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Energy-effective offloading scheme in UAV-assisted
C-RAN system

Xingquan Li, Chiya Zhang, Member, IEEE, Rujun Zhao, Student Member, IEEE, Chunlong He, Member, IEEE,
Hongxia Zheng, Student Member, IEEE, Kezhi Wang, Member, IEEE

Abstract—In this paper, we aim to minimize the total power of
all the Internet of Things devices (Io0TDs) by jointly optimizing
user association, computation capacity, transmit power, and the
location of unmanned aerial vehicles (UAVs) in an UAV-assisted
cloud radio access network (C-RAN). In order to solve this non-
convex problem, we propose an effective algorithm by solving
four subproblems iteratively. For the user association and the
computation capacity subproblems, the non-convex constraints
are relaxed and the optimal solutions are obtained. For the
transmit power control and the location planning subproblems,
successive convex approximation (SCA) technique is used to
transform the non-convex constraints into convex ones. Moreover,
to obtain the suboptimal solutions, slack variables are also
introduced to deal with the feasibility-check problems. The
simulation results demonstrate that the proposed algorithm can
greatly reduce the total power consumption of IoTDs.

Index Terms—UAV-assisted communication, resource alloca-
tion, user association, power control, location planning, C-RAN

I. INTRODUCTION

Owadays, the explosive growth of data services has

posed an increasingly high burden on the existing com-
munication systems. The connection of mobile devices is
estimated up to 29.3 billion by the year of 2023 [1]. It is urgent
to introduce new techniques to couple the technical challenge
by such boosting. Unmanned aerial vehicles (UAVs) assisted
communications is one of the promising candidates that have
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attracted extensive research attention [2]. Compared to the
traditional ground wireless communication systems, UAV-
assisted networks can provide higher mobility and probability
of line-of-sight (LoS) networks links between the UAVs and
the Internet of Things devices (IoTDs) [3]-[6]. Hence, UAVs
can be utilized as flying base station (FBS) [7], [8], relaying
[9], [10] and wireless power transfer station [11], [12], etc.
Besides, thanks to the flexibility of UAV, it can handle special
situations such as providing emergency communication in a
disaster-stricken region [13] and enhancing communication
safety [14].

Cloud radio access network (C-RAN) has been applied
in the fifth generation (5G) communication [15], [16]. It
divides the traditional base station (BS) into the baseband
unit (BBU), remote radio heads (RRHs) and the high-speed,
low-latency fronthaul links, which connect the RRHs to the
BBU pool. This unique architecture can effectively reduce
the capital expenditure (CAPEX) and operation expenditure
(OPEX) [17]. Furthermore, C-RAN can significantly improve
the spectral efficiency (SE) and energy efficiency (EE) by
exploiting some measurements [18]-[21]. The authors in [22]
proposed a service cloud logical architecture and parallel
multi-cell cooperation processing scheme in the C-RAN to
improve its performance, where the cloud service and a three-
layer logical structure are used to improve the centralized
processing. In [23], the impact of the constrained fronthaul
on the SE, EE, and resource allocation was investigated
in fronthaul-constrained C-RANs. However, there still exists
many challenges in C-RAN such as the deployment of R-
RHs in some complex geographical environments like malls
and cities as well as high latency requirements for video
conferences. Furthermore, ground RRHs may be destroyed
by some emergencies such as fire and earthquake, which
is very important to recover the communication service in
incident area as soon as possible. UAV can be taken as FBS
to provide service for the IoTDs when some ground RRHs are
brokendown.

The cooperative data offloading technique is a promising
solution to satisfy the boosting demands of the IoTDs [24],
[25]. In order to meet the latency and power consumption
requirements at [oTDs, we investigate the data offloading
scheme in the UAV-assisted C-RAN architecture with multiple
UAVs by satisfying the the latency, maximum transmit power,
the self executing capacity of each IoTD and the fronthaul
data rates constraints from each RRH to BBU. This problem
is intractable because the coupled optimization variables. We
obtain the optimal solution by transform it into solvable



subproblems. The contributions of this work are concluded
as follows:

1) We minimize the total power consumption of all IoTDs
by jointly optimizing the user association, computation
capacity allocation, transmit power control and the UAV
location planning in UAV-assisted C-RAN system. Exist-
ing work [26] only taken UAV as a mobile data collector
to gather a given amount of data from one ground IoTD.
In this paper, UAVs are regarded as relays to offload tasks
from the ground IoTDs to the baseband unit (BBU) pool,
which is responsible for handling the task execution.

2) We exploit the block coordinate descent (BCD) method
[27] to decoupled coupled variables in the transmit
power minimization problem. Specifically, the coupled
optimization variables are divided into four subproblems
for user association, computation capacity allocation,
transmit power control and UAVs’ coordinates planning,
respectively. Then, the variables in these four subprob-
lems are alternately optimized in each iteration, in which
one set of variables is optimized at each time by fixing
the set of the other variables. However, even optimizing
one set of the variables by fixing the other sets, the
subproblems are still difficult to solve due to their non-
convexity. For the user association problem, we relax the
binary variables into continuous variables to transform
this subproblem into a convex optimization problem.
For the computation capacity optimization problem, we
introduce the slack variables to deal with the feasi-
bility subproblem when IoTDs decide to offload tasks
to the BBU pool via UAVs or ground RRHs. For the
transmit power control and UAVs’ coordinates planning
subproblems, we apply successive convex approximation
(SCA) method and introduce slack variables to transform
these two subproblems into their approximated convex
optimization problems.

