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Abstract—Millimeter wave (mmWave) beamforming is a vital
component of the fifth generation (5G) new radio (NR) and
beyond wireless communication systems. The usage of mmWave
narrow beams encounters frequent signal attenuation due to ran-
dom human blockages in indoor environments. Human blockage
predictions can jointly improve the signal quality as well as
passively sense human activities during mmWave communication.
Human sensing using wireless fidelity (WiFi) systems has earlier
been studied using receiver signal strength indicator (RSSI) signal
level fluctuations based on distance measurements. Other con-
ventional approaches using cameras, lidars, radars, etc. require
additional hardware deployments. Current device-free WiFi sens-
ing approaches use vendor-specific channel state information to
obtain fine-grained human blockage predictions. Our novelty in
this work is to obtain fine-grained human blockage direction
predictions in mmWave spectrum, using a time series of RSSI
measurements and build fingerprints. We perform experiments
to construct a Human Millimetre-wave Radio Blockage Detection
(HuMRaBD) dataset and observe human influence in different
radio beam directions during each radio initial access procedure.
We design a multi layer perceptron (MLP) framework to analyze
the HuMRaBD dataset over coarse-grained and fine-grained
mmWave blockage directions from static and dynamic human
movements. The results show that our trained MLP-trained
models can simultaneously sense multiple indoor human radio-
blockage directions at an average F1 score of 0.84 and area under
curve (AUC) score of 0.95 during mmWave communication.

Index Terms—5G and beyond, 6G, joint communication and
sensing, mmWave, multi layer perceptron

I. INTRODUCTION

Millimeter wave (mmWave) beamforming is an integral
component of fifth generation (5G) new radio (NR) and
beyond communication systems due to its considerable in-
crease in data rate owing to the wider bandwidth. How-
ever, the usage of narrow beams at mmWave frequencies
poses greater signal attenuation challenges due to blockages,
channel variation, atmospheric attenuation etc. [1]. Especially,
the random blockages from humans at multiple instants can
significantly degrade the link quality in mmWave and beyond
communications [2]. To minimize such adverse effects, it is
essential to detect human blockages either to allow proactive
handover procedures with LOS availability between the radios
or to prevent the communication in blockage direction.

Wireless fidelity (WiFi) sensing relying on received signal
strength indicator (RSSI) fluctuations has been extensively
studied using IEEE802.11n systems for localization, tracking

and recognition of human activities [3], [4]. However, these
RSSI fluctuations relied only on distance measurements and
hence considered only for coarse-grained human activity de-
tection. Channel state information (CSI)-based WiFi sensing
approaches provide a more detailed information and has also
been studied for human detection and recognition tasks [5]–
[7]. However, the CSI-based information although included
since IEEE802.11n, is vendor specific and hence difficult to
use off-the-shelf WiFi devices to perform fine-grained human
blockage predictions [7].

Recent works perform human blockage prediction from
heterogenous modalities such as camera, lidar and radars etc.
[8]–[10] for mmWave communications. Human blockage pre-
diction using these modalities can be accurate as they provide
a wider view of the environment thereby improving beam
alignment accuracy. However, this requires the deployment of
additional hardware, and sensor synchronization at different
sampling rates alongside the wireless links in the indoor
environments. Model-based human blockage detection using
radio signals has also been proposed in the literature [11]–[13].
In [11], authors survey the comparison of different human
blockage models using distance-dependent human shadowing
until 30 GHz based on diffraction measurements. The authors
in [12], extend the survey by providing more insights into
body-orientation, antenna height, material etc. dependence
on three-dimensional (3D) human-blockage models as they
cause temporal variation to the radio channel. However, these
mathematical models are complex and specific to the chosen
indoor environmental conditions.

In this paper, we design a model-free and a device-free
human-blockage prediction using emerging machine learning
(ML) intelligence and mmWave radio measurements. The
radio frequency (RF) signal characteristics and information
during mmWave communication is influenced by the presence
of human body objects and their directional movements in the
environment causing phenomena like reflections, diffraction,
scattering etc. Hence, we capture the RSSI information at the
receiver to observe such influential changes in the form of
radio fingerprints and predict radio blockage directions using
ML tools like multi layer perceptron (MLP). We conduct
our radio-blockage prediction experiments with a universal
software radio peripheral (USRP) up-converted mmWave setup
operating at 28 GHz frequency [14]. Our human blockage



direction prediction results from mmWave radio measurements
achieve an average F1 score of 0.84 and area under curve
(AUC) score of 0.95.

