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Abstract—Federated learning (FL) has emerged as a popular
technique for distributing machine learning across wireless edge
devices. We examine FL under two salient properties of con-
temporary networks: device-server communication delays and
device computation heterogeneity. Our proposed StoFedDelAv
algorithm incorporates a local-global model combiner into the
FL synchronization step. We theoretically characterize the con-
vergence behavior of StoFedDelAv and obtain the optimal com-
biner weights, which consider the global model delay and expected
local gradient error at each device. We then formulate a network-
aware optimization problem which tunes the minibatch sizes of
the devices to jointly minimize energy consumption and machine
learning training loss, and solve the non-convex problem through
a series of convex approximations. Our simulations reveal that
StoFedDelAv outperforms the current art in FL, evidenced by
the obtained improvements in optimization objective.

I. INTRODUCTION

Recent advancements in smart devices (e.g. cell phones, smart
cars) have resulted in a paradigm shift for machine learning
(ML) [1], aiming to migrate intelligence management from
cloud datacenters to the network edge [2]. Federated learning
(FL) has been promoted as one of the main frameworks for
distributing ML over wireless networks [3], where model
training is conducted without data exchange across devices.

Conventional FL operates in two iterative steps [4]: (i)
local training, where edge devices update their local models
using their own datasets; and (ii) global aggregation, where
a cloud server computes the global model based on local
models received from the edge devices, and synchronizes
them [5]. Implementations of this process over the wireless
edge are complicated by heterogeneity in communication and
computation capabilities found across devices [6]. In this work,
we augment FL to provide resilience to these factors.

A. Related Works
Several works in FL have focused on techniques for improv-

ing device-to-server communication efficiency in the global
aggregation step. Some have focused on reducing the number of
uplink/downlink communication rounds by performing multiple
iterations of local model updates between consecutive global
aggregations [7], [8]. Works [9], [10] showed that device-server
communication requirements in FL can be further reduced
through direct device-to-device model synchronization.

Building upon this, there has been a recent trend towards
control methodologies for optimizing device participation in FL.
The authors of [11] proposed a joint optimization formulation

considering learning, resource allocation, and device selection
to minimize convergence time. In [12], the authors minimized
the total energy consumption of the system under device
heterogeneity constraints. In [13], the authors developed over-
the-air FL for maximizing global model aggregation speed
under proper device selection and beamforming design.

Such works have largely neglected the effect of commu-
nication delay on the performance of model training in FL.
In [14], we took a step towards addressing this by establishing
a delay-aware FL framework. Specifically, we introduced a
mechanism for devices to combine local and global models
during the synchronization step to account for communication
delay. Nevertheless, [14] considers a scenario in which the
edge devices train their models in the local straining step using
full-batch gradient descent (GD). This can introduce large
inefficiencies with respect to the energy consumed versus model
convergence obtained in FL, especially when training models
over heterogeneous wireless devices. In practice, an edge device
can potentially store more data than it can process in a timely
manner. An energy-efficient solution to this is using minibatch
stochastic gradient descent (SGD), which on the other hand
has the downside of introducing estimation noise [9]. In this
paper, we address these challenges by coupling the selection of
device minibatch sizes with the weighting of local and global
model combiners based on heterogeneity conditions.

B. Outline and Summary of Contributions

• We develop a delay-aware FL framework, StoFedDelAv,
which incorporates a local-global model combiner to jointly
optimize model training performance and network resource
consumption in the presence of device-server communica-
tion delays and device computation heterogeneity.

• We theoretically characterize the convergence behavior
of StoFedDelAv and optimize the local-global model
combiner weight in the presence of communication delay.
We further formulate a network-aware learning optimization
problem which aims to tune the SGD minibatch sizes across
the devices according to resource constraints. We demon-
strate that the problem is a non-convex signomial program,
and solve it using a series of convex approximations.

• Our experiments show that StoFedDelAv outperforms
the current art in FL in terms of model convergence speed
and network resource utilization when the minibatch size
and local-global model combiner are carefully adjusted.
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II. SYSTEM MODEL AND ALGORITHM

A. Network and Machine Learning Model

We consider a set I = {1, · · · , I} of I edge devices
connected to a cloud server, which acts as a model aggregator
(see Fig. 1). Each edge device i is associated with a dataset Di,
where each datapoint (x, y) ∈ Di comprises an m-dimensional
feature vector, x ∈ Rm, and a label, y ∈ R.

We let fi(x, y; w) be the loss of the machine learning model
associated with datapoint (x, y) and model parameter vector
w ∈ Rn. The local loss function of device i is given by

Fi(w) =
∑

(x,y)∈Di

fi(x, y; w)/Ni. (1)

The global loss is subsequently defined as
F (w) =

∑
i∈I

ρiFi(w), (2)

where ρi = Ni/
∑
j∈I Nj is the weight associated with device

i. Ni = |Di| is the size of the local dataset. The goal of the
ML training is to find the optimal parameter given by

w? = arg min
w

F (w). (3)

To aid in convergence analysis of model training across the
network, the following assumptions are made:

Assumption 1. The loss functions are assumed to be L-Lipschitz
and β-Smooth, i.e., ‖Fi(w1)−Fi(w2)‖ ≤ L‖w1−w2‖,∀i, and
‖∇Fi(w1)−∇Fi(w2)‖ ≤ β‖w1 − w2‖,∀i.
Assumption 2. The local and global gradients are assumed
to have a bounded dissimilarity, i.e. ‖∇Fi(w) − ∇F (w)‖ ≤
δi,∀w,∀i,where 0 ≤ δi ≤ 2L. We let δ =

∑
i ρiδi.

Note that a higher value of δ implies a larger statistical
diversity across the local datasets of the edge devices.

B. StoFedDelAv Algorithm
We propose the StoFedDelAv algorithm (see Alg. 1),

considering the effect of the communication delay between the
edge devices and the cloud server. We divide the full training
cycle into discrete time-instances t ∈ {1, 2, ..., T}, where the
training consists of K = T

τ rounds of aggregation. τ denotes
the number of SGD steps taken by each device for each round
of global aggregation indexed by k ∈ {0, 1, ...,K − 1}, where
each aggregation period spans the interval Tk = {kτ −∆ +
1, ..., (k+1)τ−∆}. The communication delay, i.e., the duration
between when edge devices send their models to the server and
the reception of the resulting global model is denoted by ∆,
where τ ≥ ∆ ≥ 0. Without loss of generality, we assume the
uplink and downlink communication delay to be symmetric,
i.e., ∆/2, for both upstream and downstream communications.

Let wi(t) denote the local model trained at each device i and
w(t) =

∑
i ρiwi(t) be the global model at each time instance

t. The model training starts with the cloud server initializing
all the local models such that wi(−∆) = w(−∆), ∀i.

Between two consecutive global aggregations, each device
sends its local model wi(t) to the server at t ∈ {kτ −∆,∀k ≥
0}, after waiting for the communication delay between edge and
server, i.e., ∆/2, and the global model w(t) is computed at the
server at t ∈ {kτ −∆/2,∀k ≥ 0}. Finally, the devices receive
the global model at kτ to perform local model synchronization.

