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Abstract—Mitigating climate change and its impacts is one of
the sustainable development goals (SDGs) required by United
Nations for an urgent action. Increasing carbon emissions due
to human activities is the root cause to climate change. Telecom-
munication networks that provide service connectivity to mobile
users contribute great amount of carbon emissions by consuming
lots of non-renewable energy sources. Beyond the improvement
on energy efficiency, to reduce the carbon footprint, telecom
operators are increasing their adoption of renewable energy (e.g.,
wind power). The high variability of renewable energy in time
and location; however, creates difficulties for operators when
utilizing renewables for the reduction of carbon emissions. In
this paper, we consider a heterogeneous network consisted of
one macro base station (MBS) and multiple small base stations
(SBSs) where each base station (BS) is powered by both of
renewable and non-renewable energy. Different from the prior
works that target on the total power consumption, we propose
a novel scheme to minimize the carbon footprint of networks by
dynamically switching the ON/OFF modes of SBSs and adjusting
the association between users and BSs to access renewables
as much as possible. Our numerical analysis shows that the
proposed scheme significantly reduces up to 86% of the non-
renewable energy consumption compared to two representative
baselines.

I. INTRODUCTION

Climate change due to escalating carbon emissions has
emerged as one of the most critical environmental challenges
to Earth. To reverse the effects of climate change that has
posed a serious impact to our world (e.g., more frequent
and severe droughts), the Intergovernmental Panel on Climate
Change (IPCC) has set the goal to reach net-zero carbon
emissions by mid-century [1]. To achieve carbon neutrality,
one simple approach is to compensate carbon emissions by
acquiring carbon offsets, e.g., UN Carbon Offset Platform
that has been widely adopted globally for trading carbon
credits. The limitations of such mechanisms [2] has pushed the
development of low-carbon technologies that reduce carbon
emissions at the beginning rather than offset them later.

Recent advancements in cellular technologies (e.g., 5G)
that enable a wide range of applications (e.g., virtual reality
(VR), augmented reality (AR), Industry 4.0, smart cities) has
led to an explosive growth of service demands in networks.
Following this trend, ICT sector is expected to account for
20% of the global energy consumption by 2040 [3]. Thus, the
carbon emissions caused by the surge of energy consumption
in cellular networks require a significant enhancement on
energy efficiency to mitigate the resulting negative impacts
to our world. To ensure that the next generation cellular

network (i.e., 6G) can be developed toward the goal of carbon
neutrality, the new initiatives have also been launched, e.g.,
the Green G Working Group in Next G Alliance [3].

Base station (BS) is the most energy-intensive part of a
cellular network [4]. Such energy intensity is further amplified
in a heterogeneous network where an increasing number of
small base stations (SBSs) are deployed to enhance capacity
of a macro base station (MBS). Due to the change of traffic
pattern over time and location, some of under-utilized SBSs
consume unnecessary energy. Given the fact that a user in
the overlapping coverage areas of some SBSs can be served
by any one of them, BS ON-OFF switching has emerged as
one promising approach to improve energy efficiency of low-
load SBSs by dynamically adjusting their ON/OFF modes [5],
which is being studied in 3GPP (e.g., [6]). Another key
approach for telecom operators to reduce their carbon footprint
is utilizing more renewable energy that does not release carbon
dioxide when producing electricity (e.g., AT&T [7]).

The current BS ON-OFF switching design mainly focus on
minimizing the total energy consumption (i.e., the sum of non-
renewable and renewable energy consumption), which makes
the ideas of saving energy and using more renewables two
separate approaches. Meanwhile, the availability of renewable
power is highly variable in time and location [8]. Furthermore,
the operation of BS ON-OFF switching also involves user
association (i.e., users served by one BS that is switched to
OFF mode should be associated with other BS in ON mode),
which needs to take the users’ random behavior into account.
Therefore, to guarantee the reduction of carbon emissions in
cellular networks, it is desired to design an effective scheme
that jointly adjusts the ON/OFF modes of SBSs and the
association between users and BSs while utilizing highly
variable renewable power as much as possible.

