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Abstract—A reconfigurable intelligent surface (RIS) is a holo-
graphic MIMO surface composed of a large number of passive
elements that can induce adjustable phase shifts to the impinging
waves. By creating virtual line-of-sight (LOS) paths between the
transmitter and the receiver, RIS can be a game changer for
millimeter-wave (mmWave) communication systems that typically
suffer from severe signal attenuation. Reaping the benefits of
RIS, however, relies on the accuracy of the channel estimation,
which is a challenging task due to the large number of RIS
elements. Specifically, conventional channel estimators require a
pilot overhead equal to the number of RIS elements, which is
impractical. Herein, we propose a novel way to approximately
represent the RIS channels in a lower-dimensional subspace
and derive the basis vectors for the identified subspace. We
use this channel structure to only send pilots in this subspace,
thereby vastly saving on the pilot overhead. Numerical results
demonstrate that when the RIS has an element spacing of a
quarter of the wavelength, our method reduces the pilot overhead
by 80% with retained or even improved performance.

Index Terms—Holographic MIMO, reconfigurable intelligent
surface, channel estimation, channel subspace characterization.

I. INTRODUCTION

Holographic MIMO (HMIMO) surfaces are software-
controlled meta surfaces made of sub-wavelength elements
that can collectively control the electromagnetic (EM) re-
sponse of the surface and manipulate the attributes of the
EM waves [1]. Thanks to the recent advancements in micro
electromechanical systems, the elements of HMIMO surfaces
can be reconfigured dynamically and in real-time, thus catering
to immediate changes of wireless networks. Among different
types of these surfaces, the passive HMIMO surface, also
known as reconfigurable intelligent surface (RIS), has recently
attracted significant interest in academia and industry due to its
low-cost and low-complexity design. Being able to co-phase
the multi-path signals and reflect them towards the desired
direction, RIS has been extensively studied for combating the
blockage problem in wireless networks [2].

Millimeter wave (mmWave) systems are a specific example
where the communication is impaired by blockage, resulting in
a low signal-to-noise ratio (SNR) and unreliable connections
[3]. RIS can therefore play an important role in enhancing
the performance of mmWave communication systems by pro-
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viding strong virtual line-of-sight (LoS) paths between the
transmitter and the receiver.

To attain the promised functionality, accurate channel state
information (CSI) of the cascaded channel from the trans-
mitter to the receiver via the RIS is essential. Since the
cascaded channel’s pathloss is high per element, an RIS must
compensate by having a massive number of elements and
capitalizing on the quadratic beamforming gain [2]. Hence, the
main challenge is how to efficiently estimate a large number
of channel coefficients. Compressed sensing and least square
(LS) are two widely-adopted signal processing techniques
for channel estimation in RIS-aided systems [4]. Specifically,
several works exploit the spatial structure and sparsity of the
channel in the mmWave band to reduce the pilot overhead
[5]–[7]. They convert channel estimation into sparse signal
recovery problems and employ compressed sensing methods
to solve them. These methods have high computational com-
plexity for practically large RIS sizes and require strong as-
sumptions on the angular separability between paths that might
not be satisfied in practice. Moreover, compressed methods
require high SNRs, which might not be available in mmWave
bands and with the high pathloss of the cascaded channels.
The conventional LS estimator is also impractical due to its
prohibitive pilot overhead as it requires one pilot per RIS
element [8]. Another channel estimation approach has been
recently investigated in [9] that takes advantage of the existing
spatial channel correlation in RIS-aided communications to
reduce the pilot overhead. Specifically, the authors evaluate
the correlation matrix of the BS-RIS-user cascaded channel
and identify a subspace of reduced dimension where all the
cascaded channels approximately lie.

In this paper, by exploiting the fact that the locations of
the BS and the RIS are fixed, we propose a new method
to further reduce the pilot length compared to [9] that does
not require the knowledge of spatial correlation matrix of the
channel. We consider an RIS-aided mmWave communication
system where the direct path between the base station (BS)
and user is blocked. Since the BS and RIS are in fixed
positions, the corresponding channel component is known
in advance. We show that for an RIS with M elements,
the RIS-related channels approximately reside in a subspace
of dimension η with η≪M . We first derive an orthogonal
basis for this subspace and then develop a channel estimation
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framework where pilots are only transmitted in the derived
subspace, while still enabling estimation of the entire cascaded
channel and efficient RIS configuration for SNR maximization.
Numerical results show that, despite its lower pilot overhead
and complexity, our method either outperforms LS or attains
comparable performance depending on the transmit power.