Fig. 1: System architecture and illustration of our proposed
methodology for delay-aware federated learning.
Distributed SGD: At time t, the edge devices sample
their datasets randomly and without replacement, obtaining
minibatch Di(t) ⊆ Di, where |Di(t)| is the number of
datapoints selected and is the same for each t ∈ Tk. Let
ni(k) , |Di(t)|, ∀t ∈ Tk be the minibatch size of device i for
the k-th aggregation period, each local device take an SGD
step on their local model using unbiased gradient estimator as:

gi(wi(t);Di(t)) = |Di(t)|−1
∑

(x,y)∈Di(t)

∇fi(x, y;wi(t)), (4)

where
gi(wi(t);Di(t)) = ∇Fi(wi(t)) + νi(t) (5)

with νi(t) being a zero-mean noise.
At each time t ∈ Tk \ {kτ}, each edge device updates the

local model Using the gradient estimate as:
wi(t) = wi(t− 1)− ηgi(wi(t);Di(t)), t ∈ Tk. (6)

Model Synchronization: At time t = kτ , after receiving the
delayed global model w(t−∆) from the cloud server, each
edge device performs one additional local SGD update followed
by synchronization. During synchronization, each edge device
performs local update by replacing its local model with a
combination of the global and local model with the global/local
combiner weight α(k) ∈ (0, 1]. The expression for the local
model after synchronization is given by

wi(t) = αt(k)w(t−∆)

+ (1− αt(k))
[
wi(t− 1)− ηgi(wi(t− 1);Di(t))

]
,

(7)

where αt(k) is the weight assigned to the global model:

αt(k) =

{
α(k), t = kτ, k ∈ {0, 1, ...,K − 1}
0, otherwise

. (8)

Let α̂ = {α(0), ..., α(K)} be the set of combiner weights
across the global aggregation instances. α = 1 corresponds to
standard FL.

At the K-th global aggregation, the server chooses the best
w(t) it has found thus far. Since the server only has access to
the global model at t = kτ −∆, the model selected at K is

wK = min
w∈W

F (w), (9)

with W , {w(kτ −∆), k = 0, 1, ...,K − 1}.



Algorithm 1: Stochastic Federated Delayed Averaging
Input: α̂, τ, I, T
Output: wK
Initialize wi(−∆), ∀i;
for k = 0 : K − 1 do

for t = kτ −∆ + 1 : (k + 1)τ −∆ do
for i ∈ I do

if t = (k + 1)τ −∆ then
Each device i sends wi to the server

else
Device i ∈ I updates its model using (7)

end
if t = (k + 1)τ −∆/2 then

// Procedure at the cloud server
Compute w((k + 1)τ −∆) and send it to

the edge for synchronization and update
wK with (9)

end
end

III. CONVERGENCE ANALYSIS OF STOFEDDELAV

In this section, we explore the optimality gap between the model
chosen at the latest global aggregation K and the optimal model.
We then obtain the optimal model combiner weight. All the
proofs can be found in our online technical report [15].
Definition 1. The local data variability of device i is measured
via Θi ≥ 0,∀i, satisfying‖∇fi(x1, y1; w)−∇fi(x2, y2; w)‖ ≤
Θi‖x1 − x2‖, ∀(x1, y1), (x2, y2) ∈ Di.
Definition 2. For k ∈ {0, ...,K − 1}, the centralized GD
during t ∈ {kτ − ∆ + 1, ..., (k + 1)τ − ∆} is defined as
ck(t) = ck(t − 1) − η∇F (ck(t − 1)) initialized such that
ck(kτ −∆) = w(kτ −∆).

We now characterize the variance of SGD noise in (5):
Lemma 1. Using Definition 1, the SGD noise at each local
iteration t at each device i can be upper bounded as follows:

E [‖νi(t)‖2] ≤
(
1− |Di(t)|/Ni

)
2 (ΘiSi)

2/|Di(t)|, (10)

where S2
i is the sample variance of data at device i.

Since the the minibatch size (i.e, |Di(t)|, ∀i in the above
definition) is fixed during each local training interval and only
varies across global aggregations, with some abuse of notation,
we replace t with k in the above definition and express the
SGD noise during period k, using Jensen’s inequality, as

E [‖νi(k)‖] ≤ ΘiSi

√
2
(
1− ni(k)/Ni

)
/ni(k). (11)

In Theorem 1, we bound the loss gap, i.e., F (wK)−F (w?):
Theorem 1. If η < 2

β , then under Assumption 1, we have

F (wK)− F (w?) ≤
1

2ηφT
+

√
1

4η2φ2T 2
+
LΨ(α̂)

ηφT
+ LΨ(α̂)

, L({ni(k)}i∈I,1≤k≤K), (12)

Ψ(α̂) ,
K∑
k=1

ψ(α(k), k), (13)

ψ(α(k),k) = E[‖w((k + 1)τ −∆)− ck((k + 1)τ −∆)‖
≤ (1− α(k))ε(k)([1 + ηβ]τ − 1)

+ (1− α(k))h(τ, k) + α(k)h(τ −∆, k)

+ α(k)η∆L[1 + ηβ]τ−∆ + ησ(k)[τ − α(k)∆],

(14)

h(x, k) , ((δ + σ(k))/β)[(1 + ηβ)x − 1]− η(δ + σ(k))x, (15)

ε(k) , (1− (1− α(k))k)
[
2η(L+ σ(k))

(
τ/α(k)−∆

)]
, (16)

σ(k) ,
∑
i

ρiE[‖νi(k)‖ =
∑
i

ρiSiΘi

√
2
(
Ni−ni(k)

)
/
(
Nini(k)

)
.(17)

The optimality gap in (12) decreases as T increases. More
explicitly, as T,K → ∞, F (wK) − F (w?) is determined
exclusively by Ψ(α̂) terms in (12). Critical to the understanding
of the behavior of the optimality gap defined in (12) is
Ψ(α̂), which comprises terms ψ(α(k), k) given by (14). Ψ(α̂)
ultimately defines the discrepancy between the global model
and the theoretical centralized model on one aggregation period.

It is important to note that the last term of (15) (i.e. the
term with a negative sign) is decreasing with respect to (w.r.t.)
gradient dissimilarity and noise. In most contexts, however,
this term is counteracted by the rest of the terms in ψ(α(k), k)
that are increasing w.r.t. SGD noise and gradient dissimilarity.

Crucial to the minimization of (12) is the proper choice
of α(k). Although the behavior of the expression in (14)
is non-trivial to analyze, we experimentally observe in Fig.
2(a) (Sec. V) that ψ(α(k), k) is convex as a function of
α(k) ∈ (0, 1], implying [F (wK)−F (w?)] ∝

√
Ψ(α̂) + Ψ(α̂)

can be minimized by minimizing each ψ(α(k), k) since
ψ(α(k), k)’s are independent according to (14). In particular,
each ψ(α(k), k) is the solution to the optimization problem

α?(k) = arg min
α(k)∈(0,1)

ψ(α(k), k), (18)

where ψ(α(k), k) is given by (14). Since the closed-form
solution of the above problem is non-trivial, this problem can
be solved using numerical methods given the bounded range of
α(k). Nevertheless, given (14) optimizing over ψ(α(∞),∞)
would give us the following closed-form solution:

α?(∞) = min
(

1,
√

2ητ(L+ σ(∞))[(1 + ηβ)τ − 1]/A
)

A =2η∆(L+ σ(∞))[(1 + ηβ)τ − 1] + η∆L(1 + ηβ)τ−∆

− ((δ + σ(∞))/β)(1 + ηβ)τ−∆[(1 + ηβ)∆ − 1] + ηδ∆.

(19)

In practice, to avoid a numerical method, one can use (19) for
each α?(k) with using σ(k) instead of σ(∞) in (19).

IV. NETWORK OPTIMIZATION PROBLEM

In this section, we first formulate a problem to jointly minimize
energy, delay, and model loss in Sec. IV-A. We then rework
the problem and solve it in Sec. IV-B.

A. Problem Formulation

For period k, let ECmp(k) be the energy required to compute
the gradient over a minibatch of data, ETx(k) be the energy
required for model transmission, TCmp(k) be the computation
time, TTx(k) be the model transmission time, Q be the number
of bits per model, pi(k) be the transmit power of device i, and
Ri(k) be the data rate between device i and the BS.

We formulate the following problem to optimize a trade-off
between energy consumption, delay, and model performance:



P : min
{n(k)}K

k=1

K∑
k=1

[
c1
[
ECmp(k) + ETx(k)

]
+c2

[
TCmp(k) + TTx(k)

]]
+ c3L({ni(k)}i∈I,1≤k≤K) (20)

s.t.

