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Abstract—Semantic communication is an emerging paradigm
that focuses on understanding and delivering semantics or mean-
ing of messages. Most existing semantic communication solutions
define semantic meaning as the labels of objects recognized
from a given form of source signal, while ignoring intrinsic
information that cannot be directly observed. Since the models
for recognizing labels need to be pre-trained with labelled dataset,
the total number of semantic objects are often limited by a
fixed set. In this paper, we propose a novel reasoning-based
semantic communication architecture in which the semantic
meaning is represented by a graph-based knowledge structure in
terms of semantic-entity, relationships, and reasoning rules. An
embedding-based semantic interpretation framework is proposed
to convert the high-dimensional graph-based representation of
semantic meaning into a low-dimensional representation, which
is efficient for channel transmission. We develop a novel inference
function-based approach that can automatically infer hidden
information such as missing entities and relations that cannot
be directly observed from the message. Finally, we introduce a
life-long model updating approach in which the receiver can learn
from previously received messages and automatically update the
rules for reasoning the hidden information when new unknown
semantic entities and relations have been discovered. Extensive
experiments are conducted based on a real-world knowledge
database and numerical results show that our proposed solution
achieves 76% interpretation accuracy of the hidden meaning at
the receiver when some entities are missing in the transmitted
message.

I. INTRODUCTION

Recent development in communication systems witnesses

a surging demand in diverse services and new applications

targeting at enhanced human-oriented experience with strin-

gent and highly personalized requirements. This motivates a

new communication paradigm, referred to as the semantic

communication, which draws inspiration from human com-

munication whose focus lies in understanding and delivering

the semantic meaning of the message as opposed to mere a

data reconstruction task [1]–[3].

Most of the existing works in semantic communication

exploit recent advances in machine learning, especially deep

learning-based solutions, to detect and communicate object

labels extracted from source signals. For example, in [4],

the authors defined the individual word recognized from the

source signal as semantic meaning. Similarly, the authors in
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[5] considered the text of a communication message as se-

mantic meaning and adopt a deep learning-based algorithm to

recognize the text transcript of a voice signal. These solutions

have the potential to significantly reduce the volume of traffic

and improve the reliability for transporting and delivering the

intended meaning under certain conditions.

Unfortunately, it is known that the semantic meaning of

a communication message can be much more intricate than

simple object labels. More specifically, traditional semantic

communication solutions suffer from the following drawbacks:

(1) Relations between objects are often ignored: Communica-

tion content may consist of many complex relations that are

essential for the understanding of semantic meaning. Also,

different objects in the same message and the context of

messages received across different times may exhibit strong

correlations which can be utilized to recover important hidden

information, e.g., human users would be able to recover some

missing information of received messages through inference.

How to design a simple and effective solution for both

transmitters and receivers to learn these correlations within

a communication context and imitate human recognition and

reasoning mechanism to infer the missing information in the

communication message is still an open problem.

(2) Different users can have different interpretations of se-

mantic meaning when observing the same signal: It is known

that the semantic meaning of the signal can be closely related

to user’s personality, context, and environment [6], e.g., the

term ”Apple” can be interpreted by different users as different

concepts (fruit or smart phone manufacturer). It is therefore

of critical importance for each transmitter and receiver pair to

learn and coordinate their personalized semantic concepts and

collections of rules for knowledge inference.

(3) Recognizable semantic meaning is limited by a pre-defined

closed set: Most existing models can only identify a limited

number of object labels, each of which needs to be trained

based on a large volume of manually-labeled data samples.

Unfortunately, possible semantics expressed by human users

can be complex and highly dynamic, it is possible that users

associated with transmitters can use some new terms, facts,

and concepts unknown to the receivers. How to continuously

learn new knowledge and automatically update the model for

semantic interpretation at the receiver is still an open problem.

In this paper, we propose a novel reasoning-based seman-
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tic communicator (R-SC) architecture to address the above

challenges. More specifically, to address the first two chal-

lenges, we adopt a graph-based structure to represent the

semantic meaning of a communication message. Our pro-

posed structure consists of three key components: (i) entities

are the concepts and knowledge terms, (ii) relations are

the relationships between entities; and (iii) reasoning rules

specify the most likely combination of entities and relations.

