ

∑
{sB

ĵ+1
,yB

ĵ+1
}∈D0

Lĵ+1(ϕĵ+1 = θ−κ∇θLĵ(θ)).

This process yields the initial hyperparameters θ0. Then,
during evaluation, Algorithm 1 is used with online learn-
ing every block and online meta-learning every K = 5
blocks. The number of online meta-learning updates

(a) Synthetic preliminary training channel. (b) Synthetic test channel. (c) COST 2100 channel.

Fig. 3: Examples of time-varying channels: channel coefficients versus block index.

equals that of online training, thus inducing a relative
small overhead due to its additional computations.

B. Simulation Results
The combination of ViterbiNet equalizer and online meta-

training corresponds to the proposed Meta-ViterbiNet. Re-
calling Figure 1, frames consist of tf = 25 blocks, i.e.,
each pilots block is followed by 24 coded data blocks. The
messages are encoded using a Reed-Solomon [17,15] code
with two parity symbols. Thus, each messagem is comprised
of (B−16) bits under binary phase shift keying modulation,
i.e., S = {±1}.

We consider a linear Gaussian channel, whose input-output
relationship is given by

Y i,j =

L−1∑
l=0

hl,jSi−l,j + wi,j , (7)

where hj = [h0,j , . . . , hL−1,j]
T are the real channel taps,

and wi,j is additive zero-mean white real Gaussian noise with
variance σ2. We set channel memory to L = 4 with the taps
{hl,j} being generated using a synthetic model representing
oscillations of varying frequencies, as well as using the COST
2100 model for indoor wireless communications [25].

1) Synthetic Channel: In the first experiment we con-
sider a synthetic periodically time-varying channel. Here, the
signals received during the pilots used for initial training
(D0) are subject to the time-varying channel whose taps are
illustrated in Fig. 3a; while we use the taps illustrated in
Fig. 3b for the rest of the experiment. This channel presents
oscillations of varying frequencies, where the periods of the
taps become aligned as the noise subsides. We set the block
length to B = 136 symbols, representing a relatively short
coherence duration for the time-varying channel.

In Fig. 4a we plot the evolution of the average coded
bit error rate (BER) of the considered receivers when the
signal-to-noise ratio (SNR), defined as 1/σ2, is set to 12
dB. Fig. 4a shows that Meta-ViterbiNet significantly outper-
forms its benchmarks. In particular, it is demonstrated that
each of the ingredients combined in Meta-VitebiNet facil-
itates operation in time-varying conditions: The ViterbiNet
architecture consistently outperforms the black-box LSTM
classifier; Online training yields reduced BER as compared to
joint learning; and its combination with meta-learning yields
the lowest BER.

To further validate that these gains also hold for different
SNRs, we show in Fig. 4b the average coded BER of the
evaluated receivers after 300 blocks. We observe in Fig. 4b

that for SNR values larger than 8 dB, Meta-ViterbiNet consis-
tently achieves the lowest BER values among all considered
data-driven receivers, with gains of up to 0.5dB.

2) COST 2100 Channel: Next, we consider channels gen-
erated using the COST 2100 geometry-based stochastic chan-
nel model [25]. In particular, we generate each realization
of the taps using an indoor hall 5GHz setting with single-
antenna elements. We use the same block length and number
of error-correction symbols, as well as the same initial
training set D0 as in the synthetic model. The test is carried
out using a sequence of difference realizations illustrated in
Fig. 3c. This setting may represent a user moving in an
indoor setup while switching between different microcells.
Succeeding on this scenario requires high adaptivity since
there is considerable mismatch between the train and test
channels.

In Fig. 5a we illustrate the time evolution of the coded
BER of the compared receivers for SNR of 12 dB. Fig. 5a
demonstrates the ability of Meta-ViterbiNet to operate re-
liably in time-varying channel conditions, while improving
upon both ViterbiNet without meta-learning, as well as
over conventional data-driven architectures based on LSTM.
Fig. 5b plots the average coded BER after 300 blocks versus
SNR, showing that Meta-ViterbiNet achieves an improvement
of up to 0.6dB.

V. CONCLUSIONS

We proposed Meta-ViterbiNet, a data-driven symbol de-
tector with meta-learned hyperparameter vector designed to
track channel variations via online training. Meta-ViterbiNet
incorporates three key ingredients that enable the tracking
of rapidly time-varying channels: a model-based DNN archi-
tecture; an online adaptation scheme with optimized inital
weights; and the use of coded data blocks for self-supervised
training. Numerical study demonstrates that, by properly
integrating these methods, Meta-ViterbiNet is capable of
outperforming previous DNN-aided receivers.

REFERENCES

[1] D. Gündüz, P. de Kerret, N. D. Sidiropoulos, D. Gesbert, C. R. Murthy,
and M. van der Schaar, “Machine learning in the air,” IEEE J. Sel.
Areas Commun., vol. 37, no. 10, pp. 2184–2199, 2019.

[2] O. Simeone, “A very brief introduction to machine learning with appli-
cations to communication systems,” IEEE Trans. on Cogn. Commun.
Netw., vol. 4, no. 4, pp. 648–664, 2018.

[3] A. Balatsoukas-Stimming and C. Studer, “Deep unfolding for commu-
nications systems: A survey and some new directions,” arXiv preprint
arXiv:1906.05774, 2019.

