
ar
X

iv
:2

20
6.

05
88

1v
1

 [
cs

.L
G

]
 1

3
Ju

n
20

22

Computation Offloading and Resource Allocation in

F-RANs: A Federated Deep Reinforcement

Learning Approach

Lingling Zhang1, Yanxiang Jiang1,2,∗, Fu-Chun Zheng1,2, Mehdi Bennis3, and Xiaohu You1

1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
2School of Electronic and Information Engineering, Harbin Institute of Technology, Shenzhen 518055, China

3Centre for Wireless Communications, University of Oulu, Oulu 90014, Finland

E-mail: {zhangllling@seu.edu.cn, yxjiang@seu.edu.cn, fzheng@ieee.org, mehdi.bennis@oulu.fi, xhyu@seu.edu.cn}

Abstract—The fog radio access network (F-RAN) is a promis-
ing technology in which the user mobile devices (MDs) can
offload computation tasks to the nearby fog access points (F-
APs). Due to the limited resource of F-APs, it is important
to design an efficient task offloading scheme. In this paper,
by considering time-varying network environment, a dynamic
computation offloading and resource allocation problem in F-
RANs is formulated to minimize the task execution delay and
energy consumption of MDs. To solve the problem, a federated
deep reinforcement learning (DRL) based algorithm is proposed,
where the deep deterministic policy gradient (DDPG) algorithm
performs computation offloading and resource allocation in each
F-AP. Federated learning is exploited to train the DDPG agents
in order to decrease the computing complexity of training process
and protect the user privacy. Simulation results show that the
proposed federated DDPG algorithm can achieve lower task
execution delay and energy consumption of MDs more quickly
compared with the other existing strategies.

Index Terms—Fog radio access networks (F-RANs), compu-
tation offloading, resource allocation, deep deterministic policy
gradient (DDPG), federated learning.

I. INTRODUCTION

As a large number of intelligent devices access the wireless

network, the traffic of wireless data is growing explosively,

which brings great challenges to the cloud radio access net-

work (C-RAN) [1] [2]. The fog radio access network (F-

RAN) is thus proposed, which places computing, storage, and

network resources in fog access points (F-APs) that are closer

to the users [3] [4] [5]. Users can offload tasks to the F-

APs via wireless links to support computation intensive and

delay sensitive applications on their mobile devices (MDs),

thus to cope with the computation capability and available

energy constraints [6]. However, the F-APs may not be able to

serve all users at the same time due to the limited computation

and communication capabilities. In this case, the computation

offloading strategy needs to be carefully designed to improve

the Quality of Service (QoS) for users.

The computation offloading problem has been investigated

in many research works. In [7], the binary computation

offloading problem for multi-users was solved by an alter-

nating direction method of multipliers (ADMM). The game

theory was used to deal with the joint problem of computa-

tion offloading and resource allocation in [8] [9]. Reference

[10] adopted the convex/quasi convex optimization and meta

heuristic algorithm to solve the sub problems of resource

allocation and offloading decision respectively. However, these

optimization-based methods are time consuming because of

the high computational complexity, and not applicable to real

scenarios. To deal with the complex and dynamic scenes, the

machine learning based approaches are increasingly employed,

especially deep reinforcement learning (DRL) methods. In

[11], an online algorithm based on DRL was designed under

the time-varying channel conditions. Researches in [12] and

[13] applied deep Q network (DQN) to solve the computation

offloading problem. But these value-based DRL methods can

only deal with discrete action spaces and need discretization

operations when the action is continuous. To handle contin-

uous action spaces, reference [14] combined deep neuroevo-

lution and policy gradient to solve the computation offload-

ing problem. The authors in [15] [16] [17] exploited deep

deterministic policy gradient (DDPG) algorithm to perform

computation offloading. In these works, centralized methods

are mostly used to train the DRL agents, which will cause

exponential growth of the computing complexity and system

overhead with the increase of the number of users. The de-

centralized training method in [17] does not have this trouble,

but it does not take the cooperation among agents into account

thus the global system performance is not as good as that of

centralized methods.