3) Simulation results demonstrate the effectiveness of our
proposed iterative algorithm. Moreover, the results also
show that the total transmit power consumption of IoTDs
is significantly decreased by iteratively optimizing the us-
er association, computation capacity allocation, transmit
power control and the UAV location planning.

The rest of this paper is organized as follows. Section II
introduces the system model and the transmit power mini-
mization problem is formulated for an UAV-assisted C-RAN.
In Section III, an efficient iterative algorithm is proposed
by using BCD and SCA techniques. In Section VI, the
total transmit power minimization problem is investigated. In
Section V, simulation results are provided to demonstrate the
effectiveness of the proposed algorithm. Finally, Section VI
concludes the paper.

The main notations used in this paper are illustrated in Table
L.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

As shown in Fig. 1, we consider an UAV-assisted C-RAN
system with N IoTDs, M ground RRHs and J rotary-wing

TABLE I
LIST OF MAIN NOTATIONS
Notation Description
N Number of the IoTDs
M Number of ground RRHs
J Number of UAVs (flying RRHs)
H The flying height of RRHs
ol aU. ol The offloading indicator of the ith IoTD to itself, the
LG M jth UAV and the mth RRH
U; The computational intensive task of the ith IoTD
P The total number of the CPU cycles of U; to be
¢ computed
D; The data size of task U; of the ith IoTD
T The latency requirement of IoTDs
fi The computation capacity of the ith ToTD
The computation capacity of the BBU providing to the
Jiv ith IoTD
T j The offloading rate from the ¢th IoTD to the jth place
psz The transmit power from the ith IoTD to the jth place
pf The self execution power of the i¢th IoTD
nU . The channel quality between the ith IoTD and the jth
1,3 UAV
th The channel quality between the jth UAV and BBU
cF The maximum data rate between the mth RRH and
m BBU
T‘JUB The data rate between the jth UAV and BBU
[ BBU
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Fig. 1. UAV-assisted C-RAN system model.

UAVs as flying RRHs. The sets of the IoTDs, UAVs and RRHs
are denoted as N = {1,2,--- ,N}, J = {1,2,---,J} and
M ={1,2,---, M}, respectively. The ground RRHs connect
to BBU pool via high-speed fronthaul links. Each IoTD has
a computation task to be executed, which can be offloaded
to the BBU pool through UAVs or ground RRHs. The IoTD
can choose a flying UAV or a ground RRH to offload its task.
Assume that all the UAVs fly at a fixed attitude H.

Define the af, aY; and aff; as the offloading indicator of
the ¢th IoTD. Then we have

al ={0,1},Vi e N, (1)

af; ={0,1},Vi e N\Vj € T, )

ait, = {0,1},Vi € N, ¥m € M, 3)



where al = 1 denotes that the ith ToTD decides to execute
the task itself, otherwise, aX = 0. Similarly, a; = 1 and

Z -, = 1 denote that the ith UE decides to ofﬂoad the task
via the jth UAV and the mth ground RRH, respectively. Since
the ith IoTD only can choose one relaying i.e. UAV or RRH

to offload tasks, we have

L U R ;
ai—&-Zai,j—i- Zai’mzl,zeN. )
jeT meM
Similar to [28], we assume that the ¢th IoTD has the
computational intensive task U, to be executed as follows

Ul:(Fl7DZaT)aZEN7 (5)

where F; denotes the total number of the central processing
unit (CPU) cycles of U; to be computed, D; denotes the data
size of the ¢th IoTD that will transmit to the BBU pool if
offloading action is taken, T is the latency constraint or QoS
requirement by this task. In this paper, we consider all the tasks
have the same time requirement, without loss of generality. D;
and F; can be obtained by using the approaches provided in
[29].

Then, when the ith IoTD decides to offload tasks, the
execution time of the task is give by

E
C i
BT Ry
where f;; is the computation capacity of the BBU providing
to the ith IoTD.

Furthermore, if the ith IoTD offloads tasks to the BBU pool

through an UAV or a RRH, the time needed to offload the data
is expressed as

(6)

D;
Ty =-— @
T Ty
where r; ; is the offloading data rate from the ¢th Io0TD to the
jth place. Then, we have

D; 4 F;
Ti
which means that each task must satisfy the latency require-

ment.
If this task is executed by the itself, we have

F;
L LT, 9
7. €))

where f; is the local executing capacity of the ¢th IoTD. Then,
we can have the latency constraint as follows

71 N Za & <7“zy fi,b) M Z Tiim <7"i,m * fi,b)

meM

<T, ®)

Tij

<T,ieN.

