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Abstract—Federated Learning (FL) has emerged as a promis-
ing framework for distributed training of AI-based services,
applications, and network procedures in 6G. One of the major
challenges affecting the performance and efficiency of 6G wireless
FL systems is the massive scheduling of user devices over
resource-constrained channels. In this work, we argue that the
uplink scheduling of FL client devices is a problem with a rich
relational structure. To address this challenge, we propose a
novel, energy-efficient, and importance-aware metric for client
scheduling in FL applications by leveraging Unsupervised Graph
Representation Learning (UGRL). Our proposed approach intro-
duces a relational inductive bias in the scheduling process and
does not require the collection of training feedback information
from client devices, unlike state-of-the-art importance-aware
mechanisms. We evaluate our proposed solution against baseline
scheduling algorithms based on recently proposed metrics in the
literature. Results show that, when considering scenarios of nodes
exhibiting spatial relations, our approach can achieve an average
gain of up to 10% in model accuracy and up to 17 times in energy
efficiency compared to state-of-the-art importance-aware policies.

Index Terms—Federated Learning, Graph Representation
Learning, Scheduling, Communication-efficient FL, Energy-
efficient FL, 6G, Spatial Correlation

I. INTRODUCTION & MOTIVATION

Federated Learning (FL) [1] recently emerged as a
new privacy-preserving paradigm for distributed training of
Machine Learning (ML) algorithms without the need for
explicit data sharing between users and a centralized com-
putational unity. This framework is particularly appealing for
next-generation 6G systems, which are foreseen to support
ubiquitous Artificial Intelligence (AI) services and AI-native
design of users’ network procedures [2]. Indeed, users of a
6G network will naturally benefit from decentralized training
that bypasses sharing and storing data in a centralized location.
This will lead to the support of a new kind of AI-related traffic
over wireless networks: frequent exchange of ML models
introduces significant communication overhead, which raises a
series of interesting novel challenges. This paved the way to a
recent research area on communication-efficient FL for 6G [3].
Wireless FL is an example of goal-oriented communication
[4], for which traditional Radio Resource Management (RRM)
methods are typically inadequate, and customized protocols
must be developed [5].

Arguably, one of the major challenges towards scalable and
efficient 6G wireless FL systems is the massive scheduling
of user devices, from now on referred to as clients. In fact,
the central aggregation unity, namely the Parameter Server
(PS), generally needs to link a vast number of User Equipment
(UE)s through a resource-constrained spectrum and thus can
allow only a limited number of UEs to send their trained
weights via unreliable channels for global aggregation [6]. To
this end, the concept of data importance, or importance-aware
communications in FL has taken hold in the recent literature
[7]–[13]. The main idea is that by prioritizing users with high
data importance, the distributed ML training is accelerated
[13]. Because explicit information on clients’ data is infeasible
due to privacy concerns, state-of-the-art importance-aware
approaches rely on feedback information from the training of
local clients’ models. This approach, even though proven to be
effective, has the major disadvantage of being energy and com-
putationally inefficient. In fact, feedback-based importance-
aware methods lead to the training of local models on all
clients, regardless of the number of scheduled transmissions
in the next communication round (Fig. 1).

Fig. 1: Comparison between importance-aware scheduling protocols in FL.
On the left side (a), classic energy-inefficient approaches require training

feedback from all network clients every communication round. As the
number of clients in a network grows, this becomes highly inefficient from

the computational and energetic point of view. On the right side (b),
importance-aware scheduling via UGRL requires only scheduled users to

perform local training.

In this work, we propose a novel energy-efficient,
importance-aware FL metric based on graph representation
learning, which leads to effective scheduling of client devices
without any need for collecting training feedback information.
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A. State of the Art & Contributions

