
ar
X

iv
:2

20
1.

08
26

1v
1

 [
cs

.I
T

]
 2

0
Ja

n
20

22

Optimization of a Reed-Solomon code-based

protocol against blockchain data availability attacks

Paolo Santini, Giulia Rafaiani, Massimo Battaglioni, Franco Chiaraluce, and Marco Baldi

Dipartimento di Ingegneria dell’Informazione

Università Politecnica delle Marche, Ancona (60131), Italy

email:{p.santini, g.rafaiani, m.battaglioni, f.chiaraluce, m.baldi}@univpm.it

Abstract—ASBK (named after the authors’ initials) is a recent
blockchain protocol tackling data availability attacks against
light nodes, employing two-dimensional Reed-Solomon codes to
encode the list of transactions and a random sampling phase
where adversaries are forced to reveal information. In its original
formulation, only codes with rate 1/4 are considered, and a the-
oretical analysis requiring computationally demanding formulas
is provided. This makes ASBK difficult to optimize in situations
of practical interest. In this paper, we introduce a much simpler
model for such a protocol, which additionally supports the use of
codes with arbitrary rate. This makes blockchains implementing
ASBK much easier to design and optimize. Furthermore, dispos-
ing of a clearer view of the protocol, some general features and
considerations can be derived (e.g., nodes behaviour in largely
participated networks). As a concrete application of our analysis,
we consider relevant blockchain parameters and find network
settings that minimize the amount of data downloaded by light
nodes. Our results show that the protocol benefits from the use
of codes defined over large finite fields, with code rates that may
be even significantly different from the originally proposed ones.

Index Terms—Blockchain, Data Availability Attack, Reed-
Solomon Codes.

I. INTRODUCTION

Given the recent blooming and spreading of blockchain

applications, the scalability of existing networks based on this

technology represents a serious issue. Indeed, as the number

of users grows, an increasingly larger number of transac-

tions must be handled. However, the majority of existing

blockchains impose some limit on the maximum dimension

of each block, which translates into an upper bound on the

number of transactions that can be validated per time unit.

According to the Simplified Payment Verification [1]

paradigm, a light node only verifies the inclusion of specific

transactions and, hence, does not need to download the entire

blockchain. In such a scenario, full nodes, that is, nodes with

more computational resources and full privileges, are the sole

responsible for proposing and validating new blocks. However,

this distinction affects the decentralization and security of the

network. In fact, as the number of validators decreases, the

probability that the majority of them collude to create invalid

transactions gets higher. This makes the straightforward solu-

tion of increasing the block size limits hardly recommendable.

In fact, this would cause an increase in the resources needed

to store a copy of the ledger and, therefore, to run a full

node capable of validating the blockchain. Consequently, users

would more likely run light nodes, which are not able to

verify the transactions correctness. Therefore, in a network

with a majority of dishonest consensus-participating nodes,

light nodes may not be able to detect invalid transactions

included in a block by dishonest full nodes. A solution to

this problem consists in requiring honest full nodes to produce

evidences of the invalidity of a transaction and to broadcast

it to every connected light node, so that the latter becomes

aware of the fraud and eventually rejects invalid blocks.

However, networks with a majority of dishonest full nodes

are vulnerable to data availability attacks. These attacks

consist in a malicious node including invalid transactions in a

block; the block header is then distributed to the network, but

the malicious node withholds the part of the block containing

invalid transactions. This way, a honest full node cannot

validate the block and is also unable to demonstrate that a

fraud attempt is occurring; in fact, in order to generate a

fraud proof for an invalid block, it is necessary that all the

transactions included in the block are available.