(C1) ECmp(k) =
∑
i∈I

ECmp
i (k),

(C2) ETx(k) =
∑
i∈I

ETx
i (k),

(C3)

K∑
k=1

ECmp
i (k) + ETx

i (k) ≤ EBatt
i , ∀i ∈ I,

(C4) ECmp
i (k) = γidiτni(k)%2

i /2, ∀i ∈ I,
(C5) ETx

i (k) = pi(k)Q/Ri(k), ∀i ∈ I,
(C6) TCmp(k) = max

i∈I
τdini(k)/%i,

(C7) TTx(k) = max
i∈I

Q/Ri(k),

(C8) L({n(k)}Kk=1) = F (wK)− F (w?) (see (12)),
(C9) 0 ≤ ni(k) ≤ Ni, ∀i ∈ I,

where n(k) = {ni(k)}i∈I is the collection of minibatch
sizes of the devices over the training interval, and constants
c1, c2, c3 ≥ 0 weigh the importance of the objective terms.

Constraints C1 and C2 are, respectively, the total com-
putation and transmission energy consumption during each
global aggregation. C3 limits the amount of energy device
i can consume over K according to its battery EBatt

i . C4
constrains the computation energy of i, where γi is its effective
CPU capacitance, di is the number of CPU cycles needed to
process one datapoint, and %i is the CPU clocking frequency [5],
[8]. C5 represents the energy needed for transmission, and
constraints C6 and C7 are the computation and transmission
time, respectively, for the network. C8 constrains the loss gap
to its upper bound, and constraint C9 ensures P’s feasibility.
B. Geometric Programming-based Optimization

Problem P is non-convex, particularly due to the behavior
of L in the objective function. However, by fixing the value
of α(k), the problem reduces to a signomial programming
(SP) problem [16]. While this is still NP-hard in general, the
resulting SP can be solved via the method of posynomial
condensation and penalty functions [17]. We thus transform P
into an iterative problem in which at each iteration `, a convex
problem is obtained via logarithmic change of optimization
variables (c.o.v.), the solution of which is used to determine the
value of α̂ using (19). In particular, we write the problem as
an optimization problem with a posynomial objective function
subject to equality on monomials and inequality on posynomails,
which admits the format of geometric programming (GP) [16].
As a result, at each iteration `, we aim to find the solution
to the following optimization problem, which can undergo a
logarithmic c.o.v. and be reduced to a convex problem:

P̂ : min
y

K∑
k=1

[
c1
[
ECmp(k) + ETx(k)

]
+ c2

[
TCmp(k) + TTx(k)

]]
+ c3L({n(k)}Kk=1) (29)

+ w1s1 +
K∑
k=1

 4∑
j=2

wj(k)sj(k) +
∑
i∈I

w5(k, i)s5(k, i)


s.t.

(Ĉ1)
∑
i∈I

ECmp
i (k)/ECmp(k) ≤ 1

(Ĉ2)
∑
i∈I

ETx
i (k)/ETx(k) ≤ 1

(Ĉ3)
∑K

k=1

(
ECmp
i (k) + ETx

i (k)
)
/EBatt

i ≤ 1,∀i ∈ I

(Ĉ4) γidiτni(k)%2
i /(2E

Cmp
i (k)) = 1, ∀i ∈ I

(Ĉ5) piQ/(E
Tx
i (k)Ri) = 1, ∀i ∈ I

(Ĉ6) τdini(k)/(TCmp(k)%i) ≤ 1, ∀i ∈ I
(Ĉ7) Q/(TTx(k)Ri) ≤ 1, ∀i ∈ I
(Ĉ8.1) L−1

[
m1 + P1 + LΨ(α̂)

]
≤ 1

(Ĉ8.2) (m12ηφT )−1 ≤ 1

(Ĉ8.3) P−2
1 (m2 +m3Ψ(α̂)) ≤ 1

(Ĉ8.4) m−1
2 (1/(2ηφT ))2 = 1

(Ĉ8.5) Lm−1
3 /(ηφT ) = 1

(Ĉ8.6) Ψ−1(α̂)

K∑
k=1

ψ(α(k), k) ≤ 1

(Ĉ8.7) s−1
1 Ψ(α̂)/f̂1(y, α̂; `) ≤ 1

(Ĉ8.8) ψ−1(k)[α(k)B4(k)ε(k)B1 + B4(k)h1(k)

+ α(k)h2(k) + α(k)η∆LB5 + ησ(k)B6(k)] ≤ 1

(Ĉ8.9) s−1
2 (k)ψ(k)/f̂2(y, k; `) ≤ 1

(Ĉ8.10) (h−1
1 (k)B1δβ

−1 + h−1
1 (k)B1σ(k)β−1)/f̂3(y, τ, k, 1; `) ≤ 1

(Ĉ8.11)
s−1
3 (k)

[
1 + h−1

1 (k)ηδτ + h−1
1 (k)ησ(k)τ

]
f̂4(y, τ, k, 1; `)

≤ 1

(Ĉ8.12)
h−1

2 (k)B2δβ−1 + h−1
2 (k)B2σ(k)β−1

f̂3(y, τ −∆, k, 2; `)
≤ 1

(Ĉ8.13)
s−1
4 (k)

[
1 + h−1

2 (k)ηδB7 + h−1
2 (k)ησ(k)B7

]
f̂4(y, τ −∆, k, 2; `)

≤ 1

(Ĉ8.14) ε(k)−1B3(k)2η(L+ σ(k))α(k)−1/f̂5(y, k; `) ≤ 1

(Ĉ8.15)

(
s−1
5 (k)

[
1 + ε(k)−1B3(k)2η(L+ σ(k))∆

])
/f̂6(y, k; `) ≤ 1

(Ĉ8.16)
∑
i∈I

ρiSiΘi
√

2Pi(k)/σ(k) ≤ 1

(Ĉ8.17) s−1
6 (k)σ(k)/f̂7(y, k; `) ≤ 1

(Ĉ8.18) P 2
i (k)ni(k) + ni(k)N−1

i ≤ 1, ∀i ∈ I
(Ĉ8.19) s−1

7 (k, i)/f̂8(y, k; `) ≤ 1, ∀i ∈ I
(Ĉ9) 0 ≤ ni(k) ≤ Ni, ∀i ∈ I

(Ĉ10)
{
s1,
{
sj(k)

}
2≤j≤6,1≤k≤K ,

{
s7(k, i)

}
i∈I,1≤k≤K

}
≥ 1

Variables: y,
{
P1,Ψ(α̂),

{
TCmp(k),TTx(k),ECmp(k),ETx(k)

}K
k=1

,{
{n(k)}, σ(k), h1(k), h2(k), ε(k), ψ(k), {Pi(k)}i∈I

}K
k=1

,

s1,
{
sj(k)

}
2≤j≤6,1≤k≤K ,

{
s7(k, i)

}
i∈I,1≤k≤K

}
,

where h1(k) = h(τ, k), h2(k) = h(τ − ∆, k), B1 = (1 +
ηβ)τ − 1, B2 = (1 + ηβ)τ−∆− 1, B3(k) = (1− (1−α(k))k),
B4(k) = (1−α(k)), B5 = (1 +ηβ)τ−∆, B6(k) = τ −α(k)∆,
and B7 = (τ − ∆). Bj ≥ 0,∀j. The {sj} terms are added
to expand the solution space of each iteration that will be
forced to converge to 1 when the problem is solved using
the penalty terms (i.e., wj � 1, ∀j). The terms f̂x(y, ...; `)



f1(y, α̂) =

K∑
k=1

ψ(α(k), k)→ f1(y, α̂) ≥ f̂1(y, α̂; `) ,
K∏
k=1

(
ψ(α(k), k)f1(y, α̂)[`−1]

ψ(α(k), k)[`−1]

