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Abstract—This paper aims to predict radio channel variations
over time by deep learning from channel observations with-
out knowledge of the underlying channel dynamics. In next-
generation wideband cellular systems, multicarrier transmission
for higher data rate leads to high-resolution predicting problem.
By leveraging recent advances of deep learning in high-resolution
image processing, we propose a purely data-driven deep learning
(DL) approach to predicting high-resolution temporal evolution
of wideband radio channels. In order to investigate the effect of
architectural design choices, we develop and study three deep
learning prediction models, namely, baseline, image completion
and next-frame prediction models using UNet. Numerical results
show that the proposed DL approach achieves a 52% lower
prediction error than the traditional approach based on Kalman
filter (KF) in mean absolute errors. To quantify impact of channel
aging and prediction on precoding performance, we also evaluate
the performance degradation due to outdated and predicted
channel state information (CSI) compared to perfect CSI. Our
simulations show that the proposed DL approach can reduce the
performance loss due to channel aging by 71% through adapting
precoding vector to changes in radio channel while the traditional
KF approach only shows a 27% reduction.

Index Terms—Radio channel, channel prediction, deep learn-
ing, UNet

I. INTRODUCTION

As we are moving towards the sixth generation (6G) mobile
communications system, artificial intelligence (AI) has the
potential to enhance the systems from different aspects, com-
pared to traditional optimization approaches. In this regard,
a new work item on AI for air interface has been recently
approved for Release 18 at the 3rd Generation Partnership
Project (3GPP) radio access network (RAN) plenary meet-
ing [1]. Among the different features described therein for
enhancing the system performance via AI, we are particularly
interested in channel prediction arising in use cases of channel
state information (CSI) feedback, beam management and po-
sitioning processes. In this paper, we aim to study the problem
of channel prediction over time.

Radio channel represents the relation between the transmit-
ted and received signals that captures not only physical wave
propagation between the transmitter and the receiver but also
antenna configuration at both link ends. Ideally, an accurate
channel prediction requires a model for the temporal channel
evolution. Physical (propagation) channel can be viewed as
a nonlinear dynamical system and can be represented by
partial differential equations such as Maxwell’s equations.

However, the true channel model may not be known due to
the underlying complex propagation phenomenon that can not
be captured by using the domain knowledge and, even if it
is known, the model may not enable computationally efficient
methods for predicting channel evolution in time. This paper
focuses on data-driven channel prediction by deep learning
from channel data, instead of using domain knowledge to
explicitly build prediction models.

In the wideband cellular systems such as the fifth generation
(5G) new radio (NR), multicarrier transmission for higher
data rate leads to high-resolution predicting problem. For the
slot-based 5G system, a slot consists of a number of OFDM
symbols in time domain. In frequency domain, one OFDM
symbol is constructed of subcarriers. Therefore, the channel
state hk at a slot k can by represented by the values of
channel responses on the time-frequency grid of size equal
to T × F , where T is the number of OFDM symbols and
F is the number of total subcarriers. Time series of states hk
from data measurement provide valuable information about the
underlying channel dynamics of our wireless communication
system. So, in the absence of the model, time-varying radio
channel can be described by using an alternative description
of its dynamical system in a state-evolution function with a
memory

hk+1 = f(hk, hk−1, ..., hk−m+1), (1)

where m is the memory size. The exact evolution function f in
(1) is generally unknown and nonlinear. The main contribution
of this paper is to demonstrate that the temporal evolution of
radio channel can be successfully predicted through function
approximation to the evolution function.

Recent works have demonstrated the successful application
of convolutional network architectures in many image process-
ing tasks involving high-resolution data [2] [3]. In this work,
we use the convolutional network architecture proposed in [2]
as a function approximation for the evolution function in (1).
In particular, in order to investigate the effect of architectural
design choices, we develop and study three prediction models,
namely, baseline, image completion and next-frame prediction
models using autoencoder (AE) and UNet. We evaluate the
performance of the three prediction models over synthetic
channel data generated by using the 3GPP channel model
as well as real channel data obtained from measurement
campaigns in real-world environments. Both datasets consist
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of high-resolution images corresponding to the time series of
simulated or measured channel states.