In this paper, by considering the dynamic environment as

well as the continuous action of resource allocation, a DDPG

algorithm for computation offloading and resource allocation

in F-RANs is proposed. Further, a federated DDPG algorithm

which applies the federated training method among the DDPG

agents is proposed to decrease the computing complexity,

improve the overall performance and protect user privacy. The

rest of the paper is organized as follows. In Section II, the

system model is presented and the problem of computation

offloading and resource allocation is formulated. The proposed

federated DRL algorithm is described in Section III and the

algorithm performance is evaluated in Section IV. Finally,

conclusions are drawn in Section V.

http://arxiv.org/abs/2206.05881v1

MD

MD

MD

F-AP

Cloud

MD

MD

MD

F-AP

MD

MD

MD

F-AP

Memory replay

Online

network

Target

network

Critic

Agent

Online

network

Target

network

Actor

(S,A,R,S')

State

Action

Reward

Fig. 1: Architecture of the F-RAN.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The considered network architecture of the F-RAN is shown

in Fig. 1. The F-RAN consists of a cloud center, a set

N= {1, 2, ..., N} of F-APs, and a set M= {1, 2, ...,M} of

MDs within the coverage of F-AP n (n ∈ N). Each F-AP is

equipped with multiple antennas, while each MD has a single

antenna and connects to the F-AP via wireless channels. Note

that the number of antennas in the F-AP is larger than the

number of MDs. A discrete-time model is applied in the F-

RAN system, where the time is divided into slots with equal

length Ts (in seconds) and indexed by T = {0, 1, ..., T − 1}.
At time slot t, each MD has a computation intensive task

to complete. The task generated by MD m within F-AP n

can be described as (bnm(t),dnm(t)), where bnm(t) denotes the

task size (in bits) and dnm(t) denotes the required computation

resource (i.e., CPU cycles) for task completion. The task

can be processed locally by the MD, or offloaded to the

corresponding F-AP. Note that the binary offloading mode is

considered in this paper.

B. Computing Models

1) Local computing: Let xn
m(t) ∈ {0, 1} denote the of-

floading decision variable of MD m within F-AP n. Specif-

ically, xn
m(t) = 0 represents that the task generated by MD

m within F-AP n at slot t is processed locally, otherwise the

task is offloaded to the F-AP n via a wireless link. Define fn
m

as the CPU frequency of MD m within F-AP n. If the task is

decided to execute on the MD m, the local computing delay

can be calculated as follows

tlmn (t) =
dnm(t)

fn
m

. (1)

The corresponding energy consumption of the MD is

elmn (t) = ξnmdnm(t), (2)

where ξnm denotes the energy consumption coefficient per CPU

cycle of MD m, which is related to the chip architecture. Here,

we set ξnm=10−27(fn
m)

2
according to [18].

2) F-AP computing: Define fn as the CPU frequency of

F-AP n. Since the computation capability of F-APs is limited,

the MDs that offload tasks to the corresponding F-AP can only

be allocated partial computation resource. Let ynm(t) ∈ [0, 1]
denote the computation resource allocation ratio of MD m

from F-AP n. If the task of MD m is offloaded to F-AP n for

completion, the F-AP computing delay can be given by

tomn (t) =
dnm(t)

ynm(t)fn
. (3)

C. Communication Model

If computation tasks are executed on the F-APs, the task

data and computation results need to be transmitted between

the MDs and corresponding F-APs. Since the size of comput-

ing results is much smaller than that of task data, the delay

and energy consumption of result transmission from F-APs to

MDs are ignored in this work.