)ψ(α(k),k)[`−1]

f1(y,α̂)[`−1]

(21)

f2(y, k) =α(k)B4(k)ε(k)B1︸ ︷︷ ︸
q2,1

+B4(k)h1(k)︸ ︷︷ ︸
q2,2

+α(k)h2(k)︸ ︷︷ ︸
q2,3

+α(k)η∆LB5︸ ︷︷ ︸
q2,4

+ ησ(k)B6(k)︸ ︷︷ ︸
q2,5

→

f2(y, k) ≥ f̂2(y, k; `) ,
5∏
j=1

 q2,jf2(y, k)[`−1]

q
[`−1]
2,j


q
[`−1]
2,j

f2(y,k)[`−1]

(22)

f3(y, x, k, i) = 1︸︷︷︸
q3,1

+ h−1
i (k)ηδx︸ ︷︷ ︸
q3,2

+ h−1
i (k)ησ(k)x︸ ︷︷ ︸

q3,3

→ f3(y, x, k, i) ≥ f̂3(y, x, k, i; `) ,
3∏
j=1

 q3,jf3(y, x, k, i)[`−1])

q
[`−1]
3,j


q
[`−1]
3,j

f3(y,x,k,i)[`−1]

(23)

f4(y, x, k, i) = h−1
i (k)Biδβ

−1︸ ︷︷ ︸
q4,1

+ h−1
i (k)Biσ(k)β−1︸ ︷︷ ︸

q4,2

→ f4(y, x, k, i) ≥ f̂4(y, x, k, i; `) ,
2∏
j=1

 q4,jf4(y, x, k, i)[`−1]

q
[`−1]
4,j


q
[`−1]
4,j

f4(y,x,k,i)[`−1]

(24)

f5(y, k) = 1︸︷︷︸
q5,1

+ ε−1(k)B3(k)2ηL∆︸ ︷︷ ︸
q5,2

+ ε−1(k)B3(k)2ησ(k)∆︸ ︷︷ ︸
q5,3

→ f5(y, k) ≥ f̂5(y, k; `) ,
3∏
j=1

 q5,jf5(y, k)[`−1]

q
[`−1]
5,j


q
[`−1]
5,j

f5(y,k)[`−1]

(25)

f6(y, k) = ε−1(k)B3(k)2ηLτα(k)−1︸ ︷︷ ︸
q6,1

+ ε−1(k)B3(k)2ησ(k)τα(k)−1︸ ︷︷ ︸
q6,2

→ f6(y, k) ≥ f̂6(y, k; `) ,
2∏
j=1

 q6,jf6(y, k)[`−1]

q
[`−1]
6,j


q
[`−1]
6,j

f6(y,k)[`−1]

(26)

f7(y, k) =
∑
j∈I

ρjSjΘj
√

2Pj(k)→ f7(y, k) ≥ f̂7(y, k; `) ,
∏
j∈I

 (ρjSjΘj
√

2Pj(k))f7(y, k)[`−1]{
ρjSjΘj

√
2Pj(k)

}[`−1]


{ρjSjΘj

√
2Pj(k)}[`−1]

f7(y,k)[`−1]

(27)

f8(y, k, i) = P 2
i (k)ni(k)︸ ︷︷ ︸
q8,1

+ni(k)N−1
i︸ ︷︷ ︸

q8,2

→ f8(y, k, i) ≥ f̂8(y, k, i; `) ,
2∏
j=1

 q8,jf8(y, k, i)[`−1]

q
[`−1]
8,j


q
[`−1]
8,j

f8(y,k,i)[`−1]

(28)

approximate posynomial denominators in P̂ as monomials to
satisfy the requirements of GP, and are outlined in (21)-(28). As
the iterations progress, these approximations converge towards
the value of the posynomial they represent. After convergence,
(19) is applied with σ(k)[`] to update α̂ and B{3,4,5}(k). A
new problem is then solved given the values of these variables,
and this alternative process is continued upon convergence.

In P̂ , constraints Ĉ1-Ĉ5 are naturally obtained from prob-
lem P’s C1-C5 into ones which fit a geometric programming
(GP) paradigm. Constraints Ĉ6 and Ĉ7 stem from the fact
that dividing P’s C6-C7 computation/transmission times
by the maximum computation/transmission time across the
network will upper-bound the constraint to 1. P̂’s constraints
Ĉ8.{1,2, ...,19} develop the transformation of the loss gap
of (12) into a series of constraints in the form of inequalities
on posynomials, which is desired in GP programming to have
convergence to a Karush–Kuhn–Tucker condition of P [16].

V. EXPERIMENTAL RESULTS

Experimental Setup: We consider an edge network of N = 5
devices realized according to the parameters described in
Table I. Sets of N parameters are uniformly generated then
sorted for γi and di (i.e. γ = {γ1, ..., γ5} and d = {d1, ..., d5}),
such that γ1 = arg min {γi}5i=1, d1 = arg min {di}5i=1 and
γ5 = arg max {γi}5i=1, d5 = arg max {di}5i=1. The first device
is modeled using γ1 and d1 for its CPU capacitance and
number of CPU cycles per datapoint, respectively, making
it the most resource-efficient device for data computation; the
second device uses γ2, d2, and so on. CVX is used to solve

the convex problem at each iteration of P̂ . Each plot in Fig. 2
shows the average of 20 randomized network initializations.

TABLE I: Parameter settings for experiments.

Parameter(s) Value / Range
c1, c2, c3 1× 10−4, 1× 10−3, 2.5× 106

EBatt
i ∀i 7.5× 106(J)
ni(k) [1, 25]
%i 1× 106(Hz)
di 600 ≤ di ≤ 640
γi [4× 10−12, 6.5× 10−12](F )

pi, Ri, Q 0.1(W )∀i, 1.0 (Mbps)∀i , 16 (kbits)
Θi, Si, δ 2.0∀i , 0.2∀i , 0.5
η, β, L, φ 0.02, 1, 25, 0.025
τ,∆,K 20, 19, 15

w1, w{2,...,6}(k), w7(k, i) 100000 , 100000 , 1000000

Minibatch Optimization: We first look at minibatch size,
which ultimately determines time, energy, and loss across the
training interval. Since ε(k) in (16) becomes more dependent
on noise as training progresses due to the term (1−(1−α(k))k,
minibatch size should theoretically increase non-linearly over
time. This is corroborated in Fig. 2(b). It can be seen that
minibatch size for the devices follows their relative precedence,
such that the best edge device, 1, possesses the largest
minibatch, 2 the second largest, and so on. Better devices
show larger differences between their initial minibatch size and
their latest, with device 1 experiencing a nearly 25% increase.
This trend reveals that the better edge devices save energy in
early training stages for later on when SGD noise is more
impactful on the machine learning loss.
Energy and Minibatch: In Fig 1(c), we depict average
minibatch size across the network while varying the energy



(a) ψ(k) as function of σ(k) at different
periods k.

(b) Minibatch size across network over
training time.

(c) Average minibatch size across network
over cycle K for varying c1.

(d) Objective value for optimal and fixed α̂. (e) α as function of time delay ∆. (f) Accuracy of logistic regression using
MNIST dataset for different fixed α̂Fig. 2: Experimental results for our methodology.

constant, c1 in the objective function of P . The results
show that the precedence assigned to energy and the average
minibatch size across the network for the complete training
cycle exhibit a steep ramp-down from c1 ∈ (0, 1).
Impact and Behavior of α(k): By allowing the network
to choose α̂ per (19), the value for the objective function
of the problem P̂ drops meaningfully, as seen in Fig. 2(d).
We determined numerically that the difference between the
calculated optimal value of α(0) and that found using (19) was
about 0.16. Subsequent values of α(k > 0) were effectively
identical to the numerically optimal value, thus proving the
efficacy of the proposed method. It is worth noting that this is
feasible for the iterative GP approach, as previous values for
σ(k) can be used, but in real-time this may not be the case.
α(k) is also heavily dependent on delay as shown in Fig. 2(e),

where the vertical axis represents the average of elements in α̂
and the horizontal axis ∆. This shows that the proportionality
between τ and ∆ should be carefully considered when choosing
α̂. As ∆→ 0, α(k)→ 1, as is expected in ideal FedAvg.