The rest of the paper is organized as follows. Section II
describes the radio communication system and its hardware
implementation to capture the mmWave radio measurements.
Section III discuss in detail the dataset design and collection
procedure using RF dataset. The Section IV presents the
comparison of human-blockage prediction against different
dataset classes. Section V summarizes the conclusion and
future work.

II. SIGNAL PROCESSING SYSTEM AND IMPLEMENTATION

Figure 1: mmWave radio with USRP communication system
in an indoor laboratory environment.

A. Experimental Setup

We consider an indoor anechoic environment consisting of
mmWave radios, baseband communication units and a camera
as shown in Figure 1. The mmWave radio equipment consists
of TX and RX radio units located at a 4m distance from one
another at two corners of the room. Both RX and TX units are
each equipped with USRP-N310 units1 to support baseband
communication. A microsoft lifecam camera2 is mounted on
RX to capture the human moving patterns and location in the
indoor environment with respect to the radio receiver. The
captured camera information extracts the ground truth labels
for radio-based human blockage prediction. A set of green
markers representing different radio blockage or refraction
directions with respect to RX are also arranged between the
two radio transceivers. These markers are used to capture
the human radio blockage directions from the camera, with
respect to RX. In this work, we assume markers are placed
along a straight line and the radio-blockage directions are only
predicted for humans moving along the line following markers
as shown in Figure 1. However, the proposed method is not
limited to this assumption and can be extended to different

1https://www.ettus.com/wp-content/uploads/2019/01/USRP N310
Datasheet v3.pdf

2https://www.microsoft.com/en/accessories/products/webcams/lifecam-
studio?activetab=pivot:overviewtab

indoor human movements in future. The USRP baseband
and mmWave radio signals are monitored and controlled by
computing sources separately at TX and RX, respectively.
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Figure 2: Experimental setup

B. Radio Communication System

We consider a 5G NR radio communication system with a
backhaul unit as shown in Figure 1. The characterization and
usage of the backhaul radio transceiver is presented in [14].
The radio front-end units of the transceiver operate at 28
GHz mmWave frequency with an effective isotropic radiation
power (EIRP) of 45 dBm. Both the TX and RX units are
equipped with 64-element mmWave phased array [15] and are
arranged in a 16 × 4 formation. The array is further divided
into 16 unit cells each having 4 elements configured as 2× 2
smaller subarray. Each of the unit cell path is equipped with a
power amplifier (PA)/ low noise amplifier (LNA) and the time
division duplex (TDD) switch. To facilitate mmWave beam-
forming in the hardware, each of the 16 paths also possess an
individual digitally controlled 5-bit phase shifter. The software
defined radio (SDR) USRP-N310 acts as the baseband units
at both ends of the transceiver. The USRP-TX transmits the
baseband signal using orthogonal frequency division multiple
access (OFDM) with 64 fast fourier transform (FFT) size,
48 subcarriers and QPSK modulation at 4 GHz intermediate
frequency (IF) and 1 MHz bandwidth. The 4 GHz IF signal
is then upconverted to 28 GHz mmWave RF during over-the-
air (OTA) communication signal transmission. We note that
the 1 MHz bandwidth (for mmWave frequencies) is selected
due to the trade-off between sampling rate and measurement
speed of USRPs to support our experiments. Similarly at RX,
mmWave RF signal is obtained and then down converted to
IF signals to receive the baseband data. Figure 2 display the
USRPs, mmWave transceivers and the experimental setup used
for the 5G NR OTA measurements. The interfaces between the
baseband and transceiver radio units are described in [16]. The
USRP baseband data is monitored using GNU radio-python
and RF beam steering is controlled using MATLAB interfaces
by the computing resources at TX and RX, respectively.
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Figure 3: Images of human blocking different radial directions
in the laboratory environment under HuMRaBD dataset.