First, we present and evaluate the three UNet-based pre-
diction models on synthetic channel data in comparison with
the AE-based models. Numerical results show that the UNet
can improve channel prediction performance up to 50 times
in mean absolute errors, demonstrating superior accuracy
of the UNet architecture over the AE. Then, for validation
on real channel data, the UNet-based next-frame prediction
will be evaluated by using real channel data obtained from
measurement campaign in real-world outdoor environment.
We observe that the proposed approach is capable of predicting
accurate channels in real data. In order to verify the accuracy,
we also compare our deep learning (DL) approach with a
traditional approach based on Kalman-Filter (KF). It is shown
that the proposed DL approach achieves 52% lower prediction
error than the traditional KF approach. To quantify impact
of channel prediction accuracy on precoding performance,
we have further evaluated the data-driven approach in terms
of outage capacity. Simulation results demonstrate that the
proposed channel prediction approach can be applied to adapt
the precoding vector to changes in radio channel.

The remainder of this paper is organized as follows. Section
II briefly presents channel model and provides an overview of
channel data used for our work. In Section III, we describe
channel prediction formulation and three channel prediction
models. In Section IV, we provide simulation results and com-
parisons with the traditional KF approach. Finally, conclusions
are made in Section V.

II. CHANNEL MODEL AND DATA

In this section, we briefly describe the radio channel model
given by a multi-path propagation model in a wireless sce-
nario, where each path has large- and small-scale features from
pathloss and shadowing to channel dispersion and fluctuation
behavior due to multipath and Doppler spread. We also provide
an overview of our datasets that have been collected in
simulation and real-world system.

A. Channel model

Channel model plays an important role in developing and
evaluating wireless communication systems. Radio channel
describes the relation between the transmitted and received
signals. Radio channel model comprises two parts: physical
channel that captures physical wave propagation between
transmitter and receiver and antenna array model that captures
antenna configuration at both link ends [4]. In other words,
physical channel focuses on wave propagation between the
location of transmitter and receiver without taking the antenna
array into account while antenna array model captures the
impact of transmitting and receiving antenna through antenna
radio patterns. As wireless systems have evolved to multi-
antenna wideband systems using considerably higher radio
frequencies, modelling of physical channel and antenna array
has attracted much attention and as a result, channel models

have been developed and standardized within wireless stan-
dards such as the 3GPP [5].

Physical channel depends on surrounding environments
including buildings, structure of roads and trees or foliage.
The radio waves interact with these various objects through
processes such as reflection, transmission, diffraction, and
scattering. The physical channel model can be described by
the propagation paths. Each path n can be characterized by
a set of properties including a time delay, denoted by τn, a
path loss by an, propagation directions of departure from the
transmitter and arrival at the receiver by the unit vector kt,n
and kr,n, and spatial positions by rt and rr of the transmitter
and the receiver, respectively.

In general, a time-varying wideband channel can be mod-
eled approximately by a transfer function of baseband fre-
quency f , time t, and spatial position as [4]

H(f, t, rt, rr) ,
∑
n

anatre
−2πfcτne−2πf4τn ×

ejkt,n·rtejkr,n·rrejkr,n·vrt, (2)

where atr captures the received signal strength due to the
transmit and receive antenna configuration, fc is a carrier
frequency, e−2πfcτn represents the phase shift due to the
propagation path length, e−2πf4τn denotes the phase shift
due to variations of the frequency f and relative time delay
difference 4τn, and the remaining terms represent the phase
shifts due to the relative spatial positions or variations of
receiver position due to the vector velocity vr over time t.

The frequency-domain channel representation of radio chan-
nel in (2) can be converted to an equivalent channel model in
time domain. Furthermore, the time-domain channel model
can be extended by incorporating dual-polarization and multi-
antenna modeling. The resulting dual-polarized multi-input
multi-output (MIMO) spatial channel model (SCM) is widely
standardized and used for simulations of wireless communi-
cation.

B. Channel data

In this subsection, we present two datasets used for perfor-
mance evaluation: one from synthetic channel and the other
from real measurements. The same antenna configuration is
considered for both synthetic and real channel data. Base
station (BS) antenna array is deployed by a ±45◦ dual-
polarized 4-by-1 (vertical-by-horizontal) antenna array with
vertical antenna spacing 0.7λ, where λ is the carrier wave-
length. The electrical downtilt is set as 6◦ for the one-column
array. User equipment (UE) uses a single antenna polarized
within the horizontal plane. This 8-port BS and 1-port UE
antenna setup results in 8x1 multi-input single-output (MISO)
downlink systems.