II. SYSTEM MODEL

We consider a single-cell scenario where the BS serves
single-antenna users through virtual LOS paths provided by
the RIS. Accordingly, the RIS is deployed to have LOS
paths toward the BS and all prospective user locations. The
BS is equipped with a uniform linear array (ULA) of N
antennas, while the RIS is configured as a UPA with a total
of M antennas. The reflecting elements are arranged along
the yz axis with MH and MV elements on the y and z axes,
respectively, such that M = MHMV. Since users are randomly
distributed in the coverage area, their channels are unknown
to the BS. Therefore, when a user wishes to connect to the
BS, channel estimation should be performed at the BS prior to
the data transmission. In the channel estimation phase, the UE
transmits a pilot signal xt ∈ C at time instance t. Assuming
no direct path between the UE and BS, the received signal
yt ∈ CN at the BS can be modeled as [10]

yt = Hdiag(φt)hxt + nt = Vφtxt + nt, (1)

where nt ∼ NC(0, σ
2IN ) is the additive independent complex

Gaussian noise and the diagonal matrix diag(φt) contains the
RIS phase shift configuration φt = [ejφ1,t , . . . , ejφM,t ]T used
at time t. Additionally, H ∈ CN×M is the channel between
the BS and RIS, while h ∈ CM is channel between the
RIS and UE. We define the cascaded BS-RIS-UE channel as
V = Hdiag(h) ∈ CN×M . We consider a mmWave band so
the channels are modeled according to the geometric Saleh-
Valenzuela channel model [11], [12]:

H =

L∑

ℓ=1

βℓaBS(ϕ
ℓ
BS)aRIS(ϕ

ℓ
AOD, θ

ℓ
AOD)

H (2)

h =
L′

∑

ℓ=1

ζℓaRIS(ϕ
ℓ
AOA, θ

ℓ
AOA), (3)

where the superscript ℓ corresponds to the ℓ-th path in the
multipath scenario, L and L′ are the number of paths, β and
ζ are the complex channel gain coefficients, and aBS is the
BS’s array response vector defined as

aBS(ϕBS) = [1, ej2πdBS sin(ϕBS), . . . , ej2π(N−1)dBS sin(ϕBS)]H ,
(4)

where ϕBS is the azimuth-angle of arrival (AOA) of the RIS
seen from the BS, dBS is antenna spacing normalized by the
carrier wavelength, and aRIS(ϕ, θ) is the array response of the
RIS defined as

aRIS(ϕ, θ) =
[

1, . . . , ej2π[i(m)dH cos(θ) sin(ϕ)+j(m)dV sin(θ)]

, . . . , ej2π[(MH−1)dH cos(θ) sin(ϕ)+(MV−1)dV sin(θ)]
]H

,

(5)

where the azimuth angle ϕ and elevation angle θ seen from
the RIS can be the angle of departure (AOD) towards the BS
in (2), and AOAs from the user in (3). Moreover, i(m) =
mod(m− 1,MH) and j(m) = ⌊m−1

MH
⌋ are the horizontal and

vertical indicies of the m-th RIS element, and mod is the
modulo operator. Similarly, dH and dV are the horizontal and
vertical element spacing normalized by the carrier wavelength.

We consider transmission of P pilot symbols, where P will
be specified later. Assuming the channels to be fixed during
the estimation phase, Φ = [φ1, . . . ,φP ] ∈ CM×P collects the
P RIS configurations. Accordingly, we can write the collective
received pilot symbols Y = [y1, . . . ,yP ] ∈ CN×P as

Y = VΦX+N, (6)

where X = diag(x1, . . . , xP ) and N = [n1, . . . ,nP ] ∈
C

N×P are the collective transmitted pilot symbols and noise
matrix, respectively.

III. SPANNED CHANNEL SUBSPACE BY THE RIS

The channel coefficients are similar for adjacent RIS ele-
ments, and determined by the number of clusters and their
angular distribution over the propagation environment. Even
in an isotropic scattering environment, the spatial correlation
between two RIS elements is a sinc function of the inter-
element distance divided by λ/2 [13]. Hence, for a typical RIS
with a planar structure and sub-λ/2 element spacing, there will
be substantial spatial correlation under isotropic scattering.
The spatial correlation is even stronger in the mmWave band,
which is highly non-isotropic with one dominant LOS path and
a few additional paths. One important implication of spatial
correlation is that any M -dimensional RIS channel h of the
type in (3) belongs to a subspace with a dimension substan-
tially lower than M [13]. In this section, we demonstrate how
the basis vectors for this subspace can be generated for a UPA.