(10

Also, we have the computing constraints for the IoTD and
BBU, which are written as

L .
fl— zma:v’ZEN7

Z(Z ai); fip + Z afl, fip) <

€O jeJ meM

(1)

BBU

max

12)

where O is the offloading set.
The power consumption of the :th IoTD can be given by

ZJEJ a’gjpg:j + ZmEM aﬁnlpz:nza
pic = jeJ,meM, if offloading, (13)
pZE, if  local execution,

where pgj is the transmitting power from the :th [oTD to the
jth place and p¥ is the execution power of the ith IoTD if it
conducts the task itself. We have

= Iii(fi)yi,i EN, (14)

where ; > 0 is the effective switched capacitance and v; > 1
is the positive constant. To match the realistic measurements,
we set k; = 1071° and v; = 3 for all IoTDs [30].

Then, the power constraint of IoTDs can be written as

L
alpl +Za7jplj+ Z almplm—qu:aa:v’ZEN7
JjeT meM (15)

where pg ; and pf’m denote the transmit power of the ith IoTD
offloading tasks to the jth UAV or the mth RRH, respectively,
Pz 1s the maximum power for the ith IoTD.

Assume that the coordinate of the ith IoTD is denoted by
x; = (x;,y;), the horizontal coordinate of the jth UAV is
denoted by U; = (X; v YU), and the coordinate of the mth
RRH is denoted by Qm = (XE Y,F). The distance between

m? m

the ith IoTD and the jth UAV is formulated as

RY, = /(XY — )2 + (v

— )2+ H2Vie N,Vj e J.

(16)

We assume all IoTDs are located outdoors, then the channels

between IoTDs and UAVs are mainly line-of-sight (LoS) path.

If the ith IoTD decides to offload tasks to the BBU pool via
UAY, the channel quality between them is expressed as

U U(pU \—2 By
h - ﬁ RZ )T = 5 17
7 (Fi) U — x||* + H2 a7

where (U is the channel power gain between the ith IoTD and
the jth UAV. Then, the data rate between them can be given

by
rUJBlog2< >J€N,j€j~
(18)

Due to the fact that [oTDs and ground RRHs are located on
the ground, there are rich scattermg during the communication
process. Denote hfm = Hﬁ"i””‘z as the channel between
the ¢th IoTD and the mth ground RRH, which includes the
large-scale fading and small fading. g; ., denotes the small-
scale fading of a wireless channel and is an independent
and identically distributed complex Gaussian random variables
with zero mean and unit variance. Then, the data rate between
the ith IoTD and the mth ground RRH can be given by

rf = Blog, ( 2) . (19)

pehY;
EkGN k;ézpk ]hkj +o

piahf,

ZkGN k#i Py mh




The distance between the jth UAV and the BBU pool is

R — \/(XJU)Q +(YY)2HH2jeg. ()
The channel quality between them is expressed as
RB R( R) 2 5R
hiZ =0"R') " = ———,]€J. (21
! ’ 1u,)1* + H?

The data rate of the jth UAV sending information from the
IoTD to the BBU pool can be modeled as

rYP = Blog, (1+ ap 4V hltP) je T, (22)

where we do not consider the interference among UAVs, pUAV
is the transmit power of the jth UAV and « is the antenna gain.

For the fronthaul data rate between the UAV and BBU, the
data rate constraint is expressed as

> alyiy <rified.
€O
The total data rate of all IoTDs that offloading tasks to the
BBU pool via ground RRH needs to small than the maximum
fronhaul data rate, which is written as
Z alf rf <CEFmeM,

7, Z m —
€O

(23)

(24)

where C is the maximum data rate between the mth ground
RRH and the BBU pool.

B. Problem Formulation

In this paper, we aim to minimize the total transmit power of
IoTDs by jointly optimizing the user association, computation
capacity, transmit power control of IoTDs and the coordinates
of UAVs. According to the above illustration, the optimization
problem can be formulated as

P: min f(AF,P,U) (25a)
AFPU
st (1) = (4),(10) — (12), (15), (23), (24), (25b)

Where A= {a, ) Qg 761?7,, ieNjeg,mem, F = {fi,fz‘,b}z‘ej\f,
{pz )pz 32D, m}zGNJGJ mGM and U = {Uj}jejv
f(AFPU) = Zze/\/a pl +Zl€NZ]EJ ijzj+
ZZEN ZmEM 1Rmp1 ,m°
This problem is very challenging to solve because of the
coupled variables and the non-convexity of constraints (1)-
), (10), (12), (23) and (24). In the following, we first adopt
the BCD technique to decouple this non-convex problem
into four tractable subproblems. Then, these subproblems are
reformulated into convex problems and an effective iteration
algorithm is proposed to solve Problem P.

III. PROPOSED ALGORITHM FOR TOTAL POWER
MINIMIZATION PROBLEM

In this section, BCD method is used to devide the original
problem P into four tractable subproblems to decouple the
optimization variables. Then, Problem P can be solved by
iteratively solving each subproblem.