Different from the prior works that target on the total
power consumption (e.g., [9], [10]), we study the problem
of joint user association and BS ON-OFF switching with
particular focus on the carbon footprint of non-renewable
power consumption. We consider a heterogeneous network
consisted of one MBS and multiple SBSs where each BS is
powered by both of renewables and non-renewables. While the
MBS is assumed to be always in ON mode, each SBS can be
switched to ON or OFF mode. Each user can be served by a
BS in ON mode if and only if the user is located at its service
coverage. To capture the behavior that an idle or low-load BS
still consumes power, we model the power consumption of
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each ON-mode BS out of a linear function with a static power
component (e.g., cooling). With the objective of minimizing
the total non-renewable power consumption of network, we
formulate a mixed integer nonlinear programming (MINLP)
that jointly decides the mode of each SBS and the association
between BSs and users.

The formulated MINLP problem with a nonlinear objective
function of the non-renewable power consumption; neverthe-
less, is an intractable combinatorial problem [11]. Through a
derived linear upper bound for approximating the objective
function, we propose a carbon-aware scheme by formulating
a mixed integer linear programming (MILP), which can be
solved efficiently in practice. Compared with two baseline
schemes, our numerical analysis shows that the proposed
carbon-aware scheme reduces up to 86% of the non-renewable
power consumption, which can potentially save billions of US
dollars annually for the cost of carbon tax.
Related Works: We provide a literature review that covers the
works of carbon-aware network and BS ON-OFF switching.

The development of carbon-aware network has received
much attention recently to mitigate the global warming issue.
One of main goals is to do resource allocation by adapting
to the variability of renewable energy (see e.g., [12]–[14]).
To reduce carbon footprint of cloud networks, [12] introduced
a Carbon-Intelligent Compute Management by shifting flex-
ible compute workloads based on the future carbon-related
information. Via the drift-plus-penalty methodology in Lya-
punov optimization, [13] proposed a carbon-intensity based
scheduling policy that dynamically schedules computation
tasks over cloud networks. In heterogeneous cellular networks
powered by both of renewables and non-renewables, [14]
presented a user association mechanism that efficiently utilizes
the available renewable power.

The idea of BS ON-OFF switching that aims at dynamically
turning off some under-utilized BSs during low traffic periods,
has been widely studied in recent years to improve energy
efficiency of cellular networks. Several works investigated
BS ON-OFF switching over different system models (e.g.,
[9], [10], [15]–[17]). Considering the inter-tier interference
between the small cells, BS ON-OFF switching is leveraged
in cloud radio access networks [15]. Through a long short-
term memory (LSTM) method to predict traffic distribution,
a switching scheme proposed in [16] can reduce the energy
consumption of networks while guaranteeing the quality of ex-
perience of users. Powered by renewable power sources, [17]
proposed a dynamic programming-based BS ON-OFF switch-
ing to minimize a sum of non-renewable power consumption
and the quality of service. Furthermore, [9], [10] consider the
problem of joint user association and BS ON-OFF switching
to minimize the total power consumption of heterogeneous
cellular networks. To distinguish from the prior works of
joint user association and BS ON-OFF switching which target
on improving the efficiency of total power consumption, our
proposed scheme focus on minimizing non-renewable power
consumption, which accounts for the majority of carbon foot-
print from cellular networks.

II. SYSTEM MODEL

We consider a heterogeneous cellular network, composed of
a macro base station (MBS) and multiple small base stations
(SBSs), provides service to users. All SBSs are deployed in the
service coverage of the MBS to enhance the network capacity.
In particular, each of base stations (BSs) is powered by both
of non-renewable energy (e.g., fossil) and renewable energy
(e.g., wind). The MBS is always turned on to provide main
service coverage whereas each of SBSs can be switched to
ON or OFF mode according to the location of users and the
amount of available renewable power.

In the network, as shown in Fig. 1, there are one MBS
and N SBSs serving M users within a geographical area
L ⊆ R2. We denote by N = {0, 1, . . . , N} the set of all base
stations where the MBS is represented by the index of 0 for the
simplicity. We denote byM = {1, 2, . . . ,M} the set of users.
With the coverage radius rn, each BS n ∈ N is located at the
coordinate denoted by (xBS

n , y
BS
n ) ∈ L. Moreover, each user

m ∈M is located at the coordinate denoted by (xuser
m , yuser

m ) ∈
L. We denote by dm,n the distance between user m and
BS n, i.e., dm,n =

√
(xuser
m − xBS

n )2 + (yuser
m − yBS

n )2. In the
following, we describe the operations of base station ON-OFF
switching and user association.