C. Communication Radio-Blockage Measurement Setup

Wireless dynamic signal’s characteristics and information
during communication is influenced by the human random
movements inside the environment. By observing the dynamic
changes in radio signal characteristics such as received signal
level, received signal data rate, received signal quality etc. over
time, human radio blockages and their activities can be esti-
mated. The 5G NR beamforming protocol starts with a four-
stage synchronisation signal (SS) block-based initial access
(IA) followed by different random beam selection procedures
such as exhaustive, hierarchical and other fast beam alignment
algorithms [17]. Under this protocol, each SS burst followed
by beam selection appear periodically after 20 ms [18]. By
observing the dynamic changes in signal characteristics from
the beam-selection process in multiples of these periodic bursts
during communication, human radio blockage directions can
be estimated over time. In this work, we employ the traditional
exhaustive beam-search methodology to scan human blockage
or refraction directions in mmWave RF environment and
capture the baseband RSSI characteristics at RX. We note
that the MATLAB interface is used to synchronize and also
select beam steering directions of TX and RX using computing
resources R1 and R2, respectively. We also simultaneously
initiate and cease the measurement setup using GNU radio-
python and MATLAB interfaces, to synchronize the captured
information from both camera and USRP baseband units.

Table I: Human mmWave radio-blockage direction-based ac-
tivities

Class activity Label
No human/empty room 1

Static human at LoS 2
Static human at 10◦ 3
Static human at 15◦ 4
Static human at 25◦ 5

Dynamic human 6
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Figure 4: Change in RSSI measurements for multiple human
radio-blockage directions in the HuMRaBD dataset.

III. DATASET COLLECTION AND LEARNING
FORMULATION

In this section, we first describe the radio-blockage data
collection procedure using the measurement setup illustrated in
section II. Secondly, we formulate the learning-based human
radio blockage detection using the collected communication
data.

A. Human Radio-Blockage Dataset

We construct a Human Millimeter wave Radio Blockage
Detection (HuMRaBD) dataset using the measurement setup
(described in section II) in an anechoic indoor environment
as shown in Figure 1. The dataset consists of 17 subjects
with each subject performing a set of human radio-blockage
activities defined as dataset classes between the RX and TX.
The antennas in 5G mmWave system are observed to operate
reliably in the RF beam angular region [−30◦.....+30◦] [16].
Hence we place the green markers in our indoor environment
setup (as shown in Figure 1), within the aforementioned region
at a 5◦ angular resolution between them. For the HuMRaBD
dataset, we define 6 radio-blockage classes with labels as
shown in Table I. Each subject class activity follow a protocol
to collect the camera and radio data as given below:

1) Camera and mmWave communication system are turned
on simulatenously

2) RF transceivers are backhaul synchronized using R1 and
R2 using TCP server

3) TX and RX radio units perform exhaustive beam search
following mmWave radio procedure at 28 GHz

4) During each beam search, RF signals at RX are de-
modulated to a baseband signal at USRP-RX and stored
as the radio data.

5) Human activity video-feed is captured and stored as the
camera data

6) At the end of mmWave radio procedure, both the radio
and camera systems are turned off respectively.



The collected radio signals in the dataset consist of RSSI
information to analyse human radio-blockage directions in
the indoor environment. Inside the anechoic communication
environment, RSSI represents a sum of signal energy from
multiple paths which include a dominant line-of-sight (LoS)
path between TX and the RX, and multiple minor reflective
paths caused by surrounding objects and humans. Blocking
the dominant communication path contributes to a significant
change in radio signal information. Thus, we argue that only
RSSI information maybe sufficient to observe and capture the
change in radio signal information for every IA procedure.
We assume noise floor level as 0 dB and measure RSSI of the
received signals in decibels (dB):

RSSI = 10 log10∥V ∥2, (1)

where V and ∥.∥2 denote the received signal and L2 norm,
respectively.