A. Optimize IoTD association variables

When [0TDs offload tasks to the BBU pool with the help of
UAVY, the offloading data rate dependents on the minimum data
rate of IoTD to UAV and UAV to BBU links, i.e. r;; = r¥ oT
Similarly, the data rate is 7" - When the ith IoTD offloads
tasks through RRH. With ﬁxed F, P and U, original problem
‘P can be simplified as IoTD user association problem, which

can be formulated as

Py : n}in f(A,F,P,U) (26a)
Fi
st a+Zu< )
% jeg i,j fz,b

D; F; )
+ Y afl, (rR 3 )ST,ZEN, (26b)
i,m 1,b

meM
Zaz] 'L]STUBJEJ (260)
€O
> af o, <ChomeM, (26d)
€O

Problem P; is non-convex due to the binary constraints of
(1)-(3). We can relax them into a convex set, which can be
expressed as

0 <al <10<a <10<aR <1l,ieN,

jeJ,me M. 27
Then, Problem P; can be transformed as
Pi_p1: rr/lin f(AJF, P, U) (28a)
s.t. (4),(11),(12),(15), (26b) — (26d), (27).
(28b)

It’s readily to know that Problem P;_p; is a convex
optimization problem, which can be solved by interior point
method. Because the optimal solutions of Problem P;_ g1 may
not be integer, we use the rounding method in [31] to further
obtain the suboptimal integer solution.

B. Optimize computation capacity variables

In this subsection, we fix IoTD association variable A,
power allocation variable P and the location of UAV U
to optimize the computation capacity variables. We define
I, = {i € N|al = 1} as the set of IoTDs that conduct
the tasks itself, Zy = {i € N,j € Jlaf; = 1} and

= {i € Nym € Mlaf,, = 1} as the et of I6TDs

ofﬂoadlng the tasks through UAV and RRH, respectively.
Then, constraint (10) can be reformulated as

F;
2 <TieTI;, 29)
fi
D F;
+f <Ti,je€ly, (30)
D,, F,,
— + = < T,l,m € Ip. 31)
Tlm fmb



Similarly, constraints (11) and (12) can also be transformed

as

f’LS zmax?ZEIL) (32)
Z fz',b + Z fl,b S y]ianU~ (33)

1€Ly lEZR

Power constraint in (15) can be rewritten as

Hl(fl) zr(;axaz EIL? (34)
pi,j < pﬁm,(mta 1] € IUa (35)
Pl < Plmaas b € In. (36)

According to Problem P, the computation capacity opti-
mization problem can be decoupled into two subproblems, i.e.
self and offloading computation capacity optimization prob-
lems. After ignoring the constant parts, the self computation
capacity optimization problem can be formulated as

Popr: rr%in Zﬁi(fi)yi
Yoery

st (29),(32), (34),

where f; = {f;,i € Zr,}. We can find that Problem Py_g;
is convex, which can be solved by convex optimization tech-
niques.

Furthermore, the other IoTDs offload tasks to BBU via
UAVs or ground RRHs. The original problem P is simplified
as offloading optimization subproblem, which is a feasibility-
check problem. In order to deal with it, we introduce the

(37)

slack variables s = [s1,--- ,sy] and t = [t1,--- ,ty]. Define
F = {fi, fi.b}iezy 1ezy» this subproblem is reformulated as
Pa—pz: max [[s|1 + [|t]|y (38a)
,s,t
F; .
st. ——p— < fip— 8i,4,J € Lu, (38b)
T -7
i
F
T—j < fiv—ti,l,meZgr, (38c)
T
ST fiw+ > hu < FEEY. (384
1€Ly lETR
s>0,t>0. (38¢)

Since Problem P,_ g5 is a convex problem, which also can
be solved by interior point method.

C. Optimize transmit power of loTDs

With fixed 1oTDs association variable A, computation ca-
pacity distribution F and horizontal coordinates of UAVs U,
Problem P can be transformed as the following subproblem

as
Ps: min Y pl i+ Y opf, (39a)
i,j€Tu I,meZr
Sy <R (39b)
i,j€Ly
o o, <k, (39¢)
lm€eZr
(30), (31), (35), (36), (39d)

Where = {pb ]7pl m} JEZIu L, mELR-
Problem Ps3 is a non-convex optimization problem since
the non-convex constraints set. For the constraint (30), we can

transform it as D
U [

X (40)

fib

This constraint is still non-convex due to the non-convexity
of its left hand side. But it can be decoupled as a difference
of two concave functions with respect to the transmit power
variables, which can be written as

Iy

— log,( Z pgjhgj+a2).
k=1,k+#i
41)

It is still non-convex due to the fact that the second part
is a concave function. In order to handle this non-convex
constraint, SCA method is applied to approximate the second
part. It is well known that any concave function is globally
upper bounded by its first-order Taylor expansion at any point.
Define (PY)" = [(pgj)r, i,j € Iy] as the transmit power of
IoTDs that offload tasks to the BBU pool through UAV in the
rth iteration. Hence, the second part of (41) is upper bounded
by

= log,( Zp”hU + 02

10g2 Z pk,7hk] + 0o )

k= 1k7éz
b logs(e) [ - 0,
k=1,k#1
<
B & U\ U 2
> (pk,j) hi;+o
k=1,k#i
Iy
+log, | > )i+ 0% = (AL)™. 42
k=1,k+#i

Similarly, the constraint (39b) can be approximated by

Iy rUB
Z (B]U)Ub — log,( Z pg,jhl[cj,j +0%)| < J?:
i.jely k=1 k#i
(43)
Iy
3= hjlogy(e)[pf;— (0 )]
where (BJU)“b =t +

o
i§1 (p{;)"hi;+0o?