Our proposed graph-based structure can model the complex

relations between diverse knowledge concepts and take into

account scenarios in which the same sets of entities and

relations can represent different meanings when combined in

different ways due to differences in users’ personal preference,

backgrounds, environments, etc. To address the problem that

high-dimensional feature sets of graph-based representations

and highly correlated information are not suitable for efficient

communication, we propose an embedding-based semantic

interpretation (ESI) framework in which an embedding-based

function is proposed to map the graphical representation of

semantic meaning into a low-dimensional embedding space.

We develop a novel inference function to characterize the

transitional relationship between different entities and relations

as well as their combination likelihoods in the embedding

space. Our proposed framework can not only characterize

the complex relationship among entities but also infer hidden

information such as incomplete entities and missing relations

that cannot be directly observed from the message. To address

the third drawback, we introduce a life-long learning approach

based on model updating in which the receiver can sequen-

tially learn from the past messages sent by the users at the

transmitter side and automatically update the reasoning rule

models when new semantic entities and relations have been

observed. Extensive experiments have been conducted based

on real-world knowledge databases. Numerical results show

that the proposed solution achieves 76% accuracy in semantic

meaning recovery with incomplete entity information.
II. RELATED WORK

Semantic Communication: Most existing works on semantic

communications consider the labels of objects as as the seman-

tics and adopt mature machine learning approaches, especially

the deep learning based solutions, to identify semantics from

various forms of source signal (e.g., image or voice signals).

In particular, in [7], the authors adopted a transformer-based

deep learning algorithm into semantic encoding and decoding.

The authors in [8] also adopted a deep learning-based solution

for image signal recognition and transmission in wireless

channels.

Life-long Learning: As an emerging machine learning ap-

proach, life-long learning has attracted significant interest due

to its capability to autonomously learn and accumulate knowl-

edge over different tasks [9]. The authors in [10] proposed

a reinforcement learning-based approach that is rooted in

lifelong learning. The authors in [11] adopted a Bayesian

optimization framework based on stochastic gradient descent

to retain the knowledge learned from past tasks and use it to

assist future sentimental classification tasks.

Currently, there are still lacking simple and effective solu-

tions leveraging life-long learning in communication systems.
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Fig. 1: A generic semantic communication system.

To the best of our knowledge, this is the first work that applies

life-long learning to semantic communication.

III. SYSTEM MODEL

A generic semantic communication system consists of the

following key components as illustrated in Fig. 1.

Transmitter Side:

(1) Semantic Translator: recognizes the semantic meaning

from the source signal and converts the recognized meaning

into a suitable form, denoted as G, to characterize key se-

mantic elements and the associated relationships. For example,

the semantic translator includes a machine learning model to

identify the labels of key objects.

(2) Semantic Encoder: converts the semantic representation

of the source signal into an appropriate form for efficient

transmission in the physical channel. Generally speaking, the

semantic encoder should include two functions that are imple-

mented separately or jointly: (1) removing the redundancy of

the semantic representation and (2) protecting the information

from being corrupted in the channel.

Receiver Side:

(1) Semantic Decoder: decodes the received signal back into

a representable form, and can be considered as an inverse

process of the semantic encoder. However, due to the propaga-

tion loss of the communication channel, the decoded semantic

representation can be different from the semantic meaning

observed by the transmitter.

(2) Semantic Interpreter: recovers the semantic meaning and

presents it into the original form as observed by the transmitter.

One of the key differences between traditional communication

and semantic communication systems is that the result of the

message delivery in the former tends to be a binary solu-

tion, e.g., either success or failure of delivery. The semantic

meaning delivery result, however, is usually evaluated by a

continuous value, called semantic distance (or dissimilarity),

specifying the divergence of the meaning interpreted by the

receiver from the true meaning of the user. Let G and Ĝ be

the semantic meaning at the transmitter and the one recovered

by the receiver, respectively. We denote the semantic distance

between G and Ĝ as Ω(Gt, Ĝt). The receiver may feedback

a performance indicator that can be used by the transmitter

to evaluate the semantic distance between the meaning inter-

preted by the receiver and the true meaning. In this case, a

certain action (e.g., retransmission of signal) may be triggered

if the semantic distance between the received meaning and the

transmitted one is above a certain threshold.