We generate synthetic data by using the three dimensional
(3D) SCM model developed by 3GPP [5] and associated
parameters. We assume 600 subcarriers and carrier frequency
3.5GHz with subcarrier spacing 15kHz. In this assumption,
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each slot has duration of 1ms. Channel coefficients are gen-
erated as follows. Urban macro (UMa) model is specified
as simulation environment. 3D locations of BS and UEs are
determined through a sequence of drops, where a drop is
defined as one simulation run using the same user parameters
according to the specified simulation environment, including
large scale parameters and small scale parameters. The large
scale parameters include delay spread, angular spreads, Rician
K factor and shadow fading. The small scale parameters such
as delays and arrival angles and departure angles are drawn
randomly from the distribution defined in [5]. For UE mobility
model, all UEs are deployed as outdoor user at speed 15km/h.
Time-domain channel coefficients are generated for each trans-
mitter and receiver element pair according to Equation (7.5-
30) in [5]. Pathloss and shadowing are applied for the channel
coefficients. It’s worth mentioning that our prediction models
learn to predict channel at a fast fading scale while slow
fading caused by path loss due to distance and shadowing
effects remains constant within the time scale of our interest.
The time-domain channel coefficients are converted to channel
responses in frequency domain and used to determine the
channel state hnk ∈ RT×F on time-frequency radio resource
grid of OFDM symbols on one axis and subcarriers on the
other axis. Finally, we obtain synthetic data samples si that
includes channel responses from (m + 1) consecutive slots,
i.e., sn =

[
hnk−m+1, · · · , hnk , hnk+1

]
where each sample sn is

normalized by the maximum absolute value of all the elements
on a sample basis so that the value range is bound by -1 and
1. The first (m− 1) states, hnk−m+1, · · · , hnk , in each sample
sn are used as a conditioning input for the prediction models
to estimate the last state hnk+1. In our synthetic channel data,
F is chosen to be equal to the number of total subcarriers and
T is set to be the same as the number of OFDM symbols per
slot in the normal cyclic prefix mode, i.e., F=600 and T=14.
Under the assumptions presented above in this section, the
coherence time at the limit of auto-correlation function above
0.5 is approximately estimated to 3.68ms, which is about four
slots of length 1ms. In the rest of this paper we use the memory
size m = 4.

Real channel data are obtained from measurement campaign
in an urban macro-cell scenario in Sweden. The macro BS
is deployed with the antenna model as specified in the be-
ginning of this section, while a testbed UE with a horizon-
tally polarized omni-directional antenna is implemented on a
moving vehicle. The testbed UE vehicle moves at an average
speed of 9km/h during the whole measurement campaign.
The deployed BS and UE are connected via a typical 5G
NR system with subcarrier spacing 30kHz in the 4.9 GHz
time-division duplexing (TDD) band. The outdoor propagation
measurements of UE-to-BS channel were conducted at the
BS based on sounding reference signals (SRS) transmission
in uplink. A periodic SRS is transmitted from the UE to the
BS with a periodicity 5ms, corresponding to the duration of
ten slots. SRS is mapped to every fourth subcarrier, which
corresponds to a frequency interval of 120kHz. According to

the geographical information of the driving route and detailed
measurement analysis, we expect that approximately 70%
of the route are non-line-of-sight (NLOS), which offers a
great opportunity for validating the performance of channel
prediction models. Meanwhile, the target signal-to-noise ratio
(SNR) on the SRS resource elements is set to 30dB in order to
maintain the measurement quality. In our real channel data, the
frequency resolution F of channel image at measured state k
is the same as that in the synthetic data, but the time resolution
T is reduced to be one due to the limitation in the standard.

III. PREDICTION FORMULATION AND MODELS

In this section, we describe channel prediction formulation
and three channel prediction models including baseline, image
completion and next-frame prediction models.