Hence, light nodes are interested to know whether all

the data in a block are available to the network or not. In

order to contribute to countering these attacks, light nodes

could randomly ask some pieces of a block and discard the

entire block if they do not receive any answer. Instead, if

their request is answered, they can forward the received data

to the neighbouring full nodes and wait for a valid fraud

proof. This way, malicious nodes may be required to release

some part of the hidden information. Still, as the block size

increases, malicious nodes could hide very small parts of

the block, thus reducing the probability for light nodes to

successfully sample withheld data. Some protocols based on

linear codes have been proposed to address this issue [2]–

[4]. In this paper, we focus on the protocol in [2], called

ASBK according to the authors’ initials. According to ASBK,

the list of transactions of a block is encoded through two-

dimensional Reed-Solomon (RS) codes, so that honest full

nodes can recover all the data even when a relatively small

portion of the block is missing. Hence, for preventing honest

full nodes from recovering missing parts through decoding,

malicious nodes should increase the portion of hidden data,

thus increasing the probability for light nodes to sample it.

Our contribution: We derive a simplified model for the

coded blockchain protocol in [2] that allows us to deepen its

analysis, with the aim of optimizing the involved parameters

http://arxiv.org/abs/2201.08261v1

for minimizing the amount of data that light nodes have to

download as well as the number of samples a light node should

ask for. We demonstrate that significant improvements can be

achieved through our approach over the original one in [2].

The paper is organized as follows. In Section II we introduce

the notation we use and provide the necessary background. In

Section III we describe and analyze the ASBK protocol. In

Section IV we discuss our improved theoretical model, which

is validated in Section V. Section VI concludes the paper.

II. BACKGROUND

In this section we recall basic concepts that are fundamental

to our analysis.

A. Coupon Collector’s Problem

The coupon collector’s problem is a well-known classical

problem in probability theory, and we refer to its formulation

presented in [5]. Let us consider the set of coupon indexes

V = {1, 2, . . . , v} and a group of y persons; each person

picks a subset of V containing z ≤ v distinct indexes. Let

W ⊆ V of cardinality w and t = |W ∩ (
⋃y

i=1 Ji)|, where Ji
is the set of indexes selected by the i-th person. When each

Ji is picked independently and uniformly at random, then t is

a random variable with mean value given by [5]:

〈t〉 = v
(

1−
(

1−
z

v

)y)

. (1)

The Cumulative Distribution Function (CDF) of t results in

Pr[t < x] =

x−1
∑

i=0

(−1)x−i+1

(

w

i

)(

w − i− 1

w − x

)

(

(

v−w+i

z

)

(

v

z

)

)y

.

(2)

B. Reed-Solomon Codes

Let Fq denote the finite field with q elements. A linear code

C defined over Fq with length n and dimension k is a k-

dimensional subspace of Fn
q . The code rate is R = k/n. Any

linear code can be represented through a generator matrix G ∈
F
k×n
q , such that each information vector u ∈ F

k
q is mapped

into a codeword c = uG. A special class of linear codes over

Fq is that of RS codes. An RS code C ⊆ F
n
q with length n ≤ q

and dimension 1 ≤ k < n is defined1 as

C =
{(

g(a1), . . . , g(an)
) ∣

∣ g ∈ F
k
q [x]

}

, (3)

where {a1, . . . , an} are distinct elements of Fq and F
k
q [x] is

the set of polynomials with coefficients over Fq and maximum

degree k − 1. In our model, malicious parties intentionally

introduce erasures: an erased symbol assumes an unknown

value, and cannot be singularly recovered by the receiver. It

can be proven that any code defined by (3) can fill up to n−k
erasures, i.e., any codeword can be recovered from any set of

1According to some authors (see, for instance, [6, Chapter 10]), RS codes
are only defined with maximum length, i.e., n = q − 1. According to such
a narrower definition, the codes described by (3) correspond to shortened
RS codes, or to a special case of Generalized RS codes. However, this little
inconsistency in the nomenclature does not affect the properties of the family
of codes we consider.

k of its non-erased symbols using a conventional decoding

algorithm [7]. Normalizing with respect to the code length,

we denote with γ = k
n

= R the minimum fraction of non-

erased symbols allowing for full codeword recovery.

C. Blockchain Technology

The core of the blockchain technology is a distributed

ledger having the form of a chain of blocks, where the link

between adjacent blocks is obtained through cryptographic

functions. Each block contains an ordered list of data units

called transactions, except for the first one, which is fixed

according to the particular blockchain and initiates the ledger.