Iy
log, [E (pfj]yh?g +0o°
i=1
Constraint (31) can be reformulated as the following convex
constraint

Iy
u Dy
10g2(zpl1?mhll?m + 02) - (Cl,Rm) b = F alvm € IR;
=1 B(T — fil)
= 1,b
44)
r
S hilogy(e) [P —(pf)"]
where (Cllfm)ub _ k:1,k¢LIR +
> R,)ThE,, to?
k=1,k#1

Ir

log, >

(PR ) B + 07|
k=1k#l ’



Constraint (39¢) also can be transformed as

CF
R < m
Z (D 10g2 Z pkmhkm+0) =B
I,meIr k=1,k#l
45)
Ir
> hillogy (@) [Pl = (pf1)"]
where  (DE)ub = T +
lgl (pll?nL) th7n+0-2
Ir
log, |:Z(plm) hR 2}
Then, Problem P3 can be transformed as
PS*EI . Z pzj + Z pl] (46a)
€Ly l€Tr
s.t. (a), (b), (c), (d), (35), (36). (46b)

where (a) is log, (Zp?]hU‘i'O) - (A7) >

R
ﬁm] € Ty, (b) denotes log, (Z pﬁmth + 02> _
oo =1
ub D ,
(Cf) > B(Tim) Adm € In (¢ s
> (Bf)* — logy( Z URU 40| <
i,j€Ty J 82 . k#pk,j k. <

Ir
and (d)is 3, ez, l(Dﬁ) logz(k ;C#ka’mhf’m +0?)

m‘sgw

It is readily to know that Problem Ps;_p; is a convex opti-
mization problem, which can be solved by convex optimization
methods such as interior point method.

D. Optimize the location of UAVs

When we fix [oTD association variable A, computation ca-
pacity distribution F and transmit power allocation variables of
UEs P, the original problem is equivalent to a feasibility-check
problem for the location of UAVs. Note that the coordinates
of UAVs related constraints (30) and (39b) are non-convex.
Hence, we first exploit the SCA technique to transform these
two constraints into convex set. By introducing slack variables
S={Si; =U; —xi||*,i € N, j € J}, constraint (30) can
be written as

ngﬁUQ
ri; =logy | 1+ P
, Iy pU .BU
k,j + o
h=Thots SEa TH
= log L) + o2 E
’ ; Sig + H? !
D;
F; 50, ] GIU’ (47)
B(T o fi,’b)
Iy Py B 2
where E; ; = log, > 5 o
k=1,k+

The left hand side of (47) is still non-concave with respect

to S; ;. Specifically, the SCA technique is used to deal with
the non-concave part, which is given as

I U /U
pY.BY opdB
1 ¥ 2 >1 2, 2
082 (Zs cE e ) = 082 (H SR
U U
Pl log,e
(S7,+H?)2 52 _
I T

(43)
where Sl’»: i = HU; — xi| 2, and U; is the given location of
the jth UAV at the rth iteration.

The constraint (39b) can be reformulated as

pi,;BY
3ty = 3 in (3 L )

€Ly
Iy
~ Y B -w <o, (49)
i=1
where
Iy U pU
Pk, 2
Bijzloga | D, imto
k=1,k#i »J
I pU U 1
v T 08¢
(S, +H7) r Ib
- Z Iy v v (S’w Sk,j) By,
k=1,k#1i J
1=1,1#i ST+ o
(50
and
UAV 3R
ap; 4V
WJ = 10g2 (j P) 2 + ].)
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apUAV gR
S ogy [ Py
05" + 22
2 rI1)
R s Gt e 1t 141 N
112 ” - i
(U511 + H2)(apf AV 7 + U5 + 122)
(51)

To deal with this feasibility-check problem, we introduce the
slack variables b = [b; j,i € Iy, j € J]and ¢ = [¢q, - -+ , ).
Then, the coordinates of UAV subproblem can be formulated



as
Py max | bl1 — &Pl (52a)
S,U,b,c
st. G — B D tb i€ Ty.jeT
L. I T 7, ‘72 b b)
N B(T— ‘fFi’L) 3] U -7
i,b
(52b)
U Iy
pmﬁ o2 Ib
St (350 ) -3
Wl <ejed,
(52¢)

SJSHUTfX,H +2U fxz) (Uj—U;),
1€Iy,j €T, (52d)

b>0,c >0, (52e)

where x(*) is the regularization factor to control the feasibility
of the constraints in the tth iteration. It is readily to find that
Problem P, is convex for the coordinates of UAVs, which can
be solved by the interior point method.