Base Station ON-OFF Switching: In our model, BS 0
(i.e., MBS) is always in ON mode. Each BS n ∈ N\{0} (i.e.,
SBSs) can be switched to ON or OFF mode, where BS in
OFF mode cannot provide service to any users. Specifically,
the mode of BS n is indicated by an as follows:

an =

{
1, if BS n is ON;
0, if BS n is OFF.

(1)

In ON mode, each BS n can serve user m if user m is within
the coverage of BS n, i.e., dm,n ≤ rn. We denote by SBS

n the
set of users that are able to be served by BS n, i.e.,

SBS
n = {m : m ∈M, dm,n ≤ rn}. (2)

Similarly, we denote by Suser
m the set of BSs that are able to

serve user m, i.e.,

Suser
m = {n : n ∈ N , dm,n ≤ rn}. (3)

In particular, we denote by Bn the maximum number of users
that can be served by BS n in ON mode.

User Association: After the operation of BS ON-OFF
switching, each user m still has to be served by one of BSs,
i.e., users served by the BS that is switched to OFF mode have
to be associated with other BS in ON mode. Concretely, we
denote by wm,n the indicator whether BS n serves user m as
follows:

wm,n =

{
1, if user m is served by BS n;
0, otherwise.

(4)



Fig. 1: The illustration of considered network including one MBS and N SBSs. Each BS is powered by both of non-renewables and
renewables. The MBS is always in ON mode while each SBS can be switched to ON or OFF mode.

To guarantee that each user is served by exactly one BS, the
followings have to be satisfied:∑

n∈Suser
m

wm,n = 1, ∀m ∈M; (5)

wm,n ≤ an, ∀m ∈M, ∀n ∈ N . (6)

where (5) indicates that user m is served by one of BSs and
(6) ensures that each BS can serve users only if the BS is in
ON mode. Moreover, the number of users served by each BS
n has to be smaller than Bn, i.e.,∑

m∈SBS
n

wm,n ≤ Bn, ∀n ∈ N . (7)

Power Consumption Model: Based on [4], [18], the power
consumption of each BS in ON mode is modeled via a
linear approximation approach. We denote by PON

n the power
consumed by BS n to serve all the associated users, which
can be expressed as follows:

PON
n =

∑
m∈SBS

n

κm,nwm,n + P sn (8)

where κm,n is the unit of radiated power needed by BS n
for serving user m and P sn is the static power consumption
of BS n (e.g., cooling). Let POFF

n be the power consumption
required by BS n in OFF mode. Based on an, the total power
consumption of BS n denoted by P total

n can be written as
follows:

P total
n = anP

ON
n + (1− an)POFF

n . (9)

Furthermore, we denote by P renew
n the power that can be

harvested by BS n from the renewable energy sources. To re-
duce the carbon emissions generated by non-renewable energy
sources, we assume that each BS consumes renewable power
as much as possible. Let P non-renew

n be the power consumption
of non-renewables by BS n, which can be written as follows:

P non-renew
n = max(P total

n − P renew
n , 0). (10)

In this paper, we focus on minimizing the utilized non-
renewable power by the system in order to reduce its carbon
footprint.

Remark 1. The highly variable nature of renewable en-
ergy makes its availability varied considerably in time and
space. Thus, it is not straightforward how a complicated
heterogeneous network can efficiently utilize renewables when
considering the temporal and spatial dimensions of renewable
energy.

III. PROBLEM STATEMENT

Based on the system model defined in Section II, our goal is
to design a scheme that chooses 1) an’s: the mode of each BS
and 2) wm,n’s: the association of users and BSs to minimize
the non-renewable power consumption of all the base stations,
which is given by

∑
n∈N P

non-renew
n . In particular, the function∑

n∈N P
non-renew
n is equal to∑

n∈N
max(anP

ON
n + (1− an)POFF

n − P renew
n , 0),

where
∑
n∈N max(anP

ON
n + (1 − an)P

OFF
n − P renew

n , 0) is
nonlinear due to the composition of the quadratic function
(i.e., anwm,n’s in anPON

n ) and the max function.
Now, we introduce the joint user association and BS ON-

OFF switching problem that minimizes the non-renewable
power consumption of the network via the following mixed
integer nonlinear programming (MINLP):

(P1) min
∑
n∈N

max(anP
ON
n + (1− an)POFF

n − P renew
n , 0)

s.t.
∑
n∈Suser

m

wm,n = 1, ∀m ∈M; (11)

∑
m∈SBS

n

wm,n ≤ Bn, ∀n ∈ N ; (12)

wm,n ≤ an, ∀m ∈M, ∀n ∈ N ; (13)
wm,n ∈ {0, 1}, ∀m ∈M, ∀n ∈ N ; (14)



an ∈ {0, 1}, ∀n ∈ N\{0}; (15)
a0 = 1, (16)

where PON
n is a function of wm,n’s defined in (8). Also, (16)

ensures that MBS is always in ON mode. The formulated P1
problem is a MINLP which combines challenges of handling
the nonlinearity of the objective function with combinatorial
explosion of integer variables, which is in general challenging
to solve [11].