The blockchain is driven by a consensus protocol, that sets

all the rules to verify a block and append it to the chain. A

validator chooses a set of valid transactions to be included

in a block and proposes it to the network according to the

consensus protocol. The transactions included in the block

are used as leaves to build a Merkle tree. The root of the

Merkle tree (i.e., the Merkle root) is stored, together with some

additional information, in the block header.

We distinguish between full nodes and light nodes. Full

nodes participate in the blockchain with all the rights and

duties. Namely, they are able to download and store the entire

ledger and can actively participate in the consensus mechanism

(i.e., proposing and validating blocks). On the contrary, light

nodes do not have enough resources to store a copy of the

entire ledger and/or to participate in consensus. For this reason,

light nodes have a somehow limited capacity to interact with

the network. In fact, they do not participate in consensus (i.e.,

they cannot propose and validate blocks), and store only the

block headers (instead of the full blockchain). Light nodes

cannot autonomously verify the validity of transactions, and

are only interested in verifying its inclusion in a valid block;

they accomplish this task by means of Merkle proofs.

D. Data Availability Attacks

Let us consider the situation in which a block is not

available to all the full nodes participating in the network. This

may be due to one of two possible reasons: either the block is

valid but, due to fluctuations in the network synchronization,

it has not still been received by all the network nodes, or the

block is not valid, and the invalid portions have been withheld

by malicious nodes. Light nodes do not have a reliable way

to distinguish between these two cases. So, a malicious full

node can take advantage of this situation and try to deceive the

network, which happens when: i) the contents of a block are

not available to the honest full nodes, and ii) at least one light

node accepts the block. Also notice that, in such a case, the

malicious node can put invalid transactions in the unrevealed

part; so, it can ultimately make a light node accept an invalid

transaction. In principle, honest full nodes could raise an

alarm any time some part of a block is missing, but this

could occur every time network synchronization slows down,

with the consequence of flooding the network with many

false alarms. Moreover, malicious full nodes could raise fake

alarms, preventing light nodes from accepting valid blocks.

In order to tackle these attacks, a better solution consists in

relying on fraud proofs, i.e., objects produced by full nodes to

prove that a certain header is associated to an invalid block.

Upon receiving a fraud proof, light nodes become aware of

the fraud and reject the block. We describe next the ASBK

protocol, which has been the first one to use fraud proofs.

III. THE ASBK PROTOCOL

Let us consider the same threat model and network topology

as in [2]. In particular, we assume that the majority of full

nodes is dishonest and produces invalid blocks. The network

is supposed to be reliable and partially asynchronous (i.e.,

the maximum delay is finite), with peer-to-peer authenticated

communications. Full nodes can communicate among them-

selves and with light nodes; additionally, we assume that

malicious nodes can collude. Light nodes cannot communicate

among themselves, but can query full nodes with completely

anonymized requests. Such an assumption, which in [2] is

referred to as enhanced model, is crucial to the scheme

functioning, and involves that a malicious node receives all the

requests together and in mixed order, without any information

about the sender. Concerning the topology, we assume that

each light node is connected to at least one honest full node,

while every full node is connected to m light nodes.

A. Protocol Description

We generalize the setting in [2] and consider RS codes

having whichever value of code rate. The ASBK protocol

works by encoding the list of transactions in each block as

a codeword c of a 2D-RS code. In a nutshell, 2D encoding is

performed through a product code, employing as component

codes two identical RS codes with length n′, dimension k′ and

rate R′, defined over a finite field with q ≥ n′ elements. Hence,

the resulting product code has length n = n′2, dimension

k = k′2, and, consequently, rate R = R′2. It can be easily

proven that such a construction yields a code that can recover

up to (n′ − k′ + 1)2 − 1 erasures2, and hence

γ =
n′2 − (n′ − k′ + 1)2 + 1

n′2
= 1− (1−R′ + 1/n′)

2
+

1

n′2

≈ 1− (1−R′)
2
= R′(2−R′). (4)

After receiving the header of a new block, light nodes start

querying the connected full nodes, asking for random symbols

of c together with the Merkle proof. Each received symbol is

then gossiped to the connected full nodes. This way, honest full

nodes will receive further entries of c and, upon reception of

enough symbols, they become able to retrieve the whole block

through RS decoding: in case the retrieved block includes

invalid transactions, they will produce the fraud proof and

deliver it to light nodes, that will consequently reject the block.