An orthogonal frequency division multiple access

(OFDMA) protocol is adopted in wireless networks, in

which F-AP n provides a total bandwidth Bn for covered

MDs. Define znm(t) ∈ [0, 1] as the bandwidth allocation ratio

of MD m from F-AP n, then the achievable uplink data rate

of MD m can be calculated by

rnm (t) = znm (t)Bnlog2(1 +
pnmgnm(t)

σ2
), (4)

where σ2 is the background noise power, pnm is the transmit

power of MD m, and gnm(t) is the channel gain between MD m

and F-AP n, which is related to the distance between them. It

is worth noting that the MDs are fixed in a time slot and move

randomly between slots. When MD m offloads computation

task to F-AP n, the transmission delay can be expressed as

ttrmn (t) =
bnm(t)

rnm(t)
. (5)

The corresponding energy consumption of MD m for trans-

mission can be calculated by

etrmn (t) = pnmttrmn(t). (6)

Based on the F-AP computing and communication models,

when the computation task of MD m is offloaded to F-AP

n, the total execution delay includes computation delay and

transmission delay, which can be written as

temn (t) = tomn(t) + ttrmn(t). (7)

D. Problem Formulation

Given the offloading decision xn
m(t) of MD m at time slot

t, the total computation delay and energy consumption of all

MDs covered by F-AP n can be calculated respectively as

Tn (t) =
∑

m∈M

(1− xn
m(t))tlmn(t) + xn

m(t)temn(t), (8)

En (t) =
∑

m∈M

(1− xn
m(t))elmn(t) + xn

m(t)etrmn(t). (9)

In terms of task execution delay and energy consumption, the

overall cost of all MDs within F-AP n at slot t is defined as

Cn (t) = ωTn(t) +̟En(t), (10)

where ω and ̟ are weigh parameters that control the tradeoff

among delay and energy cost and satisfy ω +̟=1.

The objective of this paper is to minimize the long term

average computation delay and energy consumption of all

MDs in F-RANs, thus the computation offloading and resource

allocation problem can be formulated as follows:

P :min
x,y,z

lim
T→∞

1

T

∑

t∈T

E

[

∑

n∈N

Cn (t)

]

(11)

s.t. xn
m(t) ∈ {0, 1} ,∀m,n,t, (11a)

ynm(t) ∈ [0, 1] ,∀m,n,t, (11b)

znm(t) ∈ [0, 1] ,∀m,n,t, (11c)
∑

m∈M

ynm(t) ≤ 1,∀n,t, (11d)

∑

m∈M

znm(t) ≤ 1,∀n,t, (11e)

where x= {xn
m(t)}, y= {ynm(t)} and z= {znm(t)}. Constraints

(11d) and (11e) represent that the sum of computation resource

and communication resource allocated to MDs cannot exceed

the capabilities of the corresponding F-AP, respectively.

The optimization problem P in (11) is a mixed integer non-

linear programming problem (MINLP), in which the offload-

ing decision indicator xn
m(t) is a binary variable, while the

computation resource allocation ratio ynm(t) and communica-

tion resource allocation ratio znm(t) are continuous variables.

Besides, problem P is a non-deterministic polynomial (NP)-

hard problem, whose complexity will significantly increase as

the number of MDs and F-APs increases. Adopting traditional

optimization based methods to solve the problem is time-

consuming and inflexible, and not suitable for time-varying en-

vironments in F-RANs. As DRL algorithms among intelligent

learning algorithms are able to use less information to perceive

the environment and make decisions on complex problems, we

exploit DRL to solve the optimization problem.

III. PROPOSED FEDERATED DEEP REINFORCEMENT

LEARNING ALGORITHM

In order to solve the problem P via a DRL based method,

we first reformulate the problem in the RL framework and

then propose a federated DRL-based algorithm.

A. Problem Transformation With DRL

In a RL approach, an agent continuously interacts with the

environment and learns to better adapt to the environment.