IV. THE PROPOSED CARBON-AWARE SCHEME

In this section, rather than directly minimizing the objective
function of P1, we use a derived upper bound to approximate
P1’s objective function

∑
n∈N P

non-renew
n . We then propose a

carbon-aware scheme by formulating a mixed integer linear
programming (MILP) which efficiently minimizes the derived
approximation of objective function in P1.

In the following, we present Lemma 1 to bound∑
n∈N P

non-renew
n , where the proof of Lemma 1 is provided

in Appendix A.

Lemma 1. For any two numbers a, b ∈ {0, 1}, we have the
following inequality:

ab ≤ a+ b

2
. (17)

By Lemma 1 and the fact that an, wm,n ∈ {0, 1}, we first
bound the function P total

n as follows:

P total
n =

∑
m∈SBS

n

κm,nanwm,n + (P sn − POFF
n )an + POFF

n (18)

≤
∑
m∈SBS

n

κm,n ·
an + wm,n

2
+ (P sn − POFF

n )an + POFF
n (19)

=
∑
m∈SBS

n

κm,n
2

wm,n + (
∑
m∈SBS

n

κm,n
2

+ P sn − POFF
n )an + POFF

n

where (18) follows from (8) and (9). We denote by P̃ total
n

the upper bound of P total
n , i.e., P̃ total

n =
∑
m∈SBS

n

κm,n

2 wm,n +

(
∑
m∈SBS

n

κm,n

2 + P sn − POFF
n )an + POFF

n . Thus, the objective
function of P1 can be bounded as follows:∑

n∈N
P non-renew
n = max(P total

n − P renew
n , 0)

≤
∑
n∈N

max(P̃ total
n − P renew

n , 0). (20)

The optimization problem for minimizing the approximation
of objective function

∑
n∈N P

non-renew
n can be presented as

follows:

(P2) min
∑
n∈N

max(P̃ total
n − P renew

n , 0) (21)

s.t. (11) to (16). (22)

Similar to P1, the MINLP formulation of P2 is also hard to
solve in general.

To efficiently obtain the optimal solution for P2, we trans-
form its objective function into a linear function by introducing

a dummy variable denoted yn for each n ∈ N with some
additional constraints. More specifically, each introduced vari-
able yn is lower-bounded by max(P̃ total

n − P renew
n , 0) and the

newly formulated problem minimizes the objective function
given by

∑
n∈N yn. Our proposed carbon-aware scheme aims

at choosing an’s and wn,m’s by solving this transformed
optimization problem, which can be presented by a MILP as
follows:

(P3) min
∑
n∈N

yn (23)

s.t. yn ≥ P̃ total
n − P renew

n , ∀n ∈ N ; (24)
yn ≥ 0, ∀n ∈ N ; (25)

and subject to (11) to (16), in which (24) and (25) are due
to the additional constraints that ensure yn ≥ max(P̃ total

n −
P renew
n , 0) for ∀n ∈ N .
The following theorem, whose proof is provided in Ap-

pendix B, shows the equivalence of P2 and P3.

Theorem 1 (Equivalence). The optimization problems P2 and
P3 are equivalent, i.e., a feasible solution of one problem can
be used to construct a feasible solution of the other problem.
Moreover, the optimal values of P2 and P3 are identical.

If the collection of w∗m,n’s, a∗n’s and y∗n’s is the optimal
solution of P3; by Theorem 1, then our proposed scheme
obtained by solving P2 is the collection of w∗m,n’s and a∗n’s.
Unlike the MINLP (e.g., P1 and P2), the MILP formulation of
P3 in our proposed scheme can be solved efficiently by robust
commercial solvers, e.g., CPLEX [19], Gurobi [20] and Matlab
Optimization Toolbox [21]. Therefore, the MILP formulation
of P3 via the linearization of objective function allows us to
obtain the optimal solution of P2 efficiently.