Thus, in order to prevent honest full nodes from retrieving the

whole block through RS decoding, malicious nodes neglect,

i.e., do not reply to, some of the light nodes queries. This is the

2We remark that the analysis in [2] is restricted to the case of R′ = 1

2

and therefore, as shown in [2, Theorem 1], the code is able to fill up to
(k′ + 1)2 − 1 erasures.

only possibility for malicious nodes to deceive the network.

Indeed, the light nodes that do not receive an answer will

put the block in a pending state, but all the other light nodes

(i.e., the ones for which all queries are replied) will accept the

block, causing a fork in the blockchain.

In the enhanced network model, all queries are anonymous:

malicious nodes choose the requests to be neglected only on

the basis of the asked symbols, and not of the sender. This

means that there is still some probability that malicious nodes

are able to deceive the network. We call such a probability

adversarial error probability, and describe in the following

section how it can be computed.

B. Protocol Analysis

Let us recall the analysis in [2] to estimate the adversarial

success probability. We remind that adversaries succeed when-

ever full nodes are unable to recover an invalid block through

decoding and, at the same time, there is at least one light node

that accepts the block, since all its queries have been replied.

Depending on the symbols asked by light clients, malicious

nodes will behave differently, with the purpose of maximizing

the probability to deceive the network. Let Ji denote the

set of indexes of symbols asked by the i-th light node, and

let J =
⋃m

i=1 Ji. Also, let E be the set of indexes of the

symbols which have been initially hidden by malicious nodes;

we denote |E| = βn, where β ∈ [[0; 1]], i.e., the set of rational

numbers between 0 and 1. The fraction of symbols available to

full nodes at the end of the sampling process, if the malicious

node replied to all queries, is given by ϕn, with

ϕ = 1− β +
|J ∩ E|

n
, (5)

which is easily obtained by summing the fraction 1 − β
of symbols already known to full nodes to the fraction of

symbols obtained by light nodes through sampling. The value

of ϕ, which can be computed by the adversaries on the run,

determines their behavior, namely:

A) if ϕ < γ, full nodes will not be able to decode: the

malicious node will reply to all queries, and all light

nodes will accept the block;

B) if ϕ ≥ γ, the malicious node must avoid replying to

some queries. Let d be the minimum number of indexes

from E ∩ J which, if not revealed, would make the

block undecodable. It can be easily seen that it must be

d = δn + 1, where δ = ϕ − γ. Note that, by adapting

their behavior to the light nodes requests, malicious nodes

maximize the probability to have at least one light node

for which all queries are correctly replied.

The sampling process can be seen as an instance of the

coupon’s collector problem in which the variables (v, y, z, w),
defined in Section II-A, take the values (n,m, s, βn). Indeed,

there is a group of m light nodes, each asking for s distinct

symbols with indexes in {1, . . . , n}; in our case, the set W
corresponds to that of hidden symbols, thus w = βn. Hence,

in order to estimate the probability associated to condition A),

it is enough to plug x = (γ + β − 1)n − 1 into (2).3 In the

following, we will call Pr[NoDec] the resulting probability.

Moreover, in order to assess the adversarial success proba-

bility, one should also take into account condition B), which

happens with probability 1 − Pr[NoDec]. Then, we have to

consider the probability that there is at least one light node

that receives all the asked symbols, which we are going to

denote as Pr[Deny]. Putting all of this together, we finally

obtain that the adversarial success probability is

ǫ = Pr[NoDec] + (1− Pr[NoDec]) Pr[Deny]. (6)

IV. A GENERAL ANALYSIS OF THE ASBK SCHEME

In this section, we describe how the analysis proposed in

[2] can be simplified and generalized. We still consider 2D-

RS codes, but with variable rate R ∈ [[0; 1]] as a parameter

to optimize. In addition, we get rid of hard-to-implement

formulas, in favour of a simpler and more intuitive analysis.