The RL agent usually makes decisions based on the Markov

Decision Process (MDP). A typical MDP is defined by a 4-

tuple (S,A,P ,R), which consists of a set of possible states S,

a set of available actionsA, a reward functionR and transition

probability P . At an arbitrary step t, the RL agent observes

the environment state st ∈ S, and takes an action at ∈ A
according to the specific policy π. Then the agent will receive

a reward rt=R(st, at) from the environment and the state will

transit from st to st+1. Next, the agent will continue to take a

new action based on the state st+1 and get a new reward. The

learning process will continue iteratively in this way, aiming

to maximize the long-term discounted reward of the RL agent,

i.e., R=
∑∞

t=0 γ
trt , where γ ∈ [0, 1] is a discount factor.

The goal of the RL agent is to learn the optimal policy

to solve the MDP. As the action-value function Qπ(s, a)
represents the expected reward under the policy π, the optimal

policy π∗ which chooses the optimal action greedily in state

s is expressed as

π∗(s) = argmax
a

Q∗(s,a). (12)

In order to exploit DRL to solve the computation offloading

and resource allocation problem, we transform the problem P

as MDP form as follows.

1) State: At time slot t, the MDs send information of

their computation tasks and location to the corresponding F-

AP. Each F-AP receives these information and calculate the

channel gains between itself and MDs. Therefore, the system

state of F-AP n at slot t can be described as

Sn(t) =
{

Bn(t),Dn(t),L
F−AP
n ,LMD

n (t),Gn(t)
}

, (13)

where Bn(t) = {bnm(t),m ∈M} is the task size vector,

Dn(t) = {dnm(t),m ∈M} is the task computation resource

vector, LF−AP
n is the location of F-AP n, LMD

n (t) is the lo-

cation of MDs within F-AP n, and Gn(t) = {gnm(t),m ∈ M}
is the channel gain vector.

2) Action: In each time slot t, the F-AP n generates an ac-

tion based on the current state. The action includes three parts:

computation offloading decision xn(t) = {xn
m(t),m ∈M},

the corresponding computation resource allocation vector

yn(t) = {ynm(t),m ∈M} and communication resource al-

location vector zn(t) = {znm(t),m ∈M} of all MDs within

F-AP n.

3) Reward: The objective of this work is to minimize the

delay and energy consumption of MDs. Given the particular

state st and action at at time slot t, the immediate reward

function of F-AP n can be expressed by Cn(t) in (10). Since

the objective of DRL is to maximize the reward, the long-term

reward value should be negatively correlated to the immediate

reward, which is expressed as

Rn(t) = −
∞
∑

t=0

γtCn(t). (14)

B. DDPG-Based Computation Offloading and Resource Allo-

cation Algorithm

As the environment state dynamically changes over time

in F-RANs, a model-free DRL algorithm is an excellent

choice for problem P. Since the resource allocation action

is continuous in this work, a DDPG algorithm is exploited

to solve the computation offloading and resource allocation

problem. To avoid the MDP becomes more complex with the

increase of number of F-APs and MDs, we propose to deploy

DDPG agent at each F-AP as shown in Fig. 1 and train them

with federated learning (FL) approach. After observing the

environment state, each agent finds optimal actions and sends

the offloading decisions to the MDs. Once the information of

optimal actions is received, the MDs execute the computation

tasks locally or transmit them to the F-AP for completion with

the allocated communication and computation resource. The

process of DDPG-based computation offloading and resource

allocation algorithm is described as follows.

DDPG algorithm is based on an actor-critic architecture that

adopts two separate deep neural networks (DNNs), where actor

is responsible for policy network and critic is responsible for

value network. At the beginning, the F-AP agent obtains the

environment information and formulates the state space. Then

the actor network chooses an action at according to the current

state and policy and adds stochastic noise

at = π(st;θ
π) + ζ, (15)

where ζ is Gaussian noise. After taking the action at, the

environment returns a reward rt=−Cn(t) and new state st+1.