The overall algorithm of optimizing UAV coordinates U
is summarized in Algorithm 1. By updating x, € must keep
sufficiently low to ensure ||c||; < €, which makes sure
constraint (52c) is guaranteed.

Algorithm 2 Iterative Algorithm for Total Power
Minimization in UAV-assisted C-RAN

1: initialize feasible A, F©, P© and U©), the
iteration number ¢ = 0, maximum iteration number
Trnaz» the tolerance parameter &.

2: Calculate objective function value

Vi) = O0(A® FO PO UO) where
OAF,P,U)=3" v afpf + Zie]}\{ Z}%ej az{{jpzl‘{j
+ Zle]\f ZmGM al,mpl,m'
3: repeat
Sett=t+1;

With fixed (F(¢—D P¢=D UE-1D) obtain the

optimal A® by solving Problem P;_g1;

With fixed (A®), P¢=1 UE-1), obtain the optimal
F® by solving Problem P5_g; and Problem
Pa—p2;

With fixed (A®, F® UE-1) obtain the optimal
P®) by solving Problem P3_p1;

With fixed (A®, F® P®) obtain the optimal U®)

by solving Problem Py;

Calculate objective function value

v{jbt? = O0(AW,FO PO UW®);
! () _y,(t=1)
4: until obJ G olb)J < 5 ort> T’rnaa;'

Vv

Algorithm 1 Optimizing UAV Coordinates U

1: initialize feasible U©), v > 1, kO k.00, €, the
iteration number ¢ = 0, and the tolerance parameter &.
2: repeat
Update U“+1) according to Problem P;
k) = max{ve®, ks b
t=t+1;

3: until |[c[|; < e and [U® — U, <&

E. Overall algorithm and convergence

According to the above discussions, we propose an iterative
algorithm to solve Problem P, which is shown in Algorithm
2. We prove the convergence of it as follows

V(t 1) _

b O(At 1 Ft 1 Pt 1 Ut 1)

gO(At’Ft—17Pt—1’Ut—1)
QO(At,Ft,PFl,Ut*l)
(E)O(At,Ft,Pt,Ut_l)
g)O(At,Ft,Pt U
>O0(A!, P!, UY) = V(t)

obj?

(53)

where (a) holds due to the fact that A’ is one of the
suboptimal user association solutions of Problem P; with
fixed F=1 P*~1 UL (b) holds due to the fact that F?
is the optimal computation capacity solutions of Problem
Py_p1 and Problem Py_po with fixed AL, P=1 UL (¢)
follows from that P! is the suboptimal transmitting power

solutions of Problem Ps. Inequality (d) holds due to U’ is
the suboptimal UAV coordinates of Problem P,. Therefore,
Algorithm 2 is non-increasing by iteratively updating UE
association, computation capacity, transmit power and the
location of UAVs.

By using interior-point method, the complexity of solving
Problem P;_p is Ot (NM)3-5) [28], [32], where t]*%*
is the maximum iteration number of solving this problem.
Similarly, when t5'** and t5'** are denoted the maximum
iteration number of Problem P,_g; and Pa_ o, respectively.
The complexity of them are expressed as O(t5***(N — Iy —
IR)35 + t39*(IyJ + IgM)3®), the complexity of solving
Problem P3_ g1 is O(t5'%* (I J+1r M )3®), and that of Prob-
lem Py is O(log(ﬁ)\/ﬁ(IU—i—J%—l)Of’[(IU+1)4+2J3]).
Hence, the total complexity of proposed Algorithm 1 is
O(Traat 7 (NM)35 4795 (N — Ity — IR)32 +59 (I J +
IRM)3® 1597 (I J 4+ I M)3° +1og(my/§(1[] +J+
193 [(Iy + 1)* + 2J7)).

IV. TOTAL TRANSMIT POWER MINIMIZATION IN C-RAN

According to the discussion in UAV-assisted C-RAN, the
total transmit power of IoTDs in traditional C-RAN can be



formulated as

’ .
P min E a
[y

ALFLPL N

+Zzazmpzm

iEN meM

(54a)

s.t. fz+za“"< ‘ iji><T7i€N,

meM
(54b)
af + Y afl, =1, (54¢)
meM

Z Z all fin < fEBY, (544)
i€eO meM
Z af?'m ZRm <CF meM, (54e)
€O
a p'L —"_ Z azmpzm—qurenaz7Z€N5 (54f)

meM
(1), (3), (11). (54g)

where A" = {a,al Viexmerts B = {fi, fiv}iens P' =
{piE’pz}?m}iEN,mEM-

This problem is also non-convex due to the coupled op-
timization variables and the non-convex constraints set. We
use BCD technique to decouple it into three subproblems and
solve them iteratively in the following sections.

A. UE association optimization in C-RAN

With fixed computation variables F’ and transmit power P,
the IoTD association subproblem in C-RAN can be given by

P, : mm Za + Z Z azmpzm (55a)
ieEN i€EN meM
st. 0<aF<1,0< afm <1l,ieN,meM,
(55b)
(11), (54b) — (54f). (55¢)

It is readily that Problem Pi is convex, which can be solved
by using CVX.