We first notice that, in order to implement (2) in our case,

a significant amount of computational resources is needed.

Indeed, a rigorous computation of (2) requires a number of

operations which is O
(

n2 + n2 log2(m)
)

, having assumed

that computing a binomial
(

a
b

)

costs O(b) operations, and

that computing ab costs O
(

log2(b)
)

operations. Considering

that we expect to have n ∼ 104 ÷ 105 and that we need to

numerically search for optimal parameters, we observe that

performing these computations may be not easy. Note that

there exist ways to speed-up the process: for instance, one can

approximate binomials and can also rely on precomputation to

reduce the number of operations to execute on the run. Still,

the computational burden remains significant, which motivates

the need for a simpler analytical model like the one described

in the next section.

A. Simple Theoretical Model

First of all, we consider β = 1, i.e., we assume that mali-

cious full nodes hide the whole content of a block. In fact, from

the analysis in Section III, it is clear that the most convenient

strategy for malicious nodes is to reveal symbols only when

queried by light nodes. Starting from this observation, the

analysis of the ASBK protocol can be significantly simplified,

by employing some basic approximations.

Proposition 1 Let us consider the ASBK protocol with β =
1, employing a 2D-RS code with length n and able to fill up

to (1 − γ)n erasures. Let m be the number of light nodes,

each querying a malicious node by asking for s random and

distinct symbols. Then, the adversarial success probability can

be well approximated as

ǫ =







1 if x∗ < γn,

1−

(

1−
(γn−1

s
)

(x
∗

s
)

)m

otherwise,
(7)

3The authors in [2] provide a formula (see Theorem 4) which is essentially
the same, apart from some rewriting. We have chosen a different formulation
only to simplify the treatment in the subsequent computations.

where x∗ = n
(

1−
(

1− s
n

)m)

.

Proof: We assume that, in every execution of the protocol,

the number of distinct symbols requested by the light nodes

altogether is equal to its expected value that, recalling (1) with

the appropriate notation, can be estimated as

x∗ = 〈x〉 = n
(

1−
(

1−
s

n

)m)

. (8)

We remind that at least γn symbols are necessary to decode

the employed 2D-RS code. Hence, when x∗ < γn, we can set

Pr[NoDec] = 1 and, recalling (6), we get ǫ = 1. When instead

x∗ ≥ γn, decoding is always successful, and, consequently, we

set Pr[NoDec] = 0. In such a case, the best possible strategy

for the adversary is to ignore some queries, keeping d symbols

hidden. In order to prevent decoding, it must be d > x∗ −
γn; hence, in order to maximize the success probability, the

adversary sets d = x∗ − γn+ 1.

We know that the ensemble of light nodes asks for a total

of x∗ symbols; let J ⊆ {1, . . . , n} be the set of positions

pointing at such x∗ symbols. We can consider that each light

node randomly selects s distinct indexes of J . Let D ⊆ J be

the set of indexes pointing at the d positions of the symbols

that the malicious node keeps hidden: a light node will not

put the block in pending state if and only if it only requests

positions coming from J \D. We now proceed by computing

the probability that there is at least a light node that only

requests symbols in positions indexed by J \ D, whose size

is x∗ − d. The probability that a single light node asked for a

symbol in D is p = 1−
(

x∗
−d
s

)

/
(

x∗

s

)

. Note that p corresponds

to the probability that a single light node is not misled, i.e.,

does not end up accepting the block. Since there are m light

nodes operating independently, we have that the adversarial

success probability, i.e., the probability that there is at least

one light node that did not select positions from D, is obtained

as the complementary of the probability that every light node

asked at least a symbol coming from D. Then

ǫ = 1− pm = 1−

(

1−

(

x∗
−d
s

)

(

x∗

s

)

)m

.