The F-AP stores the signal (st, at, rt, st+1) generated in the

state transition process into the memory replay B. Next, the

F-AP picks K samples randomly from the memory replay B
as the training sets for the online actor network and online

critic network. The critic network is updated by minimizing

the loss function, which is expressed as

L =
1

K

∑

i

(yi −Q(si,ai;θ
Q))2, (16)

where yi represents the target Q value

yi = ri + γQ′(si+1,π′(si+1;θπ
′

);θQ
′

). (17)

The actor network is updated by using stochastic gradient

descent method as

∇θπJ ≈
1

K

∑

i

∇aQ(s,a;θQ)|s=si,a=π(si)∇θππ(s;θπ)|si .

(18)

Lastly, a soft updating method is exploited to update the

parameters of target networks as

θQ′

← τθQ + (1− τ)θQ′

, (19)

θπ′

← τθπ + (1 − τ)θπ′

. (20)

where τ is the soft update coefficient. Details of the proposed

DDPG solution are described in Algorithm 1.

C. Federated DDPG Algorithm

In the centralized training method, the cloud center is

considered as the DRL agent. The MDs served by all the F-

APs send their computation requests and related information to

the cloud. The cloud trains the DRL model to find the optimal

actions for all MDs and then informs them. This workflow

brings significant challenges. On the one hand, the cloud needs

to keep a large scale model that serves for all MDs, which will

lead to great computing complexity and consume a great deal

of computation and storage resource. On the other hand, the

direct communication between the cloud and MDs or indirect

communication through F-APs to deliver large amounts of user

data will cause heavy burden of the network. In addition, for

Algorithm 1 DDPG-Based Computation Offloading and Re-

source Allocation Algorithm per F-AP

1: Inputs: System model parameters, number of episodes,
number of time steps, learning rates of actor and critic
networks, reward discount factor, memory size, sample
size.

2: Initialization:
3: Initialize the weights θQ,θπ of the critic online network

Q(s,a;θQ) and actor online network π(s;θπ);
4: Initialize the target networks Q′ and π′ with weights

θQ′

← θQ,θπ′

← θπ;
5: Initialize the memory replay B.
6: for episode k=1,2,...,kmax do
7: Generate an initial state s0;
8: for time step t = 0, 1, ..., T − 1 do
9: Based on the current policy with Gaussian

noise, choose action at according to (15);
10: Execute action at and record the reward rt and

new state st+1;
11: Store the transition (st, at, rt, st+1) in the memory

replay B. If B is full, replace the oldest ones;
12: Randomly sample mini-batch K of transition

tuples (st, at, rt, st+1) from B;
13: Calculate target Q value yi by (17);
14: Update critic online network according to (16);
15: Update actor online network according to (18);
16: Update target networks according to (19) and (20);
17: end for
18: end for
19: Output: Optimal policy π∗.

privacy reasons, the users may be unwilling to transmit the

offloading requests and information to the cloud.

To this end, we exploit FL to distributively train the DDPG

agents located at the F-APs. The proposed federated DDPG

algorithm is described in Algorithm 2. Specifically, at each

round j of the training process, the F-APs download the global

DDPG weights H(j) from the cloud center. Then each F-AP

trains the DDPG agent locally by the local data and transmit

the updated local model weights Hn(j)(n ∈ N) to the cloud.

The cloud aggregates the received parameters by federated

averaging as follows to obtain an updated global model,

H(j + 1) =
1

N

N
∑

n=1

Hn(j). (21)

After that, the cloud distributes the updated global model

weights to the F-APs thus to conduct the training process on

F-APs using the new parameters. The iteration will repeat until

the model converges.