V. NUMERICAL ANALYSIS

In this section, we demonstrate the impact of the proposed
carbon-aware scheme by simulation studies. We evaluate the
effectiveness of the proposed scheme in terms of the non-
renewable power. We consider a cellular network composed
of a MBS and N = 8 SBSs. BS 0 has the coverage radius
of r0 = 600m, and each BS n ∈ N\{0} has the coverage
radius of rn = 200m. In the unit of m, BS 0 (i.e., MBS) is
located at (0, 0); and each BS n ∈ N\{0} (i.e., SBSs) is lo-
cated at (200, 200), (−200,−200), (200,−200), (−200, 200),
(0,−400), (0, 400), (400, 0), (−400, 0) respectively.

There are in total M = 300 mobile users in the coverage
area of MBS, where the coordinate of each user m is randomly
generated in an uniform manner. BS 0 can serve up to B0 =
200 users; and each BS n ∈ N\{0} can serve up to Bn =
60 users. Each BS has the static power consumption P sn =
2000W; and the power consumption in OFF mode POFF

n =
0W. Based on [18], each BS has κm,n = 18d2.6m,n(W) where
dm,n is measured in the unit of km.

Wind Power Generation Model: We assume that each BS
is powered by a small wind turbine for the source of renewable
power. We denote by `n the radius of wind turbine at BS n.



Then, the cross-sectional area swept by the wind turbine An
at BS n is given by An = π`2n. The wind speed denoted by vn
at each BS n is modeled via Weibull distribution, which can
well describe the statistical properties of the wind speed [22].
Given wind speed vn at each BS n, the wind power that can be
harvested by the BS is given by the formula P renew

n = 1
2ρAnv

3
n,

where ρ is the air density.
In this analysis, we assume that the wind speed at each BS

is generated by Weibull distribution with the shape parameter
of 2.081 and the scale parameter of 6.69 based on the data
in [22]. The density of air in the system is ρ = 1.225kg/m3.
The resulting MILP problems in our proposed scheme and the
baselines are solved by intlinprog from Matlab Optimiza-
tion Toolbox [21]. The following baselines are considered to
compare with the proposed carbon-aware scheme:
1) Shortest-Distance Scheme: Each BS n is always switched

to ON mode, i.e., an = 1,∀n ∈ N . Select wm,n’s such
that each UE m is served by its closest BS to ensure the
strength of received signal power.

2) Minimized-Power Scheme: Select an’s and wm,n’s that
minimize the total power (renewables + non-renewables)
utilized by all the BSs. This selection can be obtained by
formulating a MILP which minimizes

∑
n∈N P

total
n subject

to (11) to (16).
In terms of the normalized non-renewable power consumption
averaged over 500 simulations, Fig. 2, Fig. 3 and Fig. 4 provide
the performance comparison of the carbon-aware scheme
with the baselines for the radius `n = 1.5m, 3m and 4.5m
respectively.1 Then, we conclude the followings:
• The proposed carbon-aware scheme provides a significant

non-renewable power consumption reduction up to 86% and
71% over the shortest-distance scheme and the minimized-
power scheme respectively.

• As `n increases (i.e., more available wind power), the
proposed carbon-aware scheme reduces more non-renewable
power consumption compared with two baselines, which
demonstrates the effectiveness of carbon-aware scheme in
utilizing renewable power.

• The huge improvement over the minimized-power scheme
indicates the importance toward the design of carbon-
oriented technology beyond the traditional approach (i.e.,
energy efficiency) to meet the goal of carbon neutrality.

Remark 2. We would like to emphasize that our proposed
scheme can potentially yield a huge saving of money by just
reducing the emissions of carbon dioxide. For example, about
2 million 5G base stations have been deployed in China [23].
Without BS ON-OFF switching, if each BS in China consumes
the power of 3000W in 24 hours every day, then they result
in total energy consumption of 5.3×1010kW·h. Assuming that
carbon intensity of grid energy in China is 500g per kW·h
and renewables account for 20% of energy consumption, BSs
would contribute 2.1 × 107 tons of carbon emissions. Since

1The power consumption will scale up in the size of the system. Hence,
we only focus on the normalized non-renewable power consumption in this
analysis.
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Fig. 2: Numerical evaluations for the normalized non-renewable
power where each BS n is powered by the wind turbine with the
radius of `n = 1.5m.
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Fig. 3: Numerical evaluations for the normalized non-renewable
power where each BS n is powered by the wind turbine with the
radius of `n = 3m.

each ton of carbon emissions cost the tax of 9 USD in China
according to The World Bank [24] , there can be a money
saving of 2 billion USD annually by using our scheme.