A. Prediction formulation

The goal is to predict future channel state hk+1 given
previous channel states, hk−m+1 ,· · · , hk. Figure 2 depicts
an illustrative example of input and output state pair with
m = 4 in synthetic channel data, where input and output
state pairs can be represented by high-resolution images of
size T ×F . The conditioning channel images, composed from
the past four slots k−3 to k, are depicted by a black box and
the target channel image, given by next slot k+ 1, is depicted
by a red box. The temporal evolution of channel state can be
estimated by deep learning from the underlying patterns over
the sequence of channel images. In this work, we consider
a deep learning model fθ with parameters θ as a function
approximation for the evolution function in (1) as follows:

hk+1 = fθ(hk, hk−1, ..., hk−m+1). (3)

The pixel-wise metric l1 is a widely accepted metric for
defining loss function in image processing tasks. As a measure
of prediction accuracy, we will use the same metric for
quantifying the prediction performance. The corresponding
loss function is defined by mean absolute error (MAE) on
all the pixels between the predicted channel image and the
ground truth as follows

l1 =
1

N × T × F

N∑
n=1

T∑
t=1

F∑
f=1

∣∣∣hnk+1(t, f)− ĥnk+1(t, f)
∣∣∣ , (4)

where hnk+1(t, f) and ĥnk+1(t, f) denote the (t, f)th element
of ground truth and predictions, respectively, and N is the size
of mini-batch (or batch). We note that hnk+1(t, f) corresponds
to the real- or imaginary-part of channel response at the f th
subcarrier in frequency domain on the tth OFDM symbol
in time domain within a given slot k + 1. This means that
our proposed prediction models will predict the real- and
imaginary-parts of channel responses independently of each
other.
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Fig. 1. Architecture of symmetric auto-encoder (AE) and U-Net

B. Prediction models

In this subsection, we present three predictions models:
baseline model denoted by f bsθ , image completion model by
f icθ and next-frame prediction model by fnfθ that learns to
predict the next channel state hk+1 given the channel states
hk, hk−1, ..., hk−3, i.e. m = 4.

Focusing on the most successful architecture proposed for
image processing in [2], we exploit the UNet architecture
for our prediction models to improve prediction accuracy.
Figure 1 depicts the UNet architecture that is a convolutional
AE with skip connections. A convolutional AE consists of
a convolutional encoder on the left-hand side of the figure
and a transposed convolutional (a.k.a up-convolution) decoder
on the right-hand side. The encoder compresses the input
image into a latent vector (code in a latent space), and the
decoder constructs the output image from the code generated
by the encoder. Colored blocks in the same color represent
two convolutional neural networks (CNNs) with the same
feature size that can be concatenated with each other by a
skip connection. As shown in the figure, this UNet uses a
symmetric AE architecture with skip connections between
each layer in the encoder and decoder, which will be referred
to as full UNet in this paper. In comparison, UNet based on
an asymmetric AE will be called partial UNet hereafter since
an asymmetric AE allows skip connections only between the
mirrored layers in the encoder and decoder stacks. In the
simulation section, we will show that the introduction of skip
connections to the standard AE by UNet has a profound impact
on prediction performance.

All the three models can be trained by using the
same datasets but each model uses different input and
output image pairs based on the same sample sn =[
hnk−m+1, · · · , hnk , hnk+1

]
. Figure 2 illustrates different input

and output image pairs for three models f bsθ , f icθ , and fnfθ ,
where the conditioning channel images, composed from the
past four slots k−3 to k, are depicted by a black box and the
target channel image, given by next slot k+ 1, is depicted by
a red box. As a naive baseline, Figure 2-a) illustrates the input

(b)(a) (c)
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d
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g

Fig. 2. Conditioning input and target output image pairs: (a) baseline model,
(b) image completion model, and (c) next-frame prediction model

and output image pairs for the baseline model f bsθ . The baseline
model f bsθ uses an asymmetric AE or a partial UNet to predict
a small output image from a large input image that minimizes
the loss function in (4). The channel images from the four
conditioning state images hk, hk−1, ..., hk−3 is combined into
a single image and used as one large conditioning input image
for f bsθ . A small output image is readily defined by a ground
true channel image from the target state hk+1. f bsθ uses this
asymmetric AE architecture to perform the required down-
sampling by the encoder and up-sampling operation by the
decoder to transform the large image input into the small
image output.

In order to use a symmetric AE or full UNet, the input and
output images need to have the same size. As shown in Figure
2-b), we can define the input and output pairs for the image
completion model f icθ by applying a zero padding to the input
image. All the five images of hk−3 to hk+1 are combined
into a single image and used as a target output image for f icθ .
To match the spatial size between the input and the output
image, the same input image as in f bsθ is concatenated with
a zero padding size T × F and used as a new input image
for f icθ . The part of zero padding in the corresponding input
image is depicted by a part of all zeros (green) in the right
hand side of Figure 2-b).