In this paper, we focus on the life-long learning process in

which the communication process between a transmitter and

receiver spans a long time period and the receiver can learn

from the communication history and improve the understand-

ing of the transmitter’s message throughout the process. We

assume the communication process can be considered as a

slotted process. We use subscript t to denote the transmission



parameters in time slot t for t = 1, 2, . . .. The optimization

problem for life-long learning-enabled semantic communica-

tion can be written as follows:

min
∞
∑

t=1

Ω(Gt, Ĝt). (1)

IV. AN R-SC ARCHITECTURE

Before presenting the details of our architecture, we intro-

duce the following key concepts of R-SC.

A. Semantic Representation

As mentioned earlier, finding an appropriate representation

of semantic meaning is essential for the semantic communi-

cation system. In this paper, we adopt a graph-based struc-

ture to represent the semantic meaning of the message, i.e.,

the message received in time slot t can be represented as

Gt = 〈Et,Rt〉 where Et and Rt are sets of entities and

relations, respectively. Our proposed semantic representation

is composed of the following three key elements:

(1) Entities: are objects and concepts as well as their associ-

ated properties such as “apple”, “fruit”, “Steve Jobs”, etc.

(2) Relations: specify the relationship between entities. Gener-

ally speaking, relations have directions and different directions

between the same pair of entities will result in different

meanings.

(3) Rules: correspond to reasoning rules. Theses can be rules

for deciding the possible relations between any given pair

of entities, or deciding the most relevant hidden entities and

relations of a given entity recognized from the source signal.

A graphical representation of knowledge is considered as a set

of triplets, each of which corresponds to the combination of a

head entity, a connecting relation, and a tail entity, to denote

subject-predicate-object information. Let Φt be the set of all

the triplets in the message arrived at time slot t. The ith triplet

arrived at time slot t can be written as φi
t = 〈esi,t, ri,t, e

o
i,t〉

where φi
t ∈ Φt, e

s
i,t, ri,t, and eoi,t correspond to the head (sub-

ject), relation (predicate), and tail (object) entities respectively

for esi,t, e
o
i,t ∈ Et and ri,t ∈ Rt. One of the key unique features

of R-SC is to learn the relationships between observable and

hidden entities as well as that between entities and relations, so

it can automatically infer the missing or hidden information of

messages. For example, the message ”I love apple” may mean

the user’s favorite fruit or his/her favorite smart phone brand.

A complete representation of this message should contain

some hidden knowledge entities and/or relations, e.g., a more

specific semantic interpretation of the message should be ”I

love apple which is a fruit”. In R-SC, the reasoning rule can

be considered as a function that takes the incomplete entities

and relations directly identified from the source message as

input and outputs the sets of completed triplets. Let Πt be the

reasoning rule learned by the receiver at time slot t. Suppose

φ̃i
t is an incomplete triplet with one or two missing elements

arrived at the receiver, e.g., φ̃i
t = 〈esi,t, ri,t,−〉 or 〈−,−, eoi,t〉

where − denotes the missing elements of the triplet. We have

Πt

(

φ̃i
t

)

= φ̂i
t where φ̂i

t is the complete triplet recovered by

the semantic interpreter based on the learned reasoning rule.

B. Semantic Distance

As per (1) finding an appropriate metric to measure semantic

distance is of critical importance for optimizing semantic

communication system. Most existing works in semantic com-

munication adopt the meaning similarity of words identified

by dictionaries and/or thesaurus.

However, these metrics have several drawbacks when being

adopted in semantic communication. First, the semantic mean-

ing of messages may consist of complex relations as well as

some hidden entities and relationships that cannot be measured

by simply combining the meaning of the words. Meaning of

messages can be closely related to the transmitter’s personal

background information such as personal preference, past

experience, and understanding of the entities and relations,

none of which are pre-defined in the dictionary. It is known

that human users’ understanding of concepts and facts can

change with their age, personal experience, and accumulation

of knowledge. Simply interpreting the meaning of words based

on an existing dictionary cannot reflect these changes.

The graphical representation of semantic meaning adopted

in this paper captures the meaning of many different words,

concepts, facts, as well as their complex relations taking

into account the users’ personal preference and backgrounds.