The channel in (3) is a linear combination of array re-
sponse vectors and we will identify a set of orthogonal array
response vectors that can be used to represent any such
channel. There are multiple ways this can be done, but we
assume aRIS(π/2, 0) is one of the vectors and will identify
the remaining ones. Using the expression of the array response
for UPAs in (5), we can write the inner product of two array
response vectors obtained with the angle pairs (ϕ1, θ1) and
(ϕ2, θ2) as [14, Ch. 7]

∣
∣a(ϕ2, θ2)

Ha(ϕ1, θ1)
∣
∣ =

∣
∣
∣
∣
∣

M∑

m=1

ej2π(dVj(m)Ω+dHi(m)Ψ)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

MV−1∑

k=0

ej2πdVkΩ

∣
∣
∣
∣
∣

︸ ︷︷ ︸

S(Ω)

∣
∣
∣
∣
∣

MH−1∑

l=0

ej2πdHlΨ

∣
∣
∣
∣
∣

︸ ︷︷ ︸

T (Ψ)

,
(7)

where

Ω = sin(θ2)− sin(θ1), (8)

Ψ = cos(θ2) sin(ϕ2)− cos(θ1) sin(ϕ1). (9)



Using standard techniques [14, Ch. 7], we can express S(Ω)
and T (Ψ) as

S(Ω) =

∣
∣
∣
∣

sin(πMVdVΩ)

MV sin(πdVΩ)

∣
∣
∣
∣
, (10)

T (Ψ) =

∣
∣
∣
∣

sin(πMHdHΨ)

MH sin(πdHΨ)

∣
∣
∣
∣
. (11)

We want to identify a set of angle pairs that result in mutually
orthogonal array responses. The inner product in (7) is zero
if either S(Ω) or T (Ψ) is zero. From (10) we notice that
S( k

MVdV
) = 0 for k = ±1, . . . ,±(MV − 1), and S(Ω) is

periodic with period 1
dV

. Since we assumed that (π/2, 0) is
one angle pair, we consider θ1 = 0 as a starting point and
identify other elevation angles by solving S(Ω) = 0. Since
the function is periodic, for k = ±1, . . . ,±

⌊
MV

2

⌋
we have

S(Ω) = 0 if

Ω = sin(θ2) =
k

MVdV
, (12)

and solving for θ2, we obtain a set of elevation angles that are
mutually orthogonal. After collecting all the elevation angles
from the previous step in the set Θ = {θ1, . . . , θn}, for each
θ ∈ Θ we also need to find the azimuth angles that result
in T (Ψ) = 0. This is required to preserve the orthogonality
among all the array response vectors with the same eleva-
tion angle. From (11), we observe that T ( l

MHdH
) = 0 for

l = ±1, . . . ,±(MH − 1), and it is periodic with period 1
dH

.
Similarly, we consider ϕ1 = π/2 as the reference point for
each elevation angle θi ∈ Θ to identify other azimuth angles
that satisfy T (Ψ) = 0. Therefore, for l = ±1, . . . ,±(MH−1),
we construct the set

Φ(θi) =

{

ϕ2 : Ψ = cos(θi) (sin(ϕ2)− 1) =
l

MHdH

}

(13)

to collect all the azimuth angles that correspond to orthogonal
beams associated with elevation angle of θi.

In summary, we have determined a set of elevation an-
gles that generates orthogonal channel directions. This step
establishes the solid blue lines in the elevation-azimuth plane
in Fig. 1 for an 8 × 8 RIS with dH = dV = 1

4 . In this
figure, every two points belonging to different blue lines are
mutually orthogonal. In the second step, for each blue line,
we determine a collection of azimuth angles where any two
choices satisfy the orthogonality condition (13). In Fig. 1,
these angles are shown with red crosses. We observe that for
higher values of |θ|, we have fewer points. This is because the
beamwidth is inversely proportional to cos(θ) and diverging
from boresight where θ = 0, the beamwidth increases [15]. For
any (ϕ, θ) in between the crosses in Fig. 1, the corresponding
array response vector can be expressed as a linear combination
of the selected orthogonal array response vectors.

Following the above mentioned approach, the set A =
{(ϕ1, θ1), . . . , (ϕη, θη)} collects all the azimuth and elevation
pairs (red crosses in Fig. 1) that are generated in this way. Ac-
cordingly, set B = {aRIS(ϕi, θi) : (ϕi, θi) ∈ A} collects all
the orthogonal array response vectors that form a basis of the

Fig. 1: The points in the elevation-azimuth plane that give
mutually orthogonal array response vectors when using an 8×
8 RIS with dH = dV = 1

4 .

Algorithm 1 The proposed algorithm to generate a set of basis
vectors that spans the subspace of the RIS channel.

1: Initialize A = ∅,B = ∅
2: Θ = {θ = arcsin( k

MVdV
) for k = 0,±1, . . . ,±

⌊
MV

2

⌋
}

3: for θi ∈ Θ do

4: for l = 0,±1, . . . ,±(MH − 1) do

5: ϕ← arcsin

(

1 +
l

MHdH
cos(θi)

)

6: A ← A∪ {(ϕ, θi)}
7: end for

8: end for

9: for (ϕi, θi) ∈ A do

10: B ← B ∪ aRIS(ϕi, θi)
11: end for

subspace in CM where the RIS channel resides. Algorithm 1
summarizes the procedure to generate a set B of basis vectors.