Figure 2(f) illustrates the impact of α on model accuracy in
a real model, trained on the MNIST dataset using α = 0.0, 1.0
and αopt. It is readily apparent that optimizing α plays a key
role in convergence under the StoFedDelAv paradigm.

VI. CONCLUSION AND FUTURE WORK
We proposed a novel methodology for optimizing federated
learning implementations over edge networks while explicitly
taking into account device-server communication delay and
device computation heterogeneity. The loss optimality gap
was considered across a training cycle to characterize the
performance of the network. We formulated an optimization
problem aiming to find the minibatch size of the devices
across the training interval to optimize a trade-off between
energy consumption, time required to train the model, and
ML model performance. This problem was optimized using

an iterative geometric programming-based approach to find
the ideal minibatch size for each device across the network.
Future works will focus on improving the network and training
efficiency, namely distributed device orchestration and delay-
aware device sampling. These approaches will enable networks
to train models in a more time- and energy-efficient manner.
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VII. APPENDIX A

A. Proof of Lemma 1

Lemma 1. For ease of manipulation in bounding equations
using the triangular inequality, the noise can be defined as

E [‖νi(k)‖] ≤ SiΘi

√
2

√
Ni − ni(k)

Nini(k)
(30)

Proof. We begin by defining the variance of the gradients, Ŝ2
i .

With λi and Si denoting the mean and sample variance of the
device’s datapoints, respectively, and using Definition 1, we
say:

Ŝ2
i =

∑
x1∈Di ‖∇fi(x1, y1; w)−

∑
x2∈Di

∇fi(x2,y2;w)
Ni

)‖2

Ni − 1

=

∑
x1∈Di

1
N2
i
‖Ni∇fi(x1, y1; w)−

∑
x2∈Di ∇fi(x2, y2; w)‖2

Ni − 1

≤

∑
x1∈Di(k)

Ni−1

N2
i

∑
x2∈Di ‖∇fi(x1, y1; w)−∇fi(x2, y2; w)‖2

Z1 − 1

≤

∑
x1∈Di

(Ni−1)Θ2
i

N2
i

∑
x2∈Di ‖x1 − x2‖2

Ni − 1

≤ (Ni − 1)Θ2
i

N2
i

∑
x1∈Di

∑
x2∈Di ‖x1 − x2 + λi − λi‖2

Ni − 1

=
(Ni − 1)Θ2

i

N2
i

×
∑
x1∈Di

∑
x2∈Di

[
‖x1 − λi‖2 + ‖x2 − λi‖2 − 2(x1 − λi)

T(x2 − λi)
]

Ni − 1


=

(Ni − 1)Θ2
i

N2
i

Ni
∑
x1∈Di ‖x1 − λi‖2 +Ni

∑
x2∈Di ‖x2 − λi‖2

Ni − 1

=
2(Ni − 1)Θ2

iS
2
i

Ni
≤ 2(ΘiSi)

2, (31)

where the first inequality is found using the Cauchy-Schwarz
inequality, and the second to last line stems from the fact that∑
x1∈Di(x1 − λi) = 0.
We now look to the variance of the SGD noise itself. As

defined in (11), the variance of the noise for any iteration ` is

E[‖νi(t)‖2] =

(
1− ni(t)

Ni

)
Ŝ2
i

ni(t)
. (32)

Using the above derivation of Ŝ2
i , we can upper-bound this as

E[‖νi(t)‖2] ≤
(

1− |D(t)|
Ni

)
2(ΘiSi)

2

|D(t)|
. (33)

Since the minibatch size, |Di(t)|,∀i, is fixed during each local
training period (i.e. it only varies across global aggregations),
with some abuse of notation we replace t with k in the above
definition and express the SGD variance during period k as

E[‖νi(k)‖2] ≤
(

1− ni(k)

Ni

)
2(ΘiSi)

2

ni(k)
, (34)

For use in future derivations, we then take the square root
of both sides of the equation:

√
E[‖νi(k)‖2] ≤ ΘiSi

√
2

√(
1− ni(k)

Ni

)
1

ni(k)
. (35)

Additionally, by the concavity of a square root function and
Jensen’s inequality, which states that E [f(X)] ≤ f(E [X]) for
some differentiable, concave function f ,

E[
√
‖νi(k)‖2] ≤

√
E[‖νi(k)‖2] ≤ ΘiSi

√
2

√
Ni − ni(k)

Ni × ni(k)
.

(36)
Thus the lemma is proven. �

B. Proof of Lemma 2

Lemma 2. Taking the weighted average of Lemma 1 yields a
form useful to manipulations necessary in later lemmas, i.e.

σ(k) ,
∑
i

ρi E[‖νi(k)‖] =
∑
i

ρiΘiSi
√

2

√
Ni − ni(k)

Ni × ni(k)

(37)

C. Proof of Lemma 3

Lemma 3.
‖∇Fi(w)‖ ≤ L,∀i,∀w (38)

Proof. From the convexity and L-Lipschitz conditions, for
∀w′,w,

〈w′ − w,∇Fi(w)〉 ≤ Fi(w′)− Fi(w) (39)

Fi(w′)− Fi(w) ≤ L‖w′ − w‖ (40)

Letting w′ = w−∇Fi(w),

‖∇Fi(w) ≤ L‖ (41)

D. Proof of Lemma 4

Lemma 4. With η < 2
β , under Assumption 1,

εi(k) , ‖wi(kτ −∆)− w(kτ −∆)‖

≤ (1− (1− α(k))k)[2ηL

(
τ

α(k)
−∆

)
+ η

(
τ

α(k)
−∆

)∑
j

ρj‖νj‖+ ‖νi(k)‖]

(42)
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Proof. Using the SGD approximation gi (which for brevity will
have the D term not included), and letting ` = kτ − r and
m = (k + 1)τ − r −∆, we can say

wi((k + 1)τ −∆)− w((k + 1)τ −∆)

= wi((k + 1)τ −∆)−
∑
j

ρjwj((k + 1)τ −∆)

= (1− α(k))[wi(kτ −∆)− w(kτ −∆)]

− (1− α(k))η

∆∑
r=1

gi(wi(`))

+ (1− α(k))η
∑
j

ρj

∆∑
r=1

gj(wj(`))

− (1− α(k))η

τ−∆∑
r=1

gi(wi(m))

+ (1− α(k))η
∑
j

ρj

τ−∆∑
r=1

gj(wj(m))

= (1− α(k))[wi(kτ −∆)− w(kτ −∆)]

+ (1− α(k))η

∆∑
r=1

∑
j

ρjgj(`)− gi(wi(`))


+ η

τ−∆∑
r=1

∑
j

ρjgj(wj(m))− gi(wi(m))



(43)

Now expanding the SGD approximations into their gradients
and noises,

wi((k + 1)τ −∆)− w((k + 1)τ −∆)

= (1− α(k))[wi(kτ −∆)− w(kτ −∆)]

+ (1− α(k))η

∆∑
r=1

[
∑
j 6=i

ρj∇Fj(wj(`))

+ ρi∇Fi(wi(`))−∇Fi(wi(`))

+
∑
j

ρjνj(k)− νi(k)]

+ η

τ−∆∑
r=1

[
∑
j 6=i

ρj∇Fj(wj(m))

+ ρi∇Fi(wi(m))−∇Fi(wi(m))

+
∑
j

ρjνj(k)− νi(k)]

(44)