Considering d = x∗ − γn+ 1, we prove the thesis.

In order to confirm the validity of our analysis, we have

run numerical simulations of the ASBK sampling process.

We have measured the adversarial success probability and

compared it with the ones obtained through Proposition 1;

results are shown in Fig. 1. We observe a good matching

between the analytical values and the simulated ones.

B. Model Introspection and Asymptotic Analysis

Let us write x∗ = n(1 − σ), with σ ∈ [[0; 1]], and obtain

from (8) that lnσ = m ln
(

1− s
n

)

. Since it is desirable to

have s ≪ n, we have ln
(

1− s
n

)

≈ − s
n

, from which ms ≈
n ln(1/σ). We want full nodes to be able to decode; hence,

taking into account (4), it must be σ ≤ 1−γ ≈ 1−R′(2−R′).
We can then derive a lower bound on the product ms as

ms > n ln

(

1

1− γ

)

≈ n ln

(

1

1−R′(2−R′)

)

. (9)

0 5 10 15 20 25 30 35 40 45 50

100

10−1

10−2

10−3

10−4

10−5

10−6

s

ǫ

(A): emp., m = 10
(A): th., m = 10

(A): emp., m = 20
(A): th., m = 20

(A): emp., m = 100
(A): th., m = 100

(B): emp., m = 200
(B): th., m = 200

(B): emp., m = 400
(B): th., m = 400

(B): emp., m = 1000
(B): th., m = 1000

Fig. 1. Simulated values of ǫ and comparison with its theoretical values from
(7). The following two settings are considered: (A) (n, γ) = (100, 1

2
), (B)

(n, γ) = (1000, 3

4
).

The above condition gives a rough idea of the setting one

should choose in ASBK. Indeed, we have that when (9) is

not satisfied, then, with high probability, full nodes will not

be able to decode. Additionally, (9) explicitly expresses the

relation between the component code rate and the total number

of samples which are asked for full nodes (that is, the value

of ms). If one wants to keep the value of s as low as possible,

assuming that the number m of light nodes is fixed, then the

only possibility consists in reducing the code rate R′. Notice

that, by doing this, one also reduces the value of γ, which is

the reason why a smaller number of queries is required: the

obtained 2D-RS code can fill a larger number of erasures.

As we know, the number of nodes participating in modern

blockchain networks is rapidly increasing. This implies that the

number of light nodes is increasing as well; so, it is worthwhile

analyzing the ASBK protocol also in this regime, i.e., when

m becomes extremely large. In particular, as m grows, from

(8) we see that x∗ rapidly tends to n. In the limit of x∗ = n,

from Proposition 1 we obtain

ǫ = 1−

(

1−

(

γn−1
s

)

(

n
s

)

)m

.

We observe that, whenever s ≪ (1 − γ)n, we can set
(

γn−1
s

)

/
(

n

s

)

≈ γs. Exploiting such an approximation, we find

s ≈
ln
(

1− (1− ǫ)
1

m

)

ln γ
. (10)

Since ǫ is relatively small and m is relatively large, we can

make use of the following further approximations

(1 − ǫ)
1

m ≈ 1 +
ln(1 − ǫ)

m
, ln(1− ǫ) ≈ −ǫ,

which permit us to rewrite (10) as

s ≈
ln(m) + ln

(

1
ǫ

)

ln
(

1
R′(2−R′)

) . (11)

We first notice that increasing the block size has basically no

impact on the value of s which is required to reach a desired

adversarial success probability. However, the value of s grows

with the network size (which is indirectly measured by m),

but the growth rate is only logarithmic.

V. RESULTS

In this section we validate our analysis, finding optimal

settings for the ASBK protocol4. In order to consider a case

of practical interest, we choose block sizes which are similar

to those used in common blockchains (such as Ethereum), and

find the optimal protocol setting for different network sizes.