To measure the difference between graphs, we propose a

novel embedding-based solution to evaluate and calculate the

semantic distance between two graphical representations of

meanings. The main idea of our proposed solution is to

learn a mapping function that maps the entities and relations

in the high-dimensional graphical representation space into

a low-dimensional embedding space. The low-dimensional

representations of the entities and relations, also called entity

embeddings and relation embeddings, should possess two

ideal features: (1) easy to recognize and infer and (2) highly

efficient for physical channel transmission. We use the bold

font to denote the embeddings of entities and relations, i.e.,

the embeddings of est and rt are denoted by est and rt,

respectively, and φi
t denotes the triplet of embeddings. For

the first feature, we introduce a carefully designed inference

function f
(

φi
t

)

to measure the likelihood (truthfulness) of

the triplet, i.e., the closeness of the meaning specified by

φi
t = 〈esi,t, ri,t, e

o
i,t〉 and the real meaning of user. We would

like to design an inference function f
(

φi
t

)

with the following

desirable conditions:

(1) If φi
t = 〈est , rt, e

o
t 〉 is in coordination with the intended

meaning of the user, the value of f
(

φi
t

)

should be

minimized (e.g., approach zero).

(2) If φi′

t = 〈es
′

t , r
′
t, e

o′

t 〉 does not reflect the meaning of the

user, the value of f
(

φi′

t

)

should be much larger than

f
(

φi
t

)

. Also the difference between f
(

φi′

t

)

and f
(

φi
t

)

should be proportional to their meaning difference.

(3) The difference between any given pair of triplets is only

related to their meaning difference, i.e., ∆f
(

φi′

t ,φ
i′′

t

)

= f
(

φi′

t

)

− f
(

φi′′

t

)

depends only on the meaning

difference of φ
i′

t and φ
i′′

t .

If all the above conditions are satisfied, the value of f
(

φi
t

)



is an ideal metric to reflect the difference of meaning between

a given triplet φi
t and the true meaning of the user. As will be

shown later in this paper, for a given number of dimensions of

embedding space, the inference function f
(

φi
t

)

can determine

the mapping function between a graph and its corresponding

entity and relation embeddings. By extending this observation

into a graphical structure consisting of a set of triplet embed-

dings Φt, we can define F (Φt) =
∑

φi

t
∈Φt

f
(

φi
t

)

as the main

metric to measure the distance between a set of triplets Φt and

the real meaning of messages transmitted in time slot t. We

can then define the semantic distance between two messages

represented by Φt and Φ
′

t as

Ω
(

Φt,Φ
′

t

)

= F (Φt)− F
(

Φ
′

t

)

. (2)

For the second ideal feature of the embedding function

which requires the converted entity and relation embeddings

to be efficient in channel transmission and interpretation at

the receiver side, we will allow the receiver to calculate the

inference function based on its received embeddings that can

be corrupted by the channel and coordinate with the transmitter

to optimize the mapping between the graphical representation

and the corrupted embedding values. In this way, the receiver

can always obtain the best interpretation of the meaning based

on its received message.

C. Life-long Model Updating

In this paper, we focus on modeling and optimizing the

life-long learning process of semantic knowledge between a

transmitter and a receiver. The transmitter and receiver cannot

observe all the knowledge entities and relations at the begin-

ning of the communication process but can observe from the

past communication and sequentially learn and update an in-

ference function f
(

φi
t

)

to convert the graphical representation

of semantic meaning into a low-dimensional embedding space.

The inference function will only be updated when unknown

new knowledge terms, i.e., new entities, relations, or triplets

have been discovered in the currently received message. The

main objective for R-SC is to minimize the semantic distance

between the transmitted meaning and the meaning interpreted

by the receiver through the learning process, i.e., we can

rewrite the problem (1) into the following equivalent form:

min

∞
∑

t=1

Ω
(

Φt, Φ̂t

)

. (3)

V. AN ESI FRAMEWORK FOR R-SC OPTIMIZATION

In this section, we present a novel framework, called

embedding-based semantic interpretation (ESI), to solve (3).

The proposed framework consists of two key functional mod-

ules: reasoning rule learning and life-long model updating.

A. Reasoning Rule Learning

Inference Function: Our proposed rule learning solution

relies on a carefully designed inference function to differen-

tiate the positive (most possible) and negative (less unlikely)

combinations of entities and relations in the embedding space.