Using the triangle inequality and rearranging terms,

‖wi((k + 1)τ −∆)− w((k + 1)τ −∆)‖
≤ (1− α(k))‖[wi(kτ −∆)− w(kτ −∆)]‖

+ (1− α(k))η(1− ρi)
∆∑
r=1

‖∇Fi(wi(`))‖

+ (1− α(k))η

∆∑
r=1

∑
j 6=i

ρj‖∇Fj(wj(`))‖

+ (1− α(k))η

∆∑
r=1

∑
j

ρj‖νj(k)‖+ ‖νi(k)‖


+ η(1− ρi)

τ−∆∑
r=1

‖∇Fi(wi(m))‖

+ η

τ−∆∑
r=1

∑
j 6=i

ρj‖∇Fj(wj(m))‖

+ η

τ−∆∑
r=1

∑
j

ρj‖νj(k)‖+ ‖νi(k)‖



(45)

Applying Lemma 3 and Assumption 1,

‖wi((k + 1)τ −∆)− w((k + 1)τ −∆)‖
≤ (1− α(k))‖[wi(kτ −∆)− w(kτ −∆)]‖
+ 2ηL(1− ρi)(τ − α(k)∆)

+ η(τ − α(k)∆)

∑
j

ρj‖νj(k)‖+ ‖νi(k)‖


(46)

Recursively unpacking the term until t = −∆, since
wi(−∆) = w(−∆),

‖wi(kτ −∆)− w(kτ −∆)‖
≤ (1− α(k))‖wi(−∆)− w(−∆)‖

+ (1− (1− α(k))k)

[
2ηL

(
τ

α(k)
−∆

)]

+ (1− (1− α(k))k)

η( τ

α(k)
−∆

)∑
j

ρj‖νj(k)‖+ ‖νi(k)‖




, εi(k)
(47)

E. Proof of Lemma 5
Lemma 5. Taking weighted average of Lemma 4 and applying
Lemma 2,

ε(k) , E

∑
i

ρiεi(k)


= (1− (1− α(k))k)

[
2η(L+ σ(k))

(
τ

α(k)
−∆

)]
(48)



Proof. First taking the weighted average of all εi(k) terms,∑
i

ρiεi(k)

= (1− (1− α(k))k){2ηL(τ/α(k)−∆)

+ η(τ/α(k)−∆)[
∑
j

ρj‖νj(k)‖+
∑
i

ρi‖νi(k)‖]}
(49)

Now taking the expectation,

E

∑
i

ρiεi(k)


= (1− (1− α(k))k){2ηL(τ/α(k)−∆)

+ η(τ/α(k)−∆)[
∑
j

ρj E[‖νj(k)‖]

+
∑
i

ρi E[‖νi(k)‖]]}

= (1− (1− α(k))k){2ηL(τ/α(k)−∆)

+ η(τ/α(k)−∆)(2σ(k))}

(50)

Thus proving the lemma after algebraic manipulations.

F. Proof of Lemma 6.

Lemma 6. Under Assumption 1, we have

‖[w1− η∇F (w1)]− [w2− η∇F (w2)]‖ ≤ (1 + ηβ)‖w1−w2‖
(51)

Proof. From the convexit of F ,

F (w2) ≤ F (w1) + (w2 − w1)T∇F (w1) (52)

F (w1) ≤ F (w2) + (w1 − w2)T∇F (w2). (53)

Now summing the inequalities,

(w2 − w1)T (∇F (w2)−∇F (w1)) ≥ 0. (54)

By using the β-smoothness outlined in Assumption 1,

‖[w1η∇F (w1]− [w2 − η∇F (w2)]‖2 (55)

= ‖w1 − w2‖2 + η2‖∇F (w1)−∇F (w2)‖2 (56)
− 2[w2 − w1][∇F (w2)− η∇F (w1)] (57)

≤ (1 + (ηβ)2)‖w1 − w2‖2. (58)

The result of the lemma follow accordingly.

G. Proof of Lemma 7

Lemma 7. Using Assumption 1, with learning rate η < 2
β , for

t ∈ (kτ −∆, (k + 1)τ −∆), t 6= kτ ,

E[‖wi(t)− ck(t)‖] ≤ E[(1 + ηβ)‖wi(t− 1)

− ck(t− 1)‖]
+ ηδi

+ ηΘiSi
√

2

√
Ni − ni(k)

Nini(k)

(59)

Proof. For t ∈ (kτ −∆, (k + 1)τ −∆), t 6= kτ ,

wi(t)− ck(t)

= (wi(t− 1)− ηgi(wi(t− 1); ξi(t− 1))

− (ck(t− 1)− η∇F (ck(t− 1)))

= wi(t− 1)− ck(t− 1)

− η[∇Fi(wi(t− 1))−∇Fi(ck(t− 1))]

− η[∇F (ck(t− 1)−∇Fi(ck(t− 1))]

− ηνi(k)

(60)

Taking the norm and applying the triangle inequality,

‖wi(t)− ck‖
≤ η‖∇Fi(wi(t− 1))−∇Fi(ck(t− 1))‖
+ η‖∇Fi(ck(t− 1)−∇F (ck(t− 1))‖
+ η‖νi(k)‖

(61)

Using Lemma 6 and Assumption 2,

‖wi(t)− ck(t)‖ ≤ (1 + ηβ)‖wi(t− 1)− ck(t− 1)‖
+ ηδi

+ η‖νi(k)‖
(62)

Lastly taking the expectation and applying Lemma 1,

E[‖wi(t)− ck(t)‖]
≤ E[(1 + ηβ)‖wi(t− 1)− ck(t− 1)‖]
+ ηδi

+ ηSi

√
Ni − ni(k)

Nini(k)

(63)

H. Proof of Lemma 8
Lemma 8. Under Assumption 1 with η < 2

β ,

E[‖w(kτ)− ck(kτ)‖]
≤ α(k)∆Lη

+ (1− α(k))
[
((1 + ηβ)∆ − 1)ε(k) + h(∆, k) + η∆σ(k)

]
(64)

Where h(x, k) = δ+σ(k)
β [(1 + ηβ)x − 1]− η(δ + σ(k))x

Proof. By the definitions of w(t) and ck(t), after some algebraic
manipulations,

w(kτ) =
∑
i

ρiwi(kτ)

= w(kτ −∆)

− (1− α(k))

∆∑
r=1

∑
i

ρigi(wi(kτ − r); ξi(kτ − r))

=
∑
i

ρiwi(kτ)

− (1− α(k))η

∆∑
r=1

∑
i

ρi∇Fi(wi(kτ − r))

− (1− α(k))η

∆∑
r=1

∑
i

ρiνi(k)

(65)



and

ck(kτ) = ck(kτ −∆)− η
∆∑
r=1

∑
i

ρi∇Fi(ck(kτ − r)) (66)

Now we take the difference between the two previously
defined terms,

w(kτ)− ck(kτ) =

ηα(k)

∆∑
r=1

∑
i

ρi∇Fi(ck(kτ − r))

− (1− α(k))η

∆∑
r=1

∑
i

ρi[∇Fi(wi(kτ − r))−∇Fi(ck(kτ − r))]

− (1− α(k))η
∆∑
r=1

∑
i

ρiνi(k),

(67)
and by taking the norm and applying the triangle inequality,
we obtain

‖w(kτ)− ck(kτ)‖ ≤ ηα(k)

∆∑
r=1

∑
i

ρi‖∇Fi(ck(kτ − r))‖

+ (1− α(k))η

∆∑
r=1

∑
i

ρi‖∇Fi(wi(kτ − r))−∇Fi(ck(kτ − r))‖

+ (1− α(k))η

∆∑
r=1

∑
i

ρi‖νi(k)‖.