VI. CONCLUSION

In this paper, in order to reverse the effects of global
warming, we consider a problem of joint user association
and base station ON-OFF switching with the objective of
minimizing non-renewable power consumption. Through a
linear approximation, we proposed an efficient carbon-aware
scheme for heterogeneous cellular networks, which utilizes
the availability information of renewable power at each base
station to effectively reduce carbon footprint of networks.
The numerical analysis in our paper demonstrates that the
proposed scheme can effectively reduce the non-renewable
power consumption by 86% and save billions of US dollars.
This work motivates us to take the carbon-related informa-
tion into account when designing the next-generation cellular
network toward the objective of carbon neutrality by 2050
(e.g., [13], [25]). Beyond this work, another future research
direction is to consider other deployments of a cellular net-
work, e.g., a distributed network of radio units, distributed
units and centralized units that covers radio access network
and core network. Designing a scheme to minimize the overall
carbon emissions of whole system could be an interesting and
challenging problem.
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Fig. 4: Numerical evaluations for the normalized non-renewable
power where each BS n is powered by the wind turbine with the
radius of `n = 4.5m.

REFERENCES

[1] “Climate change 2022: Mitigation of climate change,” Intergovernmental
Panel on Climate Change (IPCC), 2022.

[2] W. Carton, W. Knorr, S. Lewis, K. McAfee, D. McLaren, I. Möller,
J. P. Sapinski, D. Stabinsky, P. Smith, and T. Thoni, “CSSN Position
Paper 2022: 1: Net Zero, Carbon Removal and the Limitations of Carbon
Offsetting,” CSSN, 2022.

[3] “Next G Alliance Green G: The Path Toward Sustainable 6G,” Alliance
for Telecommunications Industry Solutions (ATIS), 2022.

[4] G. Auer, V. Giannini, C. Desset, I. Godor, P. Skillermark, M. Olsson,
M. A. Imran, D. Sabella, M. J. Gonzalez, O. Blume, and A. Fehske,
“How much energy is needed to run a wireless network?,” IEEE Wireless
Communications, vol. 18, no. 5, pp. 40–49, 2011.

[5] J. Wu, Y. Zhang, M. Zukerman, and E. K.-N. Yung, “Energy-efficient
base-stations sleep-mode techniques in green cellular networks: A sur-
vey,” IEEE communications surveys & tutorials, vol. 17, no. 2, pp. 803–
826, 2015.

[6] 3GPP, “Management and orchestration; Energy efficiency of 5G,” Tech-
nical Specification (TS) 28.310, 2022. Version 17.4.0.

[7] “AT&T Expands Commitment to Sourcing Renewable Energy.”
https://about.att.com/story/2022/commitment-to-sourcing-renewable-
energy.html#:~:text=AT%26T%20has%20committed%20to%
20net,global%20challenge%20of%20climate%20change. Accessed:
2022-10-05.

[8] D. S. Callaway, M. Fowlie, and G. McCormick, “Location, location,
location: The variable value of renewable energy and demand-side
efficiency resources,” Journal of the Association of Environmental and
Resource Economists, vol. 5, no. 1, pp. 39–75, 2018.

[9] X. Lin and S. Wang, “Joint user association and base station switching
on/off for green heterogeneous cellular networks,” in IEEE International
Conference on Communications (ICC), 2017.

[10] W. Ur Rehman, A. Hussain, and M. M. Butt, “Joint user association
and bs switching scheme for green heterogeneous cellular network,” in
IEEE Globecom Workshops (GC Wkshps), 2018.

[11] J. Lee and S. Leyffer, Mixed integer nonlinear programming, vol. 154.
Springer Science & Business Media, 2011.

[12] A. Radovanovic, R. Koningstein, I. Schneider, B. Chen, A. Duarte,
B. Roy, D. Xiao, M. Haridasan, P. Hung, N. Care, S. Talukdar, E. Mullen,
K. Smith, M. Cottman, and W. Cirne, “Carbon-aware computing for
datacenters,” IEEE Transactions on Power Systems, 2022.

[13] C.-S. Yang, C.-C. Huang-Fu, and I.-K. Fu, “Carbon-neutralized task
scheduling for green computing networks,” in GLOBECOM 2022-2022
IEEE Global Communications Conference, pp. 4824–4829, IEEE, 2022.