We first define the link between code parameters and block

size, assumed to be equal to ℓb bits. Considering a code defined

over Fq, we need to use component RS codes with dimension

k′ =

⌈
√

ℓb
log2 q

⌉

,

which guarantee that the list of transactions fits into a square

block with side k′ (if needed, padding is employed to fill all

the matrix entries). We now proceed by determining the header

size. We exclude from our analysis all the header elements

which do not depend on the code design, such as the hash of

the header of the previous block, since they provide a constant

contribution which is the same in all the considered cases.

Consequently, we assume that the header only contains the

Merkle roots of the encoded block, which are 2n′. By denoting

with ℓH = 256 the binary length of the digests, we have that

the header size is 2n′ℓH. We now consider that the reply to

each light node query is composed by an element of Fq and its

Merkle proof. A Merkle proof has size ⌈log2(n
′)⌉ℓH, while

each symbol of Fq is represented by ⌈log2(q)⌉ bits. Hence, a

light node downloads a total amount of data, in bits, given by

ℓD = 2ℓHk′/R′ + s
(

⌈log2(q)⌉+ ℓH ⌈log2 (k
′/R′)⌉

)

.

In order to provide parameters with practical interest, we

consider a block size of 75 kB5, yielding ℓb = 600, 000.

Firstly, we consider q = 2256 and several values of R′, and

for each configuration we find the minimum value of s for

which the adversarial success probability is below the target

0.01 (as in [2]). The corresponding values of ℓD are shown in

Fig. 2, where we consider different values of m and, for each

curve, we highlight the value of m yielding the minimum ℓD.

We observe how the amount of downloaded data decreases

for low code rates, reaches its minimum and then increases

for higher code rates. Moreover, for low rates, the number of

samples (or downloaded data) decreases as m increases, while

the opposite tends to occur for high rate values. As expected,

the optimum working point depends on m: in a real network,

the value of R′ should be adjusted as the network size changes.

Note that, as another degree of freedom, one may change q.

In Table I we have reported the optimal rate values, found for

several values of q when m = 1000. To quantify the gain with

4The software programs used to obtain the results in this paper are available
at https://github.com/secomms/blockchainRS

5This is the average block size of the Ethereum network in August 2021.
Data are extracted from Etherscan (https://etherscan.io/chart/blocksize).

https://github.com/secomms/blockchainRS
https://etherscan.io/chart/blocksize

0 0.2528 0.5 0.75 1

101

102

103

R′

ℓ D
[k

B
]

m = 10
m = 100
m = 1000
m = 5000

Fig. 2. Amount of downloaded data as a function of the component code
rate R′, when q = 2256 .

TABLE I
OPTIMAL RATES AND CORRESPONDING VALUES OF ℓD AND s, FOR

m = 1000 AND ǫ = 10−2 .

q k′ R′ n′ ℓD s ℓ̃D s̃

216 194 0.647 300 84.740 226 92.112 232

232 137 0.591 232 48.128 136 54.912 128

264 97 0.545 194 31.984 78 32.480 76

2128 69 0.548 126 21.504 56 22.704 51

2256 49 0.430 114 16.256 35 16.768 41

2512 35 0.402 87 13.344 27 15.424 38

21024 25 0.321 78 11.680 19 15.040 37

22048 18 0.295 61 11.072 16 17.984 35

24096 13 0.224 58 12.160 12 23.840 33

28192 9 0.155 58 14.656 10 36.672 30

respect to the case of R′ = 0.5, the last two columns report the

values of ℓD and s when R′ = 0.5 (which we have denoted,

respectively, as ℓ̃D and s̃). As we see from the table, for all the

considered cases, the optimum rate never corresponds to 0.5.

We further notice that the finite field size q plays a crucial role

in determining the amount of data each light node downloads.

Indeed, it appears that using a rather large finite field makes

the value of ℓD decrease significantly. For example, in our

scenario, ℓD achieves its minimum for q = 22048. At a

first glance, such a large q may appear unpractical. However,

notice that sums and multiplications in Fq cost O
(

log2(q)
)

and O
(

log22(q)
)

, respectively. For instance, F22048 is 21792

times larger than F2256 , but sums and multiplications in F22048

are expected to cost only 8 and 64 times as much than in

F2256 , respectively. Furthermore, some specific choices for the

finite field construction may lead to computational advantages

(see [8], for instance). In any case, in a practical situation,

the choice on q should be based (also) on the computational

resources actually available to full nodes.