(68)
Recursively unpacking terms ending at w(kτ−∆) = ck(kτ−

∆), taking the expectation, applying Assumption 1, and using
Lemma 7,

E[‖w(kτ)− ck(kτ)‖] ≤ ηα(k)∆L

+ (1− α(k))ηβ[
∆∑
r=1

(1 + ηβ)∆−r
∑
i

ρi E[‖wi(kτ −∆)− w(kτ −∆)‖]]

+ (1− α(k))ηβ

∆∑
r=1

∆−r−1∑
j=0

(1 + ηβ)j
∑
i

ρiδi

+ (1− α(k))ηβ

∆∑
r=1

∆−r−1∑
j=0

(1 + ηβ)j
∑
i

ρi E[‖νi(k)‖]

+ (1− α(k))η

∆∑
r=1

∑
i

ρi E[‖νi(k)‖]

(69)
Lastly, we apply Lemmas 2 and 5 and use Assumption 2 to

conclude that

E[‖w(kτ)− ck(kτ)‖]
≤ ηα(k)∆L

+ (1− α(k))ηβε(k)

∆∑
r=1

(1 + ηβ)∆−r

+
δ + σ(k)

β
(1− α(k))ηβ

∆∑
r=1

[(1 + ηβ)∆−r − 1]

+ (1− α(k))η∆σ(k),

(70)

with algebraic simplifications leading to the result of the lemma
described above.

I. Proof of Proposition 1

Proposition 1. Under Assumption 1 with η < 2
β ,

E[‖w((k + 1)τ −∆)− ck((k + 1)τ −∆)‖
≤ (1− α(k))ε(k)([1 + ηβ]τ − 1)

+ (1− α(k))h(τ, k) + α(k)h(τ −∆, k)

+ α(k)η∆L[1 + ηβ]τ−∆

+ ησ(k)[τ − α(k)∆] , ψ(α(k), k)

(71)

Proof. Let t ∈ (kτ −∆, (k + 1)τ −∆]. Using (7),

wi = αt(k)w(kτ −∆) + (1− αt(k))[wi(t− 1)

− ηgi(wi(t− 1); ξi(t− 1))]
(72)

ck(t) = ck(t− 1)− η∇F (ck(t− 1)) (73)

Since

ck(kτ−1) = w(kτ−∆)−η
∆−2∑
r=0

∇F (ck(kτ −∆ + r)) (74)

it follows that (by taking
∑
i ρiwi) and expanding gi into its

gradient and noise,

w(t)− ck(t)

= (1− αt(k)[w(t− 1)− ck(t− 1)]

− (1− αt(k))η
∑
i

ρi[∇Fi(wi(t− 1))−∇Fi(ck(t− 1))]

− (1− αt(k))η
∑
i

ρiνi(k)

+ ηαt(k)

∆−1∑
r=0

∇F (ck(kτ −∆ + r))

(75)
Applying the triangle inequality to the norm and applying

Assumption 1 and Lemma 51,

‖w(t)− ck(t)‖
≤ (1− αt(k))‖w(t− 1)− ck(t− 1)‖

(1− αt(k))ηβ
∑
i

ρi‖wi(t− 1)− ck(t− 1)‖

+ αt(k)η∆L

+ (1− αt(k))η
∑
i

ρi‖νi(k)‖

(76)



For t ∈ [kτ − ∆, kτ − 1], where αt(k) = 0, and using
ck(kτ −∆) = w(kτ −∆)

‖w(t)− ck(t)‖ ≤ ηβ
t−1∑

`=kτ−∆

∑
i

ρi‖wi(`)− ck(`)‖

+ η

t−1∑
`=kτ−∆

∑
i

ρi‖νi(k)‖
(77)

And for t ∈ [kτ, (k+t)τ−∆], with αkτ (k) = α(k), αt(k) =
0,∀t > kτ

‖w(t)− ck(t)‖ ≤ (1− α(k))ηβ

kτ−1∑
`=kτ−∆

∑
i

ρi‖νi(k)‖

+ ηβ

t−1∑
`=kτ

∑
i

ρi‖wi(`)− ck(`)‖

+ α(k)η∆L

+ (1− α(k)) + η

kτ−1∑
`=kτ−∆

∑
i

ρi‖νi(k)‖

+ η

t−1∑
`=kτ

∑
i

ρi‖νi(k)‖

(78)
Which that implies that for t = (k+ 1)τ −∆, by taking the

expectation and applying Lemma 2 and Assumption 1,

E[‖w((k + 1)τ −∆)− ck((k + 1)τ −∆)‖]

≤ (1− α(k))ηβ

kτ−1∑
`=kτ−∆

∑
i

ρi E[‖wi(`)− ck(`)‖]

+ ηβ

(k+1)τ−∆−1∑
`=kτ

∑
i

ρi E[‖wi(`)− ck(`)‖]

+ α(k)η∆L

+ (1− α(k))η

kτ−1∑
`=kτ−∆

σ(k)

+ η

(k+1)τ−∆−1∑
`=kτ

σ(k)

(79)

With everything else solved for, the term
∑
i ρi[‖wi(`) −

ck(`)‖], will now be derived, beginning with

wi(`)− ck(`)

= (1− α`(k))[wi(`− 1)− ck(`− 1)]

− η(1− α`(k))[∇Fi(wi(`− 1))−∇Fi(ck(`− 1))]

− (1− α`(k))η[∇Fi(ck(`− 1))−∇F (ck(`− 1))]

+ α`(k)η

∆−1∑
r=0

∇F (ck(kτ −∆ + r))

− (1− α`(k))ηνi(k)

(80)

Applying
∑
i ρi and taking the norm,∑

i

ρi‖wi(`)− ck(`)‖

≤ (1− α`(k))[(1 + ηβ)
∑
i

ρi‖wi(`− 1)− ck(`− 1)‖]

+ (1− α`(k))ηδ

+ α`(k)η∆L

+ (1− α`(k))η
∑
i

ρi‖νi(k)‖

= (1− α`(k))[(1 + ηβ)
∑
i

ρi‖wi(`− 1)− ck(`− 1)‖]

+ (1− α`(k))η(δ +
∑
i

ρi‖νi(k)‖)

+ α`(k)η∆L
(81)

Following a similar approach to dividing the time interval
into separate parts, we first begin with the period ` ∈ [kτ −
∆, kτ − 1], α`(k) = 0,∑

i

ρi‖wi(`)− ck(`)‖

≤ (1 + ηβ)
∑
i

ρi‖wi(`− 1)− ck(`− 1)‖

+ η(δ +
∑
i

ρi‖νi(k)‖)

(82)

Recursively unpacking the first term and using the fact that
w(kτ −∆) = ck(kτ −∆),∑

i

ρi‖wi(`)− ck(`)‖

≤ [1 + ηβ]`−(kτ−∆)
∑
i

ρi‖wi(kτ −∆)− w(kτ −∆)‖

+ (δ +
∑
i

ρi‖νi(k)‖) [1 + ηβ]`−(kτ−∆) − 1

β

(83)
Taking the expectation and using Lemmas 2 and 5,∑

i

ρi E[‖wi(`)− ck(`)‖

≤ ε(k)[1 + ηβ]`−kτ+∆

+ (δ + σ(k))
[1 + ηβ]`−kτ+∆ − 1

β

(84)

Similarly for ` ∈ [kτ, (k + 1)τ −∆],∑
i

ρi E[‖wi(`)− ck(`)‖]

≤ (1− α)[1 + ηβ]`−(kτ−∆)εk

+ (1− α)(δ + σ(k))[1 + ηβ]`−kτ
[1 + ηβ]∆ − 1

β

+ (δ + σ(k))
[1 + ηβ]`−kτ − 1

β

+ αη∆L[1 + ηβ]`−kτ

(85)



Which leads to
kτ−1∑

`=kτ−∆

∑
i

ρi E[‖wi(`)− ck(`)‖]

≤ ε(k)
[1 + ηβ]∆ − 1

ηβ
+
h(∆, k)

ηβ

(86)

and
(k+1)τ−∆−1∑

`=kτ

∑
i

ρi E[‖wi(`)− ck(`)‖]