Over the last years, different metrics for FL client
scheduling have been proposed and discussed. In [14], by
leveraging the concept of Age of Information (AoI), a metric
termed age of update (AoU) is introduced, which takes into
account the staleness of the received parameters. In [10],
[11], [14], [15] channel conditions experienced by different
clients are considered during the scheduling decision. In [15],
a channel prediction algorithm based on Gaussian process
regression is incorporated into the scheduling process when
dealing with imperfect channel state information. Authors
from [11], instead, exploit both diversity in multiuser channels
and diversity in the importance of the edge devices’ local
learning updates. Importance, in this case, is measured by the
local parameter update’s gradient divergence, which must be
reported to the PS downstream of the training of all client
devices. A similar training-feedback metric of importance
is introduced in [10], where the significance of the model
updates at the devices is captured by the L2-norm of the
model update.
Under the frequentist setting, training data constitute a
fundamental part of the inductive bias of a model. In
this context, in line with the idea of importance-aware
communications, knowledge about data distribution among
devices would suffice for driving proper FL scheduling
decisions. However, as previously stated, this approach
is unfeasible in FL systems. Nevertheless, clients exhibit
relations and correlations in a network setting, especially
in the context of massive Internet-of-Things (IoT) and
ultra-dense 6G networks. Here, we argue that the scheduling
of FL client devices is a problem with a rich relational
structure and, as a consequence, there is a need to tackle this
problem effectively by taking node correlations into account.
Relations among clients, which relate to local data distribution
too, can be learned and inferred by encompassing network
geometry and relational representation learning, while at the
same time preserving users’ privacy. Graphs, generally, are
a representation that supports arbitrary relational structures,
and computations over graphs afford a strong relational
inductive bias [16]. By considering networks of clients as
graphs, we introduce this bias in the clients’ scheduling
process by leveraging Unsupervised Graph Representation
Learning (UGRL). As results show, this effectively makes
up for the impossibility of selecting users based on their
data, while at the same time aiming for an energy and
computationally-efficient scheduling protocol.

The main contributions of this work are listed hereafter:

• We consider network geometry in the form of node
embeddings obtained via UGRL as a fundamental new
metric for driving efficient FL scheduling decisions in
the context of non-i.i.d. and spatially correlated data. We
aim to show it is possible to make up for the absence
of explicit knowledge information about clients’ data by
introducing a relational inductive bias into the scheduling

process.
• We compare the performance of the proposed scheduling

metric with respect to baseline metrics recently proposed
in the literature.

• We discuss the range of applicability of our proposed so-
lution with respect to different kinds of data distributions
with application to IoT and 6G networks.

II. SYSTEM MODEL

A. Network Scenario and Propagation Channel

Let us consider a system comprised of one Access Point
(AP) co-located with a PS and multiple client devices with
local data and computation capabilities, as depicted in Fig. 2.
Physically running on the PS, there are two software entities
responsible for model aggregation and radio resource man-
agement: the Federated Aggregator and the Graph Scheduler,
respectively described in the following subsections.

Fig. 2: System Model

Each client m ∈ M holds a local data set Dm ={
xm ∈ Rd,ym ∈ R

}
with cardinality |Dm|, such that∑

m∈M |Dm| = |D|, and is equipped with a single isotropic
antenna. On the PS side, we consider an antenna with a
directive gain of 15 dBi. All clients are randomly uniformly
distributed within a radius R of the PS. The PS broadcasts
the global model to the selected clients with a transmit power
of 15 dBm, while the latter send their local updates with a
transmit power of 10 dBm.
As further detailed in the next subsections, we consider the
two cases of non-i.i.d. spatially correlated data and spatially
correlated/uncorrelated non-i.i.d clusters of i.i.d. data. Both
cases are artificially reproduced in our experiments by spatially
distributing MNIST digit labels among neighbor clients.
Within the network area, we consider an Orthogonal Fre-
quency Division Multiple Access (OFDMA) scheme with
perfect equalization, where M = |M| clients share the same
spectrum and can be assigned one of the K < M set of
orthogonal sub-channels for model parameters transmission.
Moreover, we assume a slow fading propagation model, where
each model transmission from device m ∈ M to the PS is
shorter than the channel coherence time Tc:

TD,m < Tc for m ∈M, (1)
where TD,m is the model transmission time for client m. With
the aforementioned assumptions, the channel impulse response
hm,PS(f, t) from device m to the PS loses its time and



frequency dependency within a block transmission duration
TD,m (2):

hm,PS(f, t)→ hm,PS ∈ HM+1, (2)

where HM+1 is the channel matrix of dimension M + 1.
Finally, we consider the Okumura-Hata model for the median
path loss, and the Nakagami-m distribution for the fading
propagation model, as it provides a flexible formulation to
characterize Rician and Rayleigh fading.