Figure 3 shows the example screenshots of different static
human positions from the HuMRaBD video dataset. Also,
the emptyroom screenshot display the angular direction an-
notations of various markers measured with respect to RX.
During each class activity, the protocol performs an exhaustive
beam-search in 28 GHz spectrum by sweeping the beams
from 25◦ from left (−25◦ in angular region) to 25◦ at right
(+25◦ in angular region) inside the screenshot, at both TX
and RX. For the dynamic human activity, subject is allowed
to walk randomly along the straight line perpendicular to TX-
RX units between −25◦ to +25◦ markers. For this work, we
only assume dynamic movements and static positions along the
straightly arranged markers. However, the proposed approach
is not limited to this assumption and can be extended to other
indoor movements as well in future.

Figure 4 displays the change in RSSI measurements cap-
tured over time for different corresponding class activities
(from Figure 3) of a subject in HuMRaBD dataset. Firstly,
the captured video length RSSI measurements are sampled
at a specific sampling rate and then a change in RSSI level
among the consecutive samples is acquired. In this work, we
heuristically obtain the sample rate based on the captured
video length and the USRP measurements. As shown in
these subplots, different RSSI signatures can be observed with
change in magnitudes and shifted patterns (in dB with respect
to noise floor level) for different class activities. The shifted
pattern in ∆RSSI is mainly due to different static angular
positions.

For the dynamic human activity, a significant change can be
observed in fingerprints during random walking movements.
However, we note the RSSI patterns for dynamic human
activity is influenced by human walking speed as well. Also,
the common initial peak in fingerprints is due to the change in
RSSI level (from 0 reference) at the start of synchronization.
Thus, the direction patterns from mmWave spectrum are con-
verted into a time series information of video length by using
baseband RSSI measurements. The FFT over a time series
data generally represents the information similar to Doppler
spectrum of channel. In this work, we perform FFT over the

real-valued ∆RSSI information and utilize them as the RSSI
fingerprint to classify different radio-blockage direction-based
activities.
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Figure 5: Learning framework for mmWave radio-blockage
prediction

B. Learning Framework for Human radio-blockage prediction

The HuMRaBD dataset capture and collects the RSSI data
for each blockage activity time during each IA procedure of
RF communication. However, the obtained raw data is less
intuitive to obtain the human blockage direction information.
Hence, we employ ML to model a classification problem on
the collected data and predict the blockage directions for each
subject activity. Firstly, we pre-process the raw radio signals
by observing the consecutive change in RSSI information
along the collected time-domain samples. Such information
is converted into frequency domain and serves as the radio
fingerprint for the corresponding blockage activity.

We design a MLP to model this ML classification problem.
In this work, the MLP architecture contains two fully con-
nected layers with 128 and 32 neurons, respectively along with
rectifier linear units (ReLU) activation. The captured RSSI
fingerprint serves as input into the network while the output
layer contains neurons equal number of dataset classes. More
details on the learning framework is illustrated in Figure 5.
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Figure 6: mmWave radio-blockage MLP prediction for no
human, human at LoS, human at nLoS classes.



IV. EXPERIMENT RESULTS

As described in section II and section III-C, we implement
a MLP model to predict the radio blockage direction of human
on a 5G HuMRaBD dataset. In this section, we evaluate
the performance of MLP model over different sets of class
activities. As the dataset is relatively small, we perform the
MLP model training for all simulations in a cross-validation
manner.
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Figure 7: mmWave radio-blockage MLP prediction for no
human, static human LoS, dynamic human.

A. Coarse-grained Human Blockage-direction Classification

In this experiment, we train the MLP architecture to predict
coarsely-grained mmWave blockage direction classes such as
empty room/no human, static human blocking LoS direc-
tion, static human blocking non-line-of-sight (nLoS) direction,
and dynamic human. To prevent any class imbalance during
training, we consider the nLoS direction data only from one
of the nLoS class samples from HuMRaBD dataset (say,
label 3 radio samples in Table I). F1 score is a ML metric
that combines classification precision and recall performance
and measure the model’s accuracy [19]. We evaluate the
trained MLP model performance by comparing the blockage
direction predictions against the ground truth in the form of
a classification report using precision, recall and F1 score
metrics as shown in Figure 6 and Figure 7. Firstly, we train
a 3 class MLP model to classify empty room, static human
at LoS and static human at nLoS labels. We observe that the
MLP model accurately predicts the LoS and nLoS blockage
directions from a empty room at an average F1 score of
0.84. Secondly, we model the same MLP architecture over
different set of 3 classes such as empty room, static human
and dynamic human labels. We observe that the retrained MLP
model with same architecture accurately predicts the human
absence from static and dynamic human activities in the indoor
environment at a similar average F1 score of 0.84. Thus,
the fingerprints obtained from mmWave radio signals can
help to simultaneously sense different coarse-grained blockage
direction classes during communication.