[14] L. A. Fletscher, L. A. Suárez, D. Grace, C. V. Peroni, and J. M. Maestre,
“Energy-aware resource management in heterogeneous cellular networks
with hybrid energy sources,” IEEE Transactions on Network and Service
Management, 2019.

[15] M. AlEmam, A. A. El-Sherif, and T. ElBatt, “Energy Efficiency Opti-
mization through RRHs ON/OFF Switching Technique in C-RAN,” in
IEEE Wireless Communications and Networking Conference (WCNC),
2019.

[16] Y. Zhu and S. Wang, “Joint traffic prediction and base station sleeping
for energy saving in cellular networks,” in IEEE International Confer-
ence on Communications (ICC), 2021.

[17] J. Gong, J. S. Thompson, S. Zhou, and Z. Niu, “Base station sleeping
and resource allocation in renewable energy powered cellular networks,”
IEEE Transactions on Communications, 2014.

[18] Z. Shen and G. Zhang, “Two-timescale mobile user association and
hybrid generator on/off control for green cellular networks with energy
storage,” IEEE Transactions on Vehicular Technology, pp. 1–12, 2022.

[19] S. Nickel, C. Steinhardt, H. Schlenker, and W. Burkart, “IBM ILOG
CPLEX Optimization Studio—A primer,” in Decision Optimization with
IBM ILOG CPLEX Optimization Studio, pp. 9–21, Springer, 2022.

[20] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2022.

[21] “MATLAB Optimization Toolbox,” 2021. The MathWorks, Natick, MA,
USA.

[22] F. H. Mahmood, A. K. Resen, and A. B. Khamees, “Wind characteristic
analysis based on Weibull distribution of Al-Salman site, Iraq,” Energy
Reports, 2020. Technologies and Materials for Renewable Energy,
Environment and Sustainability.

[23] “China has 475 mln 5g mobile users: ministry.” https://english.news.cn/
20220819/4a1afcc7427e4424bd3cf2d6929ad19c/c.html. Accessed:
2022-09-30.

[24] “The World Bank: Carbon Pricing Dashboard.” https:
//carbonpricingdashboard.worldbank.org/map_data. Accessed: 2022-
09-30.

[25] W. Wu, C.-S. Yang, I.-K. Fu, P.-K. Liao, D. Calin, and M. Fan,
“Revisiting the System Energy Footprint and Power Efficiency on
the Way to Sustainable 6G Systems,” IEEE Wireless Communications,
vol. 29, no. 6, pp. 6–8, 2022.

[26] D. G. Hoffman, Packing Problems and Inequalities, pp. 212–225.
Boston, MA: Springer US, 1981.

APPENDIX A
PROOF OF LEMMA 1

Since a and b are non-negative, the AM-GM inequality [26]
holds as a2+b2

2 ≥
√
a2b2 = ab. With the fact of a, b ∈ {0, 1},

we have a+b
2 = a2+b2

2 ≥ ab which concludes the proof.

APPENDIX B
PROOF OF THEOREM 1

First, we assume that a collection of wm,n’s and an’s is a
feasible solution of P2. Then, we define yn as follows:

yn =
∑
n∈N

max(P̃ total
n − P renew

n , 0). (26)

Each of the constraints defined in (24) and (25) are satisfied
due to the definition of max function. With the fact that wm,n’s
and an’s satisfy the constraints defined in (11) to (16), the
collection of wm,n’s, an’s and yn’s is a feasible solution of P3.
The value of objective function in P2 is

∑
n∈N max(P̃ total

n −
P renew
n , 0) =

∑
n∈N yn, which is the same as the value of

objective function in P3. It follows that the optimal value of
P2 is greater than or equal to the optimal value of P3.

Conversely, we assume that the collection of wm,n’s, an’s
and yn’s is a feasible solution of P3. It is clear that the
collection of wm,n’s, an’s is a feasbile solution of P2. Because
the constraints defined in (24) and (25) are satisfied, we have
yn ≥ max(P̃ total

n − P renew
n , 0) for each n. Therefore, the value

of objecitve function
∑
n∈N yn in P3 is greater than or equal

to the value of objective function in P2, which is given by∑
n∈N max(P̃ total

n −P renew
n , 0). It follows that the optimal value

of P3 is greater than or equal to the optimal value of P2, which
completes the proof.
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