B. Computation capacity optimization in C-RAN

By fixing UE association variables A’ and transmit power
P, the self computation capacity optimization subproblem
is equal to Problem P;_pg; in Section III. According to
Problem P’, the offloading computation capacity subproblem
is simplified as a feasibility-check problem. After introducing

slack variables q = [g1, - , qn], it can be given by
Po—pr s max [l (56a)
F',q
F ,
S.t. ﬁ S fl’b —dq, l7m c IR7 (56b)
T.lRi’"l
q >0, (54d), (56¢)

where Zp, = {m € Maf,, =1} F' = {fis}er, -
Then, this problem is convex and can be used to obtain the
suboptimal solutions of offloading computation capacity.

C. Transmit power optimization in C-RAN

Fixing [oTD association variables A’ and computation
variables F , Problem P can be simplified as transmit power
subproblem, which is given by

P . min R 57a
3 1,5, Z/ pl7m ( )
IL,meTy
st. Yt <Ch, (57b)
I meTy,
Dm Fm !’
T‘FiST,Z,mEIR, (57¢)
7 ,m m,b
plm —pl maz7l)m€z—;3' (57d)

Due to the non-convex constraints (57b) and (57c), it is
very challenge to solve. Similarly, we transform it into a
approximated convex problem, which is given by

Py g min Y pf, (58a)
L,meTy,
s.t. log, Zpl mhlm + 0%) — (Cﬁm)"b
Dl ’
> ——— 1 meIy (58b
1,b
(e), (57d). (58¢)
Cm

where (e) denotes = >

Z:l,’meI;2 (Dﬁ)uh - 10g2( Z pk mhR,m + 02) .

k=1,k#

This subproblem is convex, Wthh can be solved by using
CVX.

D. Overall algorithm and convergence

According to the above discussions, we propose an it-
erative algorithm to solve Problem P’, which is shown in
Algorithm 3. Similar to Algorithm 2, Algorithm 3 is non-
increasing by iteratively updating IoTD association, com-
putation capacity and transmit power, which make sure it
converges. The complexity of it mainly depends on solving
three subproblems. The maximum iteration number of solv-
ing Problem P;, P, ., and Pé_ 51 are denoted by %%,
t/Qm‘” and tlgm‘”, respectively. Then, the complexity of it
is O(ty™**(NM)35). The complexity of Problem P, ,, is
O(t;m“m(lk)&f’), and the complexity of Problem P:;_ g1 18
O(t;m“(I;%M )35). F}nally, the comp/lexity 9f Algorithm 3 is
O(tlmaa:(NM)3.5 + tQmaw([R)B.ii + t?’mam(IRM)&S)'

V. SIMULATION RESULTS

In this section, simulation results are provided to demon-
strate the effectiveness of the proposed algorithm. We consider
an UAV-assisted C-RAN system with J = 3 UAVsand M = 3
ground RRHs. The bandwidth of the system is B = 1 MHz.
We set the altitude as H = 20 m for all UAVs. Ground RRHs
and [oTDs are uniformly and randomly distributed in a com-
munication cell with radius R = 1000 m. The transmit power



Algorithm 3 Iterative Algorithm for Total Power
Minimization in C-RAN

1: initialize feasible A'(9), F'(0), P'()  the iteration
number ¢ = 0, maximum iteration number 7,,,., the
tolerance parameter &.

2: Calculate objective function value

Vollg-)) = O(A/(O),ﬁ,(o),f’,(o)), where O(A,F,P,U)
= 2ien DY+ ien Lomem Ui
3: repeat

Sett=1t+1;

With fixed F' ¢~ and P'(*~1), obtain the optimal
A'® by solving Problem P ;

With fixed A'(®) and P'(*~1) obtain the optimal
F'(® by solving Problem P»_ 1 and Problem
,PéfEl;

With fixed A'® and F'(®), obtain the optimal P'(*)
by solving Problem P, ,,;

Calculate objective function value

Vi = O(A'0.F' 0 PO,
v
4: until Ty <fort>Thae.

obj

of UAV sets as pU4" = 100 W, the maximum transmit power
of IoTD is pj‘¢, .. = 30 dBm, the channel power gain at the
reference distance 1 m is set as SU = BB = 1075, the noise
power 02 = —114 dBm. We assume equal offloading tasks
for all IoTDs, i.e. D; = D = 10'2 bit, F; = F = 10° CPU
cycles and the maximal latency 7" = 1 s. The computation
capacity of BBU and IoTD are set as fZBY = 102 cycles/s
and fF .~ = 10° cycles/s [28], [33], respectively. For the
channel between the Ith IoTD and the mth ground RRH,
the contained large-scale path loss in dB can be denoted by
PL = PLo — 104log1o(%™), where PLo = —30 dB denotes
the path loss at the reference distance of dg =1 m, p = 3.75
is the path loss between IoTDs and the ground RRHs and d ,,,

denotes the distance between them.
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Fig. 2. Convergence behavior of the proposed algorithm

Fig. 2 presents the convergence performance for the pro-

posed algorithm under different IoTD number. It is readily to
know that the proposed algorithm converges very fast, which
demonstrates the effectiveness of the proposed Algorithm 1.
Specifically, the total power at the initial point are very high,
which is equal to the sum of all [oTDs’ maximum transmit
power. After several iterations, the total power is greatly
decreased, and even when the IoTD number is very large,
the proposed algorithm still can converge in several iterations.
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Fig. 3. Total power of the system versus the number of UAV or RRH.
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Fig. 4. Total power of the system versus the maximal latency 7.