IV. SIMULATION RESULTS

A. Simulation Setup

We consider a network of N = 4 F-APs, each of which

covers an area of 200 m × 200 m and provides wireless

services with a bandwidth of 10 MHz for M = 5 randomly

distributed MDs. According to [19], the channel gain is set as

gnm = d−α
m,n, where dm,n is the distance between MD m and

F-AP n and α = 4 is the pass loss factor. The transmission

power of each MD is uniformly distributed between 0.1 W

Algorithm 2 Federated DDPG Algorithm for Computation

Offloading and Resource Allocation

1: Initialization:
2: Initialize the global DRL agent with random weights H(0)

at the cloud side;
3: Initialize the local DRL model weights Hn(0)(n ∈ N) at

the F-APs side;
4: F-APs download H(0) from the cloud and set

Hn(0)=H(0);
5: Initialize the memory replay B of F-APs.
6: Iteration:
7: for round j = 1, 2, ..., jmax do
8: for each F-AP n ∈ N in parallel do
9: Download H(j) from the cloud and set

Hn(j)=H(j);
10: Train the DRL agent locally with Hn(j);
11: Upload the trained weights Hn(j+1) to the cloud;
12: end for
13: With respect to the cloud:
14: Collect all weights Hn(j) updates;
15: Conduct federated averaging;
16: Broadcast averaged weights Hn(j + 1);
17: end for

and 1 W, and the background noise σ2= -100 dBm. For the

computation task, the data size is randomly distributed in the

range from 200 KB to 300 KB, and the required CPU cycles

per bit is in the range from 200 to 500. The CPU computation

capability of each MD is randomly distributed between 1 GHz

and 2 GHz, while that of F-APs is 5 GHz. In addition, the

weigh factors of delay and energy are set as ω = ̟ = 0.5
and the duration of a time slot is Ts=1 s.

The actor and critic of the DDPG agent in the simulation

are four-layer fully connected neural networks with two hidden

layers, each consisting of 300 and 100 neurons respectively.

The activation function of the hidden layers is rectified linear

unit (ReLU), and that of the output layer in actor network is

sigmoid function. The neural network parameters are updated

by the Adam optimizer, in which the learning rates of actor

and critic are 0.001 and 0.0001, respectively. Replay memory

capacity is set to 20000, and the mini-batch size is 64. The

discount factor is set to 0.9, and the soft updating rate of target

networks is set to 0.001.

To verify the performance of the federated DDPG algorithm,

several benchmark algorithms are introduced as follows.

1) DQN algorithm: The F-APs adopt DQN algorithm

whose neural network architecture and parameters are the

same as that of DDPG. To handle continuous actions, the

action spaces for computation and communication resource

allocation are both discretized uniformly into 5 levels each.

2) Local computing: Each MD executes the generated

computation tasks locally.

3) F-AP computing: All tasks are offloaded to the corre-

sponding F-APs for completion. The F-APs equally allocate

the computation and communication resource to MDs.

B. Results and Analysis

The convergence performance of the proposed federated

DDPG algorithm is compared with the centralized DDPG

Fig. 2: Convergence performance of different algorithms.

and DQN algorithms in Fig. 2, where the vertical axis is the

average system reward of all F-APs and the horizontal axis

is the training episode. Some points can be obtained from the

Fig. 2. First, the federated DRL algorithms are superior to the

corresponding centralized DRL algorithms, which converge

faster to higher system rewards. This is because centralized

DRL algorithms have much larger action spaces to handle

than federated DRL algorithms. Second, the DDPG algorithms

converge faster with better stability compared with the DQN

algorithms, where the convergence speed of federated DDPG

algorithm is four times that of federated DQN algorithm.

The reason is that DDPG directly outputs determined action

without processing a large amount of discrete actions like

DQN. Third, the federated DDPG algorithm outperforms other

algorithms, with the fastest convergence speed and the highest

system reward. Therefore, the federated DDPG algorithm

responds to users more quickly with lower task computation

delay and energy consumption than that of other three algo-

rithms, which demonstrates the effectiveness and efficiency of

the proposed algorithm.