More specifically, the inference function should be able to

map the plausibility of any given pair of entities and relations

to a single value. The receiver will then be able to use the

mapped value to decide whether these entities and relations

are likely to be combined when interpreting the meaning of

the user. To map the possible combinations of entity and

relation embeddings into a single value, we introduce three

possible forms of functional basis to characterize the additive,

linear, and multiplicative relationships between the various

entities and relations in the embedding space. In particular,

we introduce the following generalized inference function:

f
(

φ
i
t

)

= g
(

φ
i
t

)

+ h
(

φ
i
t

)

+ l
(

φ
i
t

)

, (4)

where g (·), h (·), l (·) correspond to the additive, linear,

and multiplicative relations of entity and relation embeddings

defined in the following forms:

g
(

φ
i
t

)

= aesi,t + brt + ceoi,t + d, (5)

h
(

φi
t

)

= a′rT
t e

s
i,t + b′rTt e

o
i,t + c′

(

esi,t
)T

eoi,t + d′, (6)

l
(

φ
i
t

)

= a′′
(

esi,t
)T

diag (rt)e
o
i,t + b′′, (7)

where a, a′, a′′, b, b′, b′′, c, c′, and d are constants decided

based on the range and Euclidean distance between entities

and relations with different meanings in the embedding space.

(·)T denotes the transpose of vector/matrix. diag (·) is the

diagonal operation with all the elements of a vector listed in

the diagonal of the matrix. We assume entities and relations

will be mapped into the same embedding space. However, our

model can be directly extended into the scenarios that relations

and entities are mapped into different embedding spaces [12].

The inference function in (4) is general enough to cover

various possible ways to differentiate the positive and negative

entity and relation combinations in the embedding space. For

example, in the simplest case, if the inference function uses

a single additive functional basis to evaluate the plausibility

of entity and relation combinations, i.e., we have f
(

φi
t

)

=
esi,t + rt − eoi,t which is in the same form as the TransE,

one of the most commonly adopted graph embedding models,

with the L1-norm-based solution [13]. For any positive triplet,

we will train the embedding outcome of inference function

f
(

φi
t

)

to approach zero and, for the negative triplet, the

output of the inference function should be a positive value

that is proportional to the semantic distance with the positive

triplet. In another example, if the inference function is set to

include the linear functional basis, we can adopt the following

form of inference function f
(

φi
t

)

= ‖est + rt − eot‖L2 =
2rTes − 2rTeo − 2(es)T eo + d′′ which is equivalent to the

L2-norm version of TransE embedding [13]. In this case, the

output of the inference function will again approach zero if

the triplet combination of entities and relations is positive

and will also be close to a semantic distance-related large

positive value if the combination of entities and relations is

negative. Finally, the multiplicative relation-based inference

function is also applicable and, in this case, the inference

function can be defined as f
(

φi
t

)

= −estdiag
(

rTt
)

eot where

the positive triplet will result in a small negative value and,

for the negative triplet, the resulting output of the inference

function will be a much higher value. It can be observed that

this case is equivalent to DistMult [14] another popular graph-

based embedding model.

Our proposed inference function-based solution can be used

to evaluate the likelihood of any given triplet and also recover

the missing information of the semantic meaning based on the



relative locations of relations and entities in the embedding

space. More specifically, suppose φ̃i
t is an incomplete triplet

arrived at time slot t. We can write the reasoning rule based

on our proposed inference function f(·) as follows:

Πt

(

φ̃i
t

)

= φ̃i
t ⊕ ϕi

t, (8)

where ϕi
t denotes the recovered missing components in triplet

φ̃i
t calculated by

ϕi
t = argmin

es,eo∈Et,r∈Rt

f
(

φ̃
i

t

)

, (9)

and ⊕ is the triplet completion function. Et and Rt are possible

entities and relations observed during the first t time slots

of communication. es, eo and r are the missing entities and

relations in φ̃i
t.

Model Training: In R-SC, the embeddings sent by the

transmitter may be corrupted in the physical channel and the

receiver can only observe the corrupted version of embedding

to interpret the semantic meaning. We use Y (·) to denote

the impact of the channel corruption on the reception of the

embedding, e.g., the ith triplet embeddings observed by the

receiver in time slot t can be written as Y
(

φi
t

)

.