≤ (1− α)[1 + ηβ]∆ε(k)
[1 + ηβ]τ−∆ − 1

ηβ

+ (1− α)
h(τ, k)− h(∆, k)

ηβ
+ α

h(τ −∆, k)

ηβ

+ α∆L
[1 + ηβ]τ−∆ − 1

β

(87)

The result of the lemma is thus yielded by plugging in the
above into (79):

E[‖w((k + 1)τ −∆)− ck((k + 1)τ −∆)‖
≤ (1− α)ε(k)([1 + ηβ]τ − 1)

+ (1− α)h(τ, k) + αh(τ −∆, k)

+ αη∆L[1 + ηβ]τ−∆

+ ησ(k)[τ − α∆] , ψ(α, k)

(88)

�

J. Proof of Proposition 2

Proposition 2. Let

ω =
1

maxk∈{0,...,K−1} ‖ck(kτ −∆)− w?‖2
. (89)

Under Assumption 1, and if the following conditions are met,
1) η < 2

β

2) Tηφ− LΨ(α̂)
Ξ2 > 0

3) F (ck((k + 1)τ −∆))− F (w?) ≥ Ξ,∀k
4) F (w((K + 1)τ −∆))− F (w?) ≥ Ξ ,

for some Ξ > 0, we can upper-bound the convergence of
StoFedDelAv as

F (w((K + 1)τ −∆)− F (w?) ≤ 1

Tηφ− LΨ(α)
Ξ2

, (90)

where Ψ(α̂) ,
∑K
k=1 ψ(α(k), k).

Proof. We consider the case ω < ∞ since ω = ∞ is
trivially tied to w((K + 1)τ − ∆) = c((K + 1)τ − ∆) =
w? ⇒ F (w((K + 1)τ −∆) = F (w?). Then for every k and
t ∈ [kτ −∆, (k + 1)τ −∆], we define the sub-optimality gap
of the centralized GD scheme as

Γ[k](t) = F (ck(t))− F (w?), (91)

noting that Γ[k](t) ≥ 0,∀k.Since w((K + 1)τ − δ)) =
c[K+1]((K + 1)τ −∆), we wish to prove that

Γ[K+1]((K + 1)τ −∆))−1 ≥ Tηφ− LΨ(α̂)

Ξ2
. (92)

From the results of [5]’s Lemma 6, we know that

Γ−1
[k] (t+ 1)− Γ−1

[k] (t) ≥ η(1− (ηβ)/2)

‖ck(t)− w?‖2

≥ η(1− (ηβ)/2)

maxk ‖ck(t)− w?‖2
= ηω

(
1− ηβ

2

)
= ηφ. (93)

We therefore conclude that

Γ−1
[k] ((k + 1)τ −∆)− Γ−1

[k] (kτ −∆) (94)

=

(k+1)τ−∆−1∑
t=kτ−∆

[
Γ−1

[k] (t+ 1)− Γ−1
[k] (t)

]
≥ τηφ. (95)

With this in mind, we can conclude the following:

K∑
k=1

[
Γ−1

[k] ((k + 1)τ −∆)− Γ−1
[k] (kτ −∆)

]
(96)

= Γ−1
[K+1]((K + 1)τ −∆))− Γ−1

[1] (τ −∆) (97)

−
K∑
k=1

[
Γ−1

[k+1]((k + 1)τ −∆)− Γ−1
[k] ((k + 1)τ −∆)

]
≥ Tηφ

To prove (92), we need to show that

K∑
k=1

[
Γ−1

[k] ((k + 1)τ −∆)− Γ−1
[k+1]((k + 1)τ −∆)

]
≤ LΨ(α̂)

Ξ2
.

(98)
Since Ψ(α̂) =

∑K
k=1 ψ(α(k), k), (98) is implied by

Γ[k+1]((k + 1)τ −∆)− Γ[k]((k + 1)τ −∆) (99)

≤ Lψ(α(k), k)

Ξ2
Γ[k]((k + 1)τ −∆)Γ[k+1]((k + 1)τ −∆).

(100)

Conditions (3) and (4) from the proposition statement imply
that

Γ[k]((k + 1)τ −∆) ≥ Ξ,∀k, (101)
Γ[K+1]((K + 1)τ −∆) ≥ Ξ. (102)

Using (94), with k < K − 1,

Γ[k+1]((k + 1)τ −∆) ≥
Γ[k+1]((k + 2)τ −∆)

1− τηφΓ[k+1]((k + 2)τ −∆)
(103)

≥ Γ[k+1]((k + 2)τ −∆) ≥ Ξ. (104)

The above statements show that (99) can be proven by
showing that



Γ[k+1]((k + 1)τ −∆)− Γ[k]((k + 1)τ −∆) ≤ Lψ(α(k), k).
(105)

This is in fact the case. By combining with Proposition 1,
we obtain:

Γ[k+1]((k + 1)τ −∆)− Γ[k]((k + 1)τ −∆) (106)
= F (w((k + 1)τ −∆))− F (ck((k + 1)τ −∆)) (107)
≤ LE[‖w((k + 1)τ − δ)− ck((k + 1)τ −∆)]‖. (108)

The result of Proposition 2 directly follows. �

K. Proof of Theorem 1

Theorem 1.With η < 2
β and under Assumption 1.

F (wK)− F (w?)

≤ 1

2ηφT
+

√
1

(2ηφT )2
+
LΨ(α)

ηφT
+ LΨ(α̂)

(109)

where Ψ(α̂) =
∑K
k=1 ψ(α, k).

Proof. To prove Theorem 1, we first begin by defining
an auxiliary variable Ξ∗ > 0 given η ≤ 1

β such that
Tηφ − L∗Ψ(α̂)

Ξ∗2 > 0 and Ξ∗ = 1
Tηφ−L∗Ψα̂

Ξ∗2
. Solving these

equations for Ξ∗ yields

Ξ∗ =
1

2ηφT
+

√(
1

2ηφT

)2

+
LΨ(α̂)

ηφT
(110)

Letting Ξ > Ξ∗, and assuming that the conditions of
Proposition 2 are satisfied, it follows that

F (w((K + 1)τ −∆))− F (w?) <
1

Tηφ− LΨ(α̂)
Ξ2

≤ 1

Tηφ− LΨ(α̂)
Ξ∗2

⇒ Ξ∗ < Ξ

(111)

This presents a contradiction with the fourth condition of Prop.
2, meaning that at least one of those conditions cannot be
satisfied given Ξ > Ξ∗. The first two conditions are readily
satisfied and

Ξ > Ξ∗ =
1

Tηφ− LΨ(α̂)
Ξ∗2

(112)

With either the third or fourth conditions not met, we therefore
conclude that

min
{
F (w((K + 1)τ −∆)),minF (ck((k + 1)τ −∆))

}
− F (w?) ≤ Ξ?

(113)
Therefore, using Prop. 1 and noting that ψ(α(k), k) is increas-
ing as a function of k,

F (w((k + 1)τ −∆)) ≤ F (ck((k + 1)τ −∆)) (114)

+
∣∣F (w((k + 1)τ −∆))− F (ck((k + 1)τ −∆))

∣∣

Taking the norm and expectation,

≤ F (ck((k + 1)τ −∆)) (115)

+ LE
[
‖w((k + 1)τ −∆)− ck((k + 1)τ −∆)‖

]
≤ F (ck((k + 1)τ −∆)) + Lψ(α(k), k) (116)
≤ F (ck((k + 1)τ −∆)) + Ψ(α̂) (117)

Implying

min
k
{F (ck((k + 1)τ −∆))} (118)

≥ min
k
F (w((k + 1)τ −∆))− LΨ(α̂)

Using the result of (113),

min
k≤K

F (w((k + 1)τ −∆))− LΨ(α̂)− F (w∗) ≤ Ξ∗ (119)

with the theorem following as a direct consequence. �
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