We note that the baseline and image channel completion
models are implemented with the first layer of a single CNN
channel. In order to make maximum use of the GPU memory,
we can take the four sequential input images into four parallel
CNN channels, which leads to next-frame prediction fnfθ
(a.k.a. forward video prediction). As shown in Figure 2-c),
accommodating the past channel images via parallel CNN
channels simultaneously, the prediction model fnfθ is trained
to predict future channel image of the target state hk+1 while
all the input and output images have the same size T × F .

IV. NUMERICAL RESULTS

In this section, we present empirical evaluations to demon-
strate the performance benefit of data-driven approach to
channel prediction on both synthetic and real channel data.

We can also solve for the function f in (1) using Kalman
filter. We developed the KF-based predictor using a linear
stochastic model called autoregressive (AR) with the order
p which serves as a linear model for (1). The underlying
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TABLE I
COMPARISON BETWEEN PREDICTION MODELS

models architecutre input and output image sizes l1
image symetric AE (m+1)T×F→(m+1)T×F 0.1263

completion full UNet (m+1)T×F→(m+1)T×F 0.0057
baseline asymetric AE mT×F → T×F 0.1189
model partial UNet mT×F → T×F 0.0032

next-frame symetric AE T×F → T×F 0.1172
prediction full UNet T×F → T×F 0.0023

assumption is that the channel in the future can be modelled by
a linear combination of p previous values with a process noise
and predicted by Kalman filter. In our numerical experiment,
AR model parameters are estimated by using the Yule-Walker
equation based on channel data from the previous 15 SRS
transmissions and the estimated AR model is used to predict
channel in a next SRS transmission. For more details on the
Kalman filter design, we suggest the reader to refer to [6].

We implemented the three models f bsθ , f icθ , and fnfθ in
TensorFlow 2 and trained them using a synthetic dataset with
5,000 samples and a real dataset with 150,000 samples. The
difference in data size with the synthetic data having far fewer
data samples than the real dataset comes from the fact that we
can generate synthetic data with varied channel characteristics
by randomly choosing the channel parameters at the beginning
of each drop in simulation unlike the real world system
in which these channel parameters tend to stay relatively
constant through measurement. As shown in Figure 1, AE and
UNet share a common encoder and decoder structure except
skip connections are only used for UNet. Each of encoder
and decoder consists of eight convolution layers for all the
three models but additional two input layers are applied for
the baseline model in order to accommodate different input
and output sizes. For fair comparison, the three models are
designed with approximately the same number of parameters
(≈ one million parameters). The convolutional layers in the
encoder use LeakyReLU as an activation function. On the
other hand, the transposed convolutional layers in the decoder
use ReLU except the last layer uses tanh. All the layers in
the encoder and decoder are followed by batch normalization
prior to the activation function except the input and output
layer. Dropout layers are added for the first three layers of the
decoder in order to prevent overfitting of the model.

First, we evaluate the UNet-based three models on synthetic
channel data in comparison with the AE-based models in mean
absolute errors. The prediction results on the synthetic dataset
are summarized in Table I, where the three models are listed
in order of decreasing input and output image size. We can see
from the results that the UNet architecture yields significantly
lower prediction error than the AE architecture for each model,
demonstrating superior accuracy over AE. The results in the
table show that for the next frame prediction model which has
the smallest complexity UNet can improve channel prediction
performance up to 50 times in mean absolute errors, compared
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Fig. 3. An illustrative example of channel prediction
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Fig. 4. An illustrative example of four-step ahead channel prediction

to the AE.
Figure 3 illustrates channel prediction by the UNet-based

next frame prediction, compared to the AE-based next frame
prediction and the ground truth. The channel images and
corresponding numerical results confirm superior performance
of the UNet over the AE. The numerical results for the
three models designed with five million parameters, while not
presented here, show the same general trend in performance
as found in Table I.