B. Federated Learning Framework

The goal of the Federated Aggregator is to learn a ML
model by offloading and aggregating the training to the set
M of distributed clients with local data. The federated training
process involves a number of iterations, namely communica-
tion rounds, until convergence. Each client m ∈ M, upon
receiving a global model θPS from the PS at the beginning of
a new round, executes multiple Stochastic Gradient Descent
(SGD) updates to minimize the model’s loss function with
respect to its local dataset (3):

Fm(θ, Dm) =
1

|Dm|
∑

{xi,yi}∈Dm

f(θ, {xi, yi}), (3)

where Fm is the m-th client loss function and f(θ, {xi, yi})
indicates the task-dependent loss (e.g., Mean Square Error
(MSE), categorical cross-entropy, etc.) for every training ex-
ample {xi, yi}. At every j-th local SGD iteration, each client
m updates its local model according to (4):

θj+1
m (t) = θjPS(t)− α(t) · gm, (4)

where α(t) denotes the learning rate scheduled by the PS for
communication round t and gm := ∇(Fm(θm, Dm) is the
m-th client’s gradient of the local model’s weights. Once the
training is terminated, each client selected for scheduling must
forward its local model θm(t) to the PS, which will update
the global model upon aggregation of all received clients’
models. Here, we refer to FedAvg algorithm [1], for which
the aggregation is a weighted sum described by (5):

θPS(t+ 1) =
1

K

∑
m∈K

|Dm|∑
m∈K |Dm|

· θm(t), (5)

where we denote by K (|K| = K) the set of scheduled
clients for communication. For model evaluation, we consider
a separate centralized test set Dtest,PS locally residing on the
PS.

C. Graph Scheduler

The Graph Scheduler is the entity responsible for the
procedures depicted in Fig. 3: dynamic graph creation, UGRL,
and distance maximization.
• Sensing phase and reporting: a sensing phase is per-

formed by all client devices, and it should be repeated
with a periodicity that depends on environment dynam-
icity. Following, all nodes v report a list of sensed
neighbors Nt(v) (Fig. 2) to the graph scheduler.

• Dynamic graph formation: the scheduler builds a dynamic
graph from each node’s list of sensed neighbors. In

Fig. 3: Graph scheduler block scheme. The scheduling sequence Ut+1 is
computed downstream Distance Maximization scheduler and the UGRL
block. The UGRL block is responsible for the transformation f from a
graph space G|M| to the vectorial space RTx|M| of node embeddings.

our approach, we retain the strongest-K neighbors, as it
allows to adapt to the density of nodes’ deployment. Note
that alternative approaches, such as retaining adjacencies
based on a received power threshold, might also be used.

• UGRL: graph representation learning involves the trans-
formation via an encoding function f : (G|M|) →
RTx|M| from the graph-structured node representation
G|M|, to a vectorial space of T-dimensional node embed-
dings. In this procedure, node embeddings from G|M|
are efficiently computed in an unsupervised way with
the use of random walks procedures. In our scenario, we
make use of Node2Vec algorithm [17]. Further details are
discussed in section IV.

• Distance maximization: the final step involves the com-
putation of the scheduling sequence Ut+1. This is based
on the distance maximization between node embeddings
retained in a context window of tunable dimension.
Additional details are provided in section IV.

D. Data Distribution

The intuition behind the proposed approach is that the
clients’ data distribution reflects the structural relation of nodes
in a graph. Consequently, this method does not apply to
the trivial case of i.i.d. data. Vice versa, it is possible to
think of a plethora of applications and AI-driven network
procedures foreseen for 6G in which this condition holds:
localization, tracking, integrated sensing and communication,
channel estimation and measures of a physical quantity from
a sensors network is just a non-exhaustive list of examples
where clients’ data are non-i.i.d. and spatially correlated.
Another vertical of great importance for future 6G networks
is Industrial Internet-of-Things (IIoT), where typically nodes
are arranged into clusters, and nodes within a cluster might
hold similar kinds of measurements (e.g., monitoring sensors
inside automatic machines in a warehouse). To this end, we
consider in this work typical kinds of client data distributions
that find use in many real-world 6G applications:
• Non-i.i.d. and spatially correlated data distribution (Fig.