B. Fine-grained Human Blockage-direction Classification

In this experiment, we consider the MLP multi-class classifi-
cation with fine-grained nLoS mmWave blockage directions by
considering all static human labels from Table I. We evaluate
the trained MLP model performance for all 5 classes (label
1 to label 5 in Table I) by plotting a receiver operating
characteristic (ROC) curve per blockage direction label as
shown in Figure 8. The ROC curves use the probabilistic
predictions from the MLP classifier and predicts the accuracy
for each blockage direction label using true positive rate (TPR)
and false positive rate (FPR) metrics. We use AUC scores to
measure the ROC curve for each label and compare the MLP
overall performance to a random classifier [19]. We observe
that the MLP model successfully predicts the LoS and different
nLoS blockage directions even at narrow angular resolution in
the indoor environment. Moreover, the ROC plots for nLoS
directions are observed to perform slightly better compared to
that of LoS direction prediction curve. This could be due to
the influence of (5◦) narrow beam angular resolution, different
body dimensions and LoS static position errors of subjects
from the collected dataset. However, the MLP model classifies
the narrow beam blockage directions with an average AUC
score of 0.95 compared to a random classifier with 0.5 AUC.
Thus, the fingerprints obtained from mmWave radio signals
are reliable to simultaneously sense narrow angular blockage
directions during communication.
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Figure 8: ROC curves for MLP-based fine-grained blockage
direction predictions in HuMRaBD dataset.

C. Blockage-direction Classification for static and dynamic
human movements

In this experiment, we consider the radio blockage data from
both static as well as dynamic human movements under the
MLP training. We evaluate the trained MLP model perfor-
mance by comparing the blockage direction predictions against
the actual values for all 6 classes (labels 1 to label 6 in Table I)
as shown in Figure 9. We observe that the MLP model predicts
the human movements and also differentiates accurately from
an empty room with a reliable average AUC score of 0.94



compared to the random classifier’s 0.5 AUC. We also observe
here a slight decrease in an average F1 score (0.75) compared
to coarse-grained MLP-based blockage direction prediction
models. The dynamic humans walking at different speeds may
induce multiple radial direction blockages inherently. As a
result, a decrease in individual F1 scores among the static
blockage direction labels is observed due to the inclusion
of dynamic human fingerprints (in the MLP training) and
hence, impacting the average F1 score prediction accuracy.
However, the overall MLP performance for this classification
achieves an average AUC score of 0.94 similar to fine-
grained blockage prediction. Thus, the fingerprints obtained
from mmWave radio signals are reliable to simultaneously
sense narrow angular blockage directions, and static-dynamic
human movements during communication.
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Figure 9: mmWave radio-blockage prediction using MLP for
no human, human at LoS, no human at nLoS, human walking
classes.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a learning framework for human-
blockage prediction from indoor mmWave communication
radio measurements. We design a framework to extract human-
blockage direction information from the mmWave signals
observed during each radio IA communication procedure.
We perform experiments and construct a HuMRaBD dataset
containing both video and radio data by emulating indoor
human blockages in a controlled indoor anechoic environment.
We also model the HuMRaBD dataset using MLP architec-
ture to perform coarse-grained and fine-grained multi-class
blockage direction classification from communication radio
measurements. Our results have shown that the MLP-based
mmWave radio fingerprint approach can simultaneously sense
multiple radio-blockage directions during each communication
IA procedure at an average F1 score of 0.84 and AUC score
of 0.95. Having shown some promising results, we will extend
the MLP-based framework with data collection from multiple
indoor environments, increased subjects, increased blockage
directions, back-scattering signals etc. as future works.
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