Equation (3) shows that our prediction models can be
applied for multi-step ahead channel predictions on a slot basis
in autoregressive manner. At each step k̄, the new channel
state hk̄+1 is predicted based on the last m = 4 channel
states hk̄, hk̄−1, ..., hk̄−3. Figure 4 shows the four-step ahead
prediction by the UNet-based next-frame prediction model for
the steps k̄ = k, k + 1, k + 2, k + 3 to generate the channel
predictions at slots k+1, k+2, k+3, k+4 autoregressively. The
results demonstrate that the UNet-based next-frame prediction
model can successfully predict channels up to four steps ahead
given past four slot channels

For validation on real channel data, in the rest of this
section we will evaluate the UNet-based next-frame prediction
by using real channel data obtained from the measurement
campaign. We assume to use past four SRSs k − 3 to k as
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a conditioning input image for real data to predict next SRS
k+1 . We compare three different CSI assumptions including
perfect CSI that is defined by true channel at next SRS k+ 1,
aged CSI that is given by true channel at last SRS k, and
predicted CSI that is given by predicted channel at next SRS
k + 1 based on the past four SRSs. In order to verify the
accuracy, we also compare our DL approach with the KF
approach. For a fair comparison with the proposed prediction
models, the AR-order p is fixed to be equal to the memory
size m.

Our experiment results show that the next-frame prediction
model gives the mean absolute error l1 = 0.0705, achieving
52% lower prediction error than the mean absolute error
l1 = 0.1466 by the KF approach. Figure 5 shows a representa-
tive example of channel prediction by the proposed approach,
compared to the KF approach. This particular example allows
for both the proposed and traditional approach to achieve an
instantaneous prediction accuracy close to its average. The
simulation results demonstrate that the proposed DL approach
can predict channel responses that agree fairly well with the
ground true channel responses whereas the predicted CSI by
the KF approach exhibits a significant gap to the ground
true channel response, especially relatively large mismatches

around the peaks of channel response curves.
The performance comparison of the prediction models can

be made in terms of capacity as channel capacity degrades with
aged CSI. In this work, we use channel capacity and evaluate
its outage capacity of a rank-1 precoding scheme over 8-by-
1 MISO spatial channel. The ε-outage capacity is defined as
maximum rate below which reliable transmission is possible
at outage probability of ε (pout)

Cε = max
r

{
pout

[
log2

(
1 + ρ

∣∣c(t,f)w(t,f)

∣∣2) ≤ r] ≤ ε}, (5)

where ρ is the SNR parameter, c(t,f) ∈ C1×nt denotes the
complex-valued channel vectors at the (t, f)th element of
ground truth, and w(t,f) ∈ Cnt×1 represents the precoding
vector obtained by given CSI at the (t, f)th element.

The maximum ratio transmission (MRT) precoding is opti-
mal for this MISO setup by maximizing the signal gain and
CSI at the transmitter is required to enable the precoding. We
will compare the three different CSI assumptions including
perfect CSI, aged CSI and predicted CSI, denoted by ĉtr(t,f),
ĉag(t,f), and ĉpr(t,f), respectively. The MRT solution is given by
wmrt

(t,f) = ĉ†(t,f), where (·)† denotes the conjugate transpose of

vector and ĉ(t,f) ∈
{
ĉtr(t,f), ĉ

ag
(t,f), ĉ

pr
(t,f)

}
.

In Figure 6, we have evaluated 10% outage capacity per-
formance (ε=0.1) under the three different CSI assumptions
in order to quantify impact of channel prediction accuracy
on precoding performance. The results show that the MRT
precoding with the aged CSI suffers about 10.3% performance
loss due to channel aging with respect to the ideal case
given by perfect CSI. As shown in Figure 6, the performance
degradation caused by channel aging can be reduced by
applying predicted CSIs. Figure 6 shows that the UNet-based
prediction model fnfθ can reduce the performance loss by 71%,
which corresponds to 97% of the maximum capacity with
perfect CSI, while the traditional KF approach only shows
a 27% reduction.

V. CONCLUSION

In this paper, we have proposed and experimentally evalu-
ated a data-driven deep learning approach to channel predic-
tion problem. The data-driven approach has been proven to
be successful in predicting accurately temporal evolution of
radio channels without knowledge of the underlying channel
dynamics. Meanwhile, AE and UNet are compared against
each other for each prediction model in order to light the
importance of UNet model in deep learning-based channel
prediction. We have also evaluated the proposed data-driven
approach in terms of outage capacity in order to quantify
impact of channel prediction accuracy on precoding perfor-
mance. The proposed data-driven channel prediction models
and results in this paper open a new opportunity toward
intelligent radio access network, especially in radio resource
and beam management.
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