4a).
• Spatially correlated/uncorrelated clusters of i.i.d. data

(Fig. 4b, 4c).
For benchmarking purposes, we reproduced the three sce-

narios described above in our simulations by distributing
MNIST data arranged by labels to a set of randomly distributed
clients. According to the considered scenario, clients are
distributed, at the beginning of every new simulation, a random



(a) (b) (c)

Fig. 4: Typical kinds of clients data distribution in AI-native network
procedures and IoT: (a) Non-i.i.d, spatially correlated data distribution, (b)

Non-i.i.d, spatially uncorrelated clusters of i.i.d. data and (c) Non-i.i.d,
spatially correlated clusters of i.i.d. data

number of examples according to: a) their respective position
to the PS (for the case depicted in Fig. 4a), or b) their
belonging cluster (for the case depicted in Fig. 4b, 4c).

III. PROBLEM FORMULATION

The observation space can be represented as a graph com-
posed of nodes (client devices), edges (adjacency matrix),
and node features F (FL metrics). In the most general for-
mulation, each edge can also be associated with a weight
|hi,j |, corresponding to the module of the complex channel
impulse response hi,j between client i and j, drawn from
a (M + 1)-dimensional channel matrix HM+1. Nevertheless,
considering the case of orthogonal resources assignment (i.e.,
no inter-users interference), and assuming link reciprocity,
allows for a simplification of the problem formulation, since
matrix HM+1 reduces to an M-dimensional vector H =
[|h1,PS |, . . . , |hM,PS |]. Hence, its elements can be represented
as node features instead of edges.

St =



F =
[
(F1, |h1,PS |), ...,

(FM , |hM,PS |)
]
,

with |hi,PS | ∈ R

A =


a11 . . . a1M

...
. . .

...
aM1 . . . aMM


M

, with aij ∈ {0, 1}

(6)

In (6), F is the feature space of every node, which includes the
FL-metrics F used for decision-making during the scheduling
procedure, and A is the adjacency matrix, which is obtained
downstream of the dynamic graph formation block of Fig. 3.
The feature space is composed of the following metrics:
• Age of Information (AoI): a scalar indicator, introduced

in [14], describing the number of rounds that elapsed
since the client was last scheduled for model transmis-
sion.

• Path loss |hi,j |: the path loss value in dB related to the
client-PS link, assuming link reciprocity.

• L2-norm of model update ||θi,t+1 − θPS,t||2: an impor-
tance metric indicating the L2 norm of the i-th client
model update.

Notably, no explicit informative content can be collected about
the data of the clients, as this would violate the privacy-
preserving nature of FL.

IV. PROPOSED ALGORITHM

In the formulation above, nodes connected by edges have
similar data, but not necessarily similar FL metric features. In

fact, AoI, for instance, does not show any spatial correlation
property among nodes, as it purely depends on the schedul-
ing mechanism. In turn, this, together with the inability to
have explicit features about nodes’ data, depicts a situation
where client features don’t necessarily reflect the structure of
the graph. Moreover, the nature of the problem is naturally
unsupervised, as nodes don’t have any label. To this end, we
make use of UGRL via random walks in place of common
supervised methods with Graph Neural Network (GNN)s to
incorporate information about the structure of the graph into
the decision-making process. By employing Node2Vec [17],
we are able to compute the graph encoding function f(G)
without the assistance of any node labels and features, but
rather by maximizing the log-likelihood of the 2nd order
biased random walks Ns(u) conditioned by f(u), for u ∈ G
as per (7) [17].

argmax
f

∑
u∈G(V )

log (Prob(Ns(u)|f(u)) (7)

A. Distance Maximization via UGRL

Once f(G) is obtained, clients’ scheduling relies on the
distance maximization of the nodes in the embedding space.
This has the effect of increasing data heterogeneity of the
client devices during consecutive communication rounds. The
distance among a pair of nodes (v, u) in the graph G is
evaluated as the normalized dot product (cosine similarity)
s(v, u) of their node embeddings zv, zu (8):

s(v, u) =
zTv · zu
‖zv‖ · ‖zu‖

. (8)

To introduce memory of the past actions in the scheduling
process, nodes scheduled in previous communication rounds
are stored in a context window WL of tunable length L =
max(|WL|). Accordingly, the similarity scores of the nodes
v ∈ WL are computed and collected in a matrix Sv,u of
dimension |WL| × (M − |WL|):

Sv,u =

s(v1, uL+1) . . . s(v1, uM )
...