The total power of all IoTDs versus the maximal latency
is illustrated in Fig. 4. It is easy to seen that the total power
decreases with the maximal latency, which means IoTDs can
transmit tasks by using low power under the requirement of
large maximal latency. Moreover, this results become more
obvious when the number of IoTD is large. In this figure,
the minimum power of the UAV-assisted C-RAN by using
proposed algorithm is much lower than traditional C-RAN,
which is more obvious when the number of IoTD is large.
For example, in C-RAN, the total power consumption is 18.35
W when the number of IoTD is 50 and T" = 5 s. After using
the proposed Algorithm 1 in the UAV-assisted C-RAN system,
the total power is decreased to 7.8W, but the total power only
decreases 2.9 W when the number of IoTD is 20.
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Fig. 5. Total power of the system versus the data size D.

Fig. 5 shows the total power versus the data size of
IoTDs’ tasks. It can be seen that the total power increases
with the growth of data size because more data needs more
transmit power and computation capacity to meet the latency
requirements. Besides, with the increase of IoTDs’ number and
data size, they need much more power to satisfy the latency
demands. Especially, when the data size becomes large, all
IoTDs need to use full power to deal with their tasks in C-
RAN system but the total power is decreased to 26.39 W
when the number of IoTD is 50 in the UAV-assisted C-RAN
system by using the proposed algorithm. Furthermore, the
proposed algorithm in the UAV-assisted C-RAN still has good
performance even when the number of IoTD is small.

Fig. 6 shows the total power of all IoTDs versus the CPU
cycles for the tasks of IoTDs that need to be executed. From
this figure, we can seen that the total power consumption
increases with the total number of CPU cycles of tasks. This
is mainly because IoTDs can not execute the large number
of CPU cycles of tasks as well as satisfying the maximal
latency and they need more power to offload the tasks to the
BBU pool, which is more obvious when the number of IoTD
is very large. Moreover, by using the proposed algorithm in
the UAV-assisted C-RAN, the total power consumption can be
effectively decreased.

Fig. 7 illustrates the running time of the proposed algorithm
in UAV-assisted C-RAN system and proposed algorithm in
traditional C-RAN versus different number of UAV or RRH.
It can be seen that the running time of all the proposed
algorithms in different systems increases with the number
of UAV or RRH, especially when the number of UAV or
RRH becomes larger. Furthermore, considering the proposed
algorithm in UAV-assisted C-RAN system, the running time of
increasing the number of UAV is larger than that of increasing
the number of RRH. This is because the UAVs location
optimization needs extra execution time.

Fig. 8 presents the convergence of the proposed algorithm
in UAV-assisted C-RAN system under different benchmark
schemes. It readily to know that the power consumption
becomes larger when any of the subproblems is lacking than

T
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Fig. 6. Total power of the system versus the number of CPU cycles F'.
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Fig. 8. Running time versus different number of UAV or RRH in different
systems.



the proposed algorithm. Specifically, when considering the
proposed algorithm without optimizing [oTD association, the
power consumption is the largest of all the schemes. Therefore,
the IoTD association is the most important measurement to
decrease the power consumption of all IoTDs. After UAV
location optimization, many IoTDs can choose the most appro-
priate UAV as relay to offload tasks, which can fully use the
LoS channels of UAVs. Due the total transmit power of IoTDs
depends on the IoTD association and computation capacity
allocation, it is meaningless for the proposed algorithm to
ignore the importance of the transmit power of IoTDs. We
also obtain that the computation capacity optimization slightly
reduces the power consumption.

VI. CONCLUSIONS

In this paper, we investigated the total power minimization
problem in an UAV-assisted C-RAN system. In order to deal
with this non-convex optimization problem, we proposed an
effective iteration algorithm that was based on the BCD
technique. we applied this technique to decouple the original
problem into four subproblems. For the user association and
computation capacity allocation subproblems, we transformed
them into convex optimization problems by relaxing the non-
convex constraints and introducing the slack variables. More-
over, after using SCA technique, the transmit power optimiza-
tion of IoTD was approximated by a convex optimization
problem. For the UAV location planning subproblems, we
introduced slack variables to transform this feasibility-check
subproblem into a convex optimization problem. Simulation
results demonstrated that the proposed algorithm can greatly
reduce the total consumption power of IoTDs, especially when
the number of 10TD is very large.
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