The main objective for the transmitter and receiver is to

learn the embedding of entities and relations based on our

proposed inference function, so the receiver will be able to

evaluate and recover the missing entities and relations based

on their relative distance in the embedding space.

Following the same line as most existing machine learning

solutions, the transmitter and receiver must construct their

models based on two non-overlapping training sample sets:

a set of positive samples (with labels intended to be recog-

nized) and a set of negative samples (without labels or with

labels that should be differentiated). In the R-SC, the positive

samples (positive triplets) can be directly obtained from the

communication message and the samples (triplets) without

being observed will be considered as negative.

We give a more detailed description of the model training

procedure as follow: at the beginning of the communication

process (e.g., time slot t = 1), the transmitter will convert

the arrived message into a graphical representation with a

set Φ1 of triplets consisting of both complete and incomplete

triplets. The transmitter will collect the subset of completed

triplets into a positive training set, denoted as Φ+

1 , and will

randomly generate a negative training set Φ−

1 with triplets

composed of unobserved combinations of the relations and

entities. The transmitter will then calculate the embeddings

of the entities and relations based on these two training sets.

Both embeddings and labels will be sent to the receiver. The

transmitter will also rank the meaning difference between

positive and negative triplets in these two training sets and

set a list of ranked constants c′′(φ, φ′) to the receiver. We

assume the embedding can be corrupted by the communication

channel. The labels of the embedding however can always be

correctly decoded by the receiver. Let Φ̂
+

t and Φ̂
−

t the sets

of positive embeddings and negative embeddings corrupted

by the physical channel transmission. Once received the em-

beddings and labels from the transmitter, the receiver will

establish the positive and negative training sets based on the

received embedding given by Φ̂
+

t and Φ̂
−

t , respectively. Then,

the receiver will calculate the following loss function

L =
∑

φ∈Φ̂
+

t

∑

φ′∈Φ̂
−

t

max{0, f(φ)− f(φ′) + c′′(φ, φ′)}, (10)

where c′′(φ, φ′) is a constant depending only on the labels

of φ and φ′. c′′ should be decided by the transmitter at

the beginning of the training process and will remain as a

constant during the rest of the process. The receiver will

feedback the value of the loss function to the transmitter.

The transmitter will update the embedding using the standard

stochastic gradient descent (SGD) approach and send the

updated embedding values to the receiver. Following the same

line as [13], the above process will converge to a stationary

solution with the relative distances between the embedding

values of different entities and relations approach fixed values.

Life-long Model Updating: In the life-long learning process,

the transmitter and receiver may observe new entities and

relations in the arrived communication message. In this case,

new complete triplets will be added to the positive training

set and if some newly observed positive triplets are also in

the negative training set, these triplets will be removed and

replaced with some newly generated negative triplets. Once

positive and negative training sets have been updated, the

model training process will be repeated. It can be observed that

as more and more messages can be communicated between

the transmitter and receiver, the chances for discovering new

unknown entities and relations will be decreased and the model

training will be less frequent. Suppose the transmitter and

receiver have already observed most of the commonly used

entities and relations of the users, the receiver in this case

will be able to directly apply reasoning rule in (8) to infer the

missing meaning information of the message.

VI. EXPERIMENTAL RESULT

Dataset and Simulation Setup: To evaluate the accuracy of

the reasoning rules in (8), we adopt a dictionary and thesaurus-

based knowledge dataset WordNet-WN18 which is a subset

of WordNet consisting of 18 types of relations and 40,943

entities. We use 141,442 triplets given in the dataset as the

positive training set and the rest 5000 triplets as test set. We

generate the negative training set by replacing the (head or

tail) entity in triplets of the positive set with invalid entity.

Numerical Results: In Fig. 2, we evaluate the communication

reliability improvement that can be achieved by using our

proposed semantic reasoning solutions. Motivated by the fact

that in most knowledge graph dataset, the number of relation

types are limited and therefore instead of always transmit all

the embedding features to the receiver, the transmitter only

needs to send the full embedding features of relations at one

time and then send only a small label message to the receiver

during the rest of the communication process. We therefore

mainly focus on the received error probability of the packets,

each corresponds to an entity embedding with 2800 bits of

data size. We evaluate the packet error rate when the packets

(entities) corrupted during the physical channel transmission

can be recovered from other successfully received entities

and relations using our proposed semantic reasoning solutions



with additive and multiplicative inference functions. We can

observe that our proposed solutions can significantly reduce

the packet error rate for wireless channel transmission under

different SNR. Also, when transmitting entity packets of our

considered dataset, the additive inference function offers a

better performance than the linear inference solution.