. . .
...

s(vL, uL+1) . . . s(vL, uM )

 . (9)

A scheduling decision is finally determined by equation (10).

arg min
u∈G\{v∈WL}

∑
v∈WL

s(v, u). (10)

The latter is equivalent to summing all elements of the matrix
Sv,u by column, and selecting the next scheduled client as the
argument corresponding to the column holding the minimum
sum value, i.e., the node with maximum distance with respect
to all previously scheduled nodes in WL.

V. SIMULATION METHODOLOGY

Experiments and evaluation were conducted on a simulator
based on Tensorflow Federated Core API. The logical steps
of the designed FL framework, namely ”FederatedEnv”, are
reported in Algorithm 1.



After the initialization of clients’ positions (rm, φm)M and
datasets Dm, the algorithm loops over a fixed number of
communication rounds. Each round can be subdivided into
7 logical steps:

1) The module of the client-PS Downlink (DL) channel
impulse response |hPS,m| is computed, assuming perfect
CSI, by summing fading and shadowing contributions
(f ∼ F, s ∼ N) to the median path loss PL. The signal-
to-noise ratio γ is thereby computed with a noise floor
NdB of -115 [dBm] and an AP gain Gtx of 15 [dBi].

2) The PS model θPS,t is broadcasted to the clients. At
the receiver side, Gaussian noise with standard deviation
σDL =

√
E[N2] =

√
E[θ2]/γDL,m is added to the

PS’s model weights, where θ is the discrete signal of
weights of every model’s layer.

3) Each client performs a local update of its model weights,
controlled by the learning rate α(t), using stochastic
gradient descent for Nep epochs, as per (4).

4) After local model updates, a new round of Uplink (UL)
channel estimation is performed in the same way as for
step 1, and the corresponding UL signal-to-noise ratio
γUL is computed.

5) A binary mask of the scheduled users U = [u1, . . . , uM ]
is applied to the vector of updated model weights
Θ′M = [θ′1, . . . ,θ

′
M ]T . During the aggregation phase,

only models belonging to scheduled clients will be
retained and included in the aggregation process.

6) The noisy models from the scheduled clients are aggre-
gated as per (5).

7) The model is evaluated on a test set. We denote by
f(Dtest|θPS(t+ 1)) any metric computed over Dtest.

Algorithm 1 FederatedEnv: logical steps
for each episode do

for m ∈M do
(rm, φm) = (rm ∼ U(0, R), φm ∼ U(0, 2π))

|Dm| = |D| · (um ∼ U(0, 1)/
∑

um)

Dm = sample data(D, |Dm|, φm)
end for
for each round t in T and for every m ∈M do

Step 1: DL Channel State Estimation
|hPS,m|dB = −PLm + s ∼ N(0, σs) + f ∼ F(k, ω)
γDL,m = Ptx,DL +Gtx + |hPS,m|dB −NdB

Step 2: Model Broadcast
θm(t)← θPS(t) + n ∼ N(0, σ∝γDL,m )

Step 3: Client Update
θj+1
m (t) = θjm(t)− α(t) · gm

Step 4: UL Channel State Estimation
|hm,PS |dB = −PLm + s ∼ N(0, σs) + f ∼ F(k, ω)
γUL,m = Ptx,UL +Gtx + |hm,PS |dB −NdB

Step 5: Client Scheduling
Θ′

M = Θ′
M ·UT = [θ′

1, . . . ,θ
′
M ]T · [u1, . . . , uM ]

Step 6: Model update
θPS(t+ 1) = 1

K

∑
m∈K

|Dm|∑
m∈K |Dm| · θm(t) + nm

Step 7: Performance Evaluation
f(Dtest|θPS(t+ 1))

end for
end for

VI. RESULTS

In this section, we present and comment on the obtained
results. We consider a scenario where M = 50 clients are
randomly distributed among equally populated clusters (Fig.
4b, 4c). The distance maximization scheduling was tested
against baseline policies (Table I) based on the feature nodes
metrics introduced in section III. All policies have been tested
on MNIST classification when transmitting a shallow neural
network with 1 hidden layer, achieving 0.91 accuracy in a
centralized setting.