The average system costs (i.e., the weighted sum of delay

and energy in (10)) of various algorithms under different

number of MDs in each F-AP are shown in Fig. 3. We can see

that the average system costs of all algorithms are positively

correlated with the number of MDs. As the MDs in each F-

AP increases, more computation tasks are generated and thus

results in the increase of the computation delay and energy

consumption. Among all algorithms, the average system cost

of local computing scheme is highest, which is almost twice

that of other algorithms. Meanwhile, the federated DDPG

achieves 2%∼10%, 9%∼20% lower cost than federated DQN

and F-AP computing algorithms respectively.

The average system costs of various algorithms with dif-

ferent CPU frequencies of F-APs are shown in Fig. 4. It is

obvious that the average delay and energy costs of the feder-

ated DDPG, federated DQN and F-AP computing algorithms

decrease as the CPU frequency of F-APs increases. Differently,

the average system cost of local computing algorithm is almost

constant because all tasks are executed without the use of F-AP

resource. From the results, the system cost of federated DDPG

algorithm is 9%∼25%, 10%∼21% lower than that of federated

DQN and F-AP computing algorithms respectively. Therefore,

Fig. 3: Average system cost versus number of MDs.

Fig. 4: Average system cost versus F-AP CPU frequencies.

the federated DDPG algorithm with the lowest system cost has

the best performance under all CPU frequencies of F-APs.

V. CONCLUSIONS

In this paper, by considering the dynamic environment of

the F-APs, the computation offloading and resource allocation

problem with the goal of minimizing the user delay and energy

consumption is studied. After casting the problem as an MDP,

a federated DRL algorithm is proposed to adaptively learn

the optimal policy of computation offloading and resource

allocation, in which the DDPG algorithm is deployed on each

F-AP and trained by the federated learning approach. Hence,

the computing complexity is decreased and user privacy is

protected. Simulation results demonstrate that the federated

DDPG based computation offloading and resource allocation

algorithm outperforms the corresponding centralized algorithm

and value-based DRL algorithm, which converges faster to

a higher system reward. Regardless of user density and F-

AP CPU frequency, the federated DDPG algorithm always

achieves the lowest system cost of task execution delay and

energy consumption compared with the benchmark policies,

proving the effectiveness of the proposed computation offload-

ing and resource allocation scheme.

ACKNOWLEDGEMENTS

This work was supported in part by the National

Key Research and Development Program under Grant

2021YFB2900300, the National Natural Science Foundation
of China under grant 61971129, and the Shenzhen Science and

Technology Program under Grant KQTD20190929172545139.

REFERENCES

[1] J. Tang, W. P. Tay, T. Q. S. Quek, and B. Liang, “System cost minimiza-
tion in cloud ran with limited fronthaul capacity,” IEEE Transactions on

Wireless Communications, vol. 16, no. 5, pp. 3371–3384, May 2017.
[2] Y. Jiang, Y. Hu, M. Bennis, F.-C. Zheng, and X. You, “A mean field

game-based distributed edge caching in fog radio access networks,”
IEEE Transactions on Communications, vol. 68, no. 3, pp. 1567–1580,
Mar. 2020.

[3] M. Peng, S. Yan, K. Zhang, and C. Wang, “Fog-computing-based radio
access networks: issues and challenges,” IEEE Network, vol. 30, no. 4,
pp. 46–53, Jul. 2016.

[4] H. Feng, Y. Jiang, D. Niyato, F.-C. Zheng, and X. You, “Content
popularity prediction via deep learning in cache-enabled fog radio
access networks,” in 2019 IEEE Global Communications Conference

(GLOBECOM), Dec. 2019, pp. 1–6.
[5] Y. Jiang, C. Wan, M. Tao, F.-C. Zheng, P. Zhu, X. Gao, and X. You,

“Analysis and optimization of fog radio access networks with hybrid
caching: Delay and energy efficiency,” IEEE Transactions on Wireless

Communications, vol. 20, no. 1, pp. 69–82, Jan. 2021.
[6] Y.-Y. Shih, W.-H. Chung, A.-C. Pang, T.-C. Chiu, and H.-Y. Wei,

“Enabling low-latency applications in fog-radio access networks,” IEEE

Network, vol. 31, no. 1, pp. 52–58, Jan. 2017.
[7] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless

powered mobile-edge computing with binary computation offloading,”
IEEE Transactions on Wireless Communications, vol. 17, no. 6, pp.
4177–4190, Jun. 2018.