Finally, we study how the number of asked samples varies

as m grows, for several values of q. The obtained results are

reported in Fig. 3, where we also show the values resulting

from (11). As expected, as m grows, the values of s tend to

become closer and closer to those given by (11). Moreover, as

correctly predicted by (11), s does not depend on q and n and,

therefore, the block size has no impact. In other words, s is

24 28 212 216 220
101

102

103

R′mR′

s

q = 2256

q = 2512

q = 21024

q = 22048

Eq. (11)

Fig. 3. Minimum number of samples to achieve ǫ ≤ 10−2, as a function of
m; the code rate is R′ = 0.25.

only a function of R′ and m. This implies that, for very heavily

participated networks, one can increase the amount of data in

each block without any evident effect on the computational

burden of each light node.

VI. CONCLUSIONS

We have presented a novel mathematical model for the

ASBK protocol, a recently proposed blockchain protocol

which counters data availability attacks through 2D-RS codes.

Differently from existing analyses, our study does not fix any

code parameter and embeds easy-to-implement formulas. This

allows for a deeper understanding of the protocol features, and

ultimately provides a simple method to devise optimal settings.

Namely, our approach allows to settle the best code parameters

(e.g., rate and finite field size) to minimize the amount of data

each light node downloads, given a desired adversarial success

probability. Our results show that the ASBK protocol benefits

from the use of component codes with rate different from the

value 1/2, fixed in the original proposal.

REFERENCES

[1] S. Nakamoto. (2008) Bitcoin: A peer-to-peer electronic cash system.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[2] M. Al-Bassam, A. Sonnino, V. Buterin, and I. Khoffi.
(2021) Fraud and data availability proofs: Detect-
ing invalid blocks in light clients. [Online]. Available:
http://www0.cs.ucl.ac.uk/staff/M.AlBassam/publications/fraudproofs.pdf

[3] M. Yu, S. Sahraei, S. Li, S. Avestimehr, S. Kannan, and P. Viswanath,
“Coded Merkle tree: Solving data availability attacks in blockchains,” in
Financial Cryptography and Data Security, FC 2020, ser. Lecture Notes
in Computer Science, N. H. J. Bonneau, Ed., vol. 12059. Springer,
Cham, 2020, pp. 114–134.

[4] D. Mitra, L. Tauz, and L. Dolecek, “Concentrated stopping set design for
coded Merkle tree: Improving security against data availability attacks in
blockchain systems,” in Proc. ISIT 2020, Los Angeles, CA, USA, Jun.
2020, pp. 136–140.

[5] W. Stadje, “The collector’s problem with group drawings,” Advances in

Applied Probability, vol. 22, no. 4, pp. 866–882, Dec. 1990.
[6] F. J. MacWilliams and N. J. A. Sloane, The theory of error correcting

codes. Elsevier, 1977, vol. 16.
[7] S. Lin and D. J. Costello, Error Control Coding, Second Edition. USA:

Prentice-Hall, Inc., 2004.
[8] A. Maximov and H. Sjoberg, “On fast multiplication in binary finite fields

and optimal primitive polynomials over GF(2).” IACR Cryptol. ePrint

Arch., vol. 2017, p. 889, 2017.

https://bitcoin.org/bitcoin.pdf
http://www0.cs.ucl.ac.uk/staff/M.AlBassam/publications/fraudproofs.pdf

	I Introduction
	II Background
	II-A Coupon Collector's Problem
	II-B Reed-Solomon Codes
	II-C Blockchain Technology
	II-D Data Availability Attacks

	III The ASBK protocol
	III-A Protocol Description
	III-B Protocol Analysis

	IV A General Analysis of the ASBK scheme
	IV-A Simple Theoretical Model
	IV-B Model Introspection and Asymptotic Analysis

	V Results
	VI Conclusions
	References