POLICY DESCRIPTION.
Max Age of Information (AoI) nodes with max AoI
Random (RND) nodes chosen randomly
Round robin (RR) nodes chosen in a round-trip fashion
Best Channel (BC) nodes with the best channel condition
Oracle (OCL) explicit data knowledge information -

maximize label heterogeneity
Max L2-norm (L2N) nodes with maximum L2-norm of

their local model update
Distance maximization (DM) our proposed scheduling policy

TABLE I: Baseline policies

Fig. 5 and Fig. 6 show performance comparison in terms of
training accuracy and energy (Fig. 6a) vs. communication effi-
ciency (Fig. 6b), respectively. The three metrics are evaluated
as follows:
• Accuracy: the sparse categorical cross accuracy on a

centralized test set.
• Communication efficiency: the number of communication

rounds r to achieve an accuracy of 0.8.
• Energy efficiency: the number of rounds r, multiplied

by the number of training devices per round (K, or M ,
depending on the policy).

In all three metrics, the proposed solution outperforms the
baselines and approaches the performance of the oracle, which
is an empirical upper bound. In particular, the performance
gap between the proposed solutions increases as the number
of schedulable users (K) decreases. It is of particular interest
to compare our proposed DM policy with respect to the L2N
importance-aware policy. Since the former does not require
any form of training feedback (Fig. 1), it is much more
energy efficient, as the number of clients training per round
is reduced from M to K (i.e., only the scheduled users
perform local training). Moreover, results show that, in the
proposed scenario, DM outperforms L2N even in terms of
model accuracy and communication efficiency (Fig. 5 and 6b).
In fact, even though the L2N policy is successful in scheduling
the users holding the most significant models every round
(i.e., those contributing more significantly to the global model,
according to the L2-norm of the local updates [10]), when
nodes show spatial relation, this may result in the selection of
nearby clients in space holding similar data. On the opposite,
our proposed policy aims to achieve data heterogeneity by
maximizing nodes’ distance in the graph space, making it
more suitable for the considered scenario. For the same reason,
policies such as AoI and random scheduling achieve better
performance than round-robin, since they inherently increase
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Fig. 5: Training results: sparse categorical cross accuracy vs number of communication rounds for different number of schedulable users per round: (a)
K = 5,M = 50, (b) K = 10,M = 50 and K = 25,M = 50

data heterogeneity among the clients scheduled every round.
Results show that DM can achieve an average 10% gain in
model accuracy with respect to L2N at the end of the training
while increasing energy efficiency by 17 times for K = 5.
Moreover, we register an average gain of 4% accuracy at the
end of the training and 31% in communication and energy
efficiency with respect to the second-best performing policy
(AoI). Finally, it is interesting to notice how the choice of
K generates a tradeoff between communication and energy
efficiency. Indeed, for our considered model and simulation
parameters, if the aim of the designer is to maximize the
system’s communication efficiency, then K = 10 yields a gain
of 27, 9% in communication efficiency, but a loss of 30, 7%
in energy efficiency with respect to K = 5. Therefore, this
is an indicator that for energy-sensitive applications, like IoT,
the maximization of the number of schedulable clients is not
always the best design choice.
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Fig. 6: Training results: energy (a) vs communication efficiency (b).

VII. CONCLUSION

In this study, we present a novel metric for the scheduling of
client devices in FL applications leveraging the use of UGRL.

With respect to state-of-the-art importance-aware scheduling
methods, our solution does not require any training feedback
from client devices. Hence, it provides a much more com-
putationally and energy-efficient solution. Our results indicate
that, when tested against baseline importance-aware policies,
our solution achieves a gain of up to 10% in model accuracy,
while requiring up to 17 times fewer local training phases on
client devices.
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