[8] Y. Wang, P. Lang, D. Tian, J. Zhou, X. Duan, Y. Cao, and D. Zhao,
“A game-based computation offloading method in vehicular multiaccess
edge computing networks,” IEEE Internet of Things Journal, vol. 7,
no. 6, pp. 4987–4996, Jun. 2020.

[9] Z. Hong, W. Chen, H. Huang, S. Guo, and Z. Zheng, “Multi-hop coop-
erative computation offloading for industrial iot-edge-cloud computing
environments,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 12, pp. 2759–2774, Dec. 2019.

[10] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Transactions

on Vehicular Technology, vol. 68, no. 1, pp. 856–868, Jan. 2019.
[11] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning

for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Transactions on Mobile Computing, vol. 19,
no. 11, pp. 2581–2593, Nov. 2020.

[12] T. M. Ho and K.-K. Nguyen, “Joint server selection, cooperative offload-
ing and handover in multi-access edge computing wireless network: A
deep reinforcement learning approach,” IEEE Transactions on Mobile

Computing, pp. 1–1, 2020.
[13] S. Yu, X. Chen, Z. Zhou, X. Gong, and D. Wu, “When deep rein-

forcement learning meets federated learning: Intelligent multitimescale
resource management for multiaccess edge computing in 5g ultradense
network,” IEEE Internet of Things Journal, vol. 8, no. 4, pp. 2238–2251,
Feb. 2021.

[14] X. Qiu, W. Zhang, W. Chen, and Z. Zheng, “Distributed and collective
deep reinforcement learning for computation offloading: A practical
perspective,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 5, pp. 1085–1101, May 2021.

[15] H. Lu, X. He, M. Du, X. Ruan, Y. Sun, and K. Wang, “Edge QoE:
Computation offloading with deep reinforcement learning for internet
of things,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9255–
9265, Oct. 2020.

[16] Y. Dai, K. Zhang, S. Maharjan, and Y. Zhang, “Edge intelligence for
energy-efficient computation offloading and resource allocation in 5g
beyond,” IEEE Transactions on Vehicular Technology, vol. 69, no. 10,
pp. 12 175–12 186, Oct. 2020.

[17] S. Nath and J. Wu, “Deep reinforcement learning for dynamic compu-
tation offloading and resource allocation in cache-assisted mobile edge
computing systems,” Intelligent and Converged Networks, vol. 1, no. 2,
pp. 181–198, Sept. 2020.

[18] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application
execution: Taming resource-poor mobile devices with cloud clones,” in
2012 Proceedings IEEE INFOCOM, Mar. 2012, pp. 2716–2720.

[19] T. S. Rappaport, “Wireless communications: Principles and practice,
2/e,” Prentice Hall PTR, 2002.

	I Introduction
	II System Model and Problem Formulation
	II-A System Model
	II-B Computing Models
	II-B1 Local computing
	II-B2 F-AP computing

	II-C Communication Model
	II-D Problem Formulation

	III Proposed Federated Deep Reinforcement Learning Algorithm
	III-A Problem Transformation With DRL
	III-A1 State
	III-A2 Action
	III-A3 Reward

	III-B DDPG-Based Computation Offloading and Resource Allocation Algorithm
	III-C Federated DDPG Algorithm

	IV Simulation Results
	IV-A Simulation Setup
	IV-A1 DQN algorithm
	IV-A2 Local computing
	IV-A3 F-AP computing

	IV-B Results and Analysis

	V Conclusions
	References