[4] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Trans. on Cogn. Commun. Netw., vol. 3, no. 4,
pp. 563–575, 2017.

(a) Coded BER vs. block index, SNR = 12 dB. (b) Coded BER after 300 blocks vs. SNR.

Fig. 4: Synthetic linear Gaussian channel, B = 136.

(a) Coded BER vs. block index, SNR = 12 dB. (b) Coded BER after 300 blocks vs. SNR.

Fig. 5: COST 2100 channel, B = 136.

[5] N. Farsad and A. Goldsmith, “Neural network detection of data
sequences in communication systems,” IEEE Trans. Signal Process.,
vol. 66, no. 21, pp. 5663–5678, 2018.

[6] N. Shlezinger, N. Farsad, Y. C. Eldar, and A. J. Goldsmith, “Inference
from stationary time sequences via learned factor graphs,” arXiv
preprint arXiv:2006.03258, 2020.

[7] N. Farsad, N. Shlezinger, A. J. Goldsmith, and Y. C. Eldar, “Data-
driven symbol detection via model-based machine learning,” arXiv
preprint arXiv:2002.07806, 2020.

[8] J. Xia, D. Deng, and D. Fan, “A note on implementation methodolo-
gies of deep learning-based signal detection for conventional MIMO
transmitters,” IEEE Trans. Broadcast., vol. 66, no. 3, pp. 744–745,
2020.

[9] T. Raviv, N. Raviv, and Y. Be’ery, “Data-driven ensembles for deep
and hard-decision hybrid decoding,” arXiv preprint arXiv:2001.06247,
2020.

[10] O. Simeone, S. Park, and J. Kang, “From learning to meta-learning: Re-
duced training overhead and complexity for communication systems,”
in IEEE 6G Wireless Summit, 2020.

[11] N. Shlezinger, N. Farsad, Y. C. Eldar, and A. J. Goldsmith, “ViterbiNet:
A deep learning based Viterbi algorithm for symbol detection,” IEEE
Trans. Wireless Commun., vol. 19, no. 5, pp. 3319–3331, 2020.

[12] C.-F. Teng and Y.-L. Chen, “Syndrome enabled unsupervised learning
for neural network based polar decoder and jointly optimized blind
equalizer,” IEEE Trans. Emerg. Sel. Topics Circuits Syst., 2020.

[13] L. Sun, Y. Wang, A. L. Swindlehurst, and X. Tang, “Generative-
adversarial-network enabled signal detection for communication sys-
tems with unknown channel models,” IEEE J. Sel. Areas Commun.,
vol. 39, no. 1, pp. 47–60, 2020.

[14] A. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE Trans. Inf. Theory, vol. 13,
no. 2, pp. 260–269, 1967.

[15] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear

codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory,
vol. 20, no. 2, pp. 284–287, 1974.

[16] W.-J. Choi, K.-W. Cheong, and J. M. Cioffi, “Iterative soft interference
cancellation for multiple antenna systems,” in Proc. IEEE WCNC,
2000.

[17] N. Shlezinger, N. Farsad, Y. C. Eldar, and A. J. Goldsmith, “Data-
driven factor graphs for deep symbol detection,” arXiv preprint
arXiv:2002.00758, 2020.

[18] N. Shlezinger, R. Fu, and Y. C. Eldar, “DeepSIC: Deep soft interference
cancellation for multiuser MIMO detection,” IEEE Trans. Wireless
Commun., 2020.

[19] S. Park, O. Simeone, and J. Kang, “Meta-learning to communicate:
Fast end-to-end training for fading channels,” in Proc. IEEE ICASSP,
2020.

[20] Y. Jiang, H. Kim, H. Asnani, and S. Kannan, “MIND: Model indepen-
dent neural decoder,” in Proc. IEEE SPAWC, 2019.

[21] S. Park, H. Jang, O. Simeone, and J. Kang, “Learning to demodulate
from few pilots via offline and online meta-learning,” IEEE Trans.
Signal Process., vol. 69, pp. 226 – 239, 2020.

[22] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proceedings of the International
Conference on Machine Learning-Volume 70, 2017, pp. 1126–1135.

[23] S. Park, O. Simeone, and J. Kang, “End-to-end fast training of com-
munication links without a channel model via online meta-learning,”
in Proc. IEEE SPAWC, 2020.

[24] D. Tandler, S. Dörner, S. Cammerer, and S. ten Brink, “On recurrent
neural networks for sequence-based processing in communications,” in
2019 53rd Asilomar Conference on Signals, Systems, and Computers.
IEEE, 2019, pp. 537–543.

[25] L. Liu, C. Oestges, J. Poutanen, K. Haneda, P. Vainikainen, F. Quitin,
F. Tufvesson, and P. De Doncker, “The cost 2100 mimo channel
model,” IEEE Wireless Commun., vol. 19, no. 6, pp. 92–99, 2012.

	I Introduction
	II System Model
	II-A Channel Model
	II-B Problem Formulation

	III Meta-ViterbiNet
	III-A High-Level Description
	III-B ViterbiNet Symbol Detection
	III-C Self-Supervised Online Training
	III-D Meta-Learning the Initial Weights

	IV Numerical Evaluations
	IV-A Evaluated Equalizers
	IV-A1 Equalizers
	IV-A2 Training Methods

	IV-B Simulation Results
	IV-B1 Synthetic Channel
	IV-B2 COST 2100 Channel

	V Conclusions
	References