In Fig. 3, we evaluate the impact of different forms of

inference functions on the convergence rate of model training.

We present the values of loss when two inference functions,

additive and linear functions, are adopted to train the embed-

ding models. We can observe that during the first few rounds of

training iterations, the linear inference function offers a faster

convergence rate than the additive function. However, as the

number of iterations continues to grow, the additive function

has a much faster convergence speed than the linear function.

Compared to the linear function, the additive function is much

easier to compute and offers a better convergence performance

which makes it an ideal inference function for WordNet-based

dataset. This however may not always be the case since in

some other datasets with more complex relations between

entities, the linear function may exhibit a faster convergence

rate than the additive function.

We next evaluate the accuracy of semantic meaning inter-

pretation when the model is trained with different number of

training samples. In Fig. 4, we evaluate the semantic meaning

recovery performance when head or tail entities are missing

in the received message. In this case, the receiver uses the

reasoning rule in (8) to infer missing semantic information.

Our solution achieves 76% and 48% of accuracy in recovering

missing information when using additive and linear inference

functions, respectively.

As mentioned earlier, the semantic distance between differ-

ent entities and relations will reflect their meaning difference.

In the ideal scenario, we want the entities in the same category

to have relatively short distance, compared to those in different

categories. In Fig. 5, we randomly choose two categories

of entities, categories “city” and “drug” from the dataset to

compare their relative distance in the embedding space. We

can observe that entities from the considered categories of

entities form two clusters. There are however some overlaps

between two categories of entities since some entities can have

close connections with each other in some embedding space

dimensions, e.g., some drugs are produced in some cities. This

verifies that our proposed embedding-based semantic distance

is a useful metric to measure the meaning difference between

graph-based representations of semantic meaning.

VII. CONCLUSION

This paper introduced an R-SC architecture in which the se-

mantic meaning is represented by a graph-based structure. An

embedding-based semantic interpretation framework was pro-

posed to convert the high-dimensional graphical representation

of semantic meaning into a low-dimensional representation

for efficient communication. We developed a novel inference

function-based approach that can infer hidden information

such as incomplete entities and relations that cannot be di-

rectly observed from the message. A life-long model updating

approach was introduced in which the receiver can learn from
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the past messages sent by the users and automatically update

the reasoning rule models when new semantic entities and

relations have been discovered. Extensive experiments were

conducted and our results showed that the proposed solution

achieves 76% of accuracy in meaning recovery.
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channel coding for wireless image transmission,” IEEE TCCN, vol. 5,
no. 3, pp. 567–579, May. 2019.

[9] M. Delange, R. Aljundi et al., “A continual learning survey: Defying
forgetting in classification tasks,” IEEE TPAMI, pp. 1–1, Feb, 2021.

[10] P. Ruvolo and E. Eaton, “ELLA: an efficient lifelong learning algorithm,”
in Proceedings of ICML, Atlanta, GA, USA, Jun. 2013.

[11] Z. Chen, N. Ma, and B. Liu, “Lifelong learning for sentiment classifi-
cation,” arXiv preprint, Jan. 2018.

[12] Y. Lin, Z. Liu et al., “Learning entity and relation embeddings for
knowledge graph completion,” in AAAI, 2015.



[13] A. Bordes, N. Usunier et al., “Translating embeddings for modeling
multi-relational data,” Advances in NIPS, vol. 26, 2013.

[14] B. Yang et al., “Embedding entities and relations for learning and
inference in knowledge bases,” arXiv preprint arXiv:1412.6575, 2014.


	I Introduction
	II Related work
	III System Model
	IV An R-SC Architecture
	IV-A Semantic Representation
	IV-B Semantic Distance
	IV-C Life-long Model Updating

	V An ESI framework for R-SC Optimization
	V-A Reasoning Rule Learning

	VI Experimental Result
	VII Conclusion
	References