The cardinality |A| = |B| = η defines the dimension of
the subspace. This value is also known as the spatial degrees-
of-freedom (DOF) and for a large planar aperture it can be
asymptotically approximated as [16], [17]

η ≈ πMHdHMVdV. (14)

We notice that η increases linearly with the area MHdHMVdV

of the aperture normalized by the wavelength. To show under
what conditions the approximate/asymptotic formula in (14) is
a good prediction of the number of basis vectors generated by
Algorithm 1, Fig. 2 shows η/M for the proposed algorithm
and the approximate formula. The dashed lines show the
approximate DOF in (14), while the solid lines show the values
obtained using the proposed algorithm. As it can be seen, the
approximation in (14) is tight for large arrays and the tightness
appears earlier for arrays with small element spacings.

Another observation from Fig. 2 is that η < M and the
ratio becomes particularly small when the element spacing is
smaller than λ/2, which is the intended range for RIS. The
implication of this is that the channel h ∈ CM in (3) can be



Fig. 2: The ratio η/M for different array sizes and element
spacings.

expressed as a linear combination of the η orthogonal basis
vectors aRIS(ϕi, θi) ∈ B, such that

h =

η
∑

i=1

ciaRIS(ϕi, θi), (15)

where ci is the channel coefficient associated with the basis
vector aRIS(ϕi, θi). In Sec. IV, we will utilize this basis
representation when performing channel estimation to reduce
the required pilot length from M to η. However, it should
be noticed that (15) is strictly speaking an approximate
representation and there exists a tiny fraction of the signal
power outside its span. To clarify further, we investigate
the eigenvalues of the spatial channel correlation matrix
R = E{aRIS(ϕ, θ)a

H
RIS(ϕ, θ)} for a 32 × 32 RIS. Fig. 3

illustrates the eigenvalues of R in descending order where
ϕ ∼ U [−π/3, π/3], θ ∼ U [−π/2, π/2], and element spacings
of dH = dV ∈ { 14 , 1

8} are considered. The value of η obtained
by our algorithm is denoted by a star marker to specify
the channel dimension that our proposed method considers.
We observe that the number of large eigenvalues equals the
number of basis functions in the representation (15), while the
remaining eigenvalues decrease rapidly meaning that 98.7%
of the channel power lies in the identified η dimensions. The
remaining channel power can be neglected in practice, but
cause a performance saturation at very large SNRs, which will
be discussed further in Sec. V.

IV. CHANNEL ESTIMATION AND RIS CONFIGURATION

In this section, we first explain the intuition behind the RIS
phase configuration and the corresponding power gain at the
BS considering perfect CSI. Then, we propose a novel method
to perform channel estimation and RIS phase configuration by
exploiting the channel parametrization in (15).

A. RIS Configuration with Perfect CSI and General Channels

Suppose the signal x is transmitted with power ρ. To recover
it from the received signal vector y in (1), the BS applies the
unit-norm receive combiner w:

y = wHHdiag(φ)hx+wHn = wHVφx+ ñ, (16)

Fig. 3: Eigenvalues in descending order for an RIS with 32×32
elements.

where w should be configured to maximize the SNR and ñ =
wHn ∼ NC(0, σ

2). The achievable rate is log2(1 + SNR),
where the SNR is

SNR =
ρ|wHVφ|2

σ2
. (17)

The RIS phase configuration φ and the receive combiner w

should be jointly selected to maximize the SNR. If the BS has
perfect knowledge of the cascaded channel V, it can compute
the local optimal using the alternating optimization

φopt = ej·arg(V
H
w), (18)

wopt =
Vφopt

‖Vφopt‖
, (19)

and communicated to RIS via a backhaul connection [2].
Recall that the cascaded channel can be expressed as V =

Hdiag(h). Since wHVφ = wHHdiag(φ)h, the optimized
RIS configuration can be divided into two parts:

φ = φtx ⊙ φrx, (20)

where ⊙ denotes the Hadamard product. The part φtx acts as
a transmit precoder towards the BS and φrx acts as receive
combiner from the user. In the next subsection, we explain
how these two parts should be designed to maximize the SNR
in (17) for LOS-dominant channels.

B. RIS Configuration with Perfect CSI and LOS Channels

We will now impose a practical structure on the channel.
The BS and RIS are fixed in position and the channel is LOS-
dominant in a mmWave band. Accordingly, we adopt the static
LOS channel model to simplify the channel matrix in (2) to

H = βbraBS(ϕBS)aRIS(ϕAOD, θAOD)
H , (21)

where βbr is the complex channel gain between RIS and BS.
Utilizing the fact that the channel matrix in (21) has

rank one, we can express it as H = u1λ1v
H
1 , where

u1 = 1√
N
aBS(ϕBS), λ1 =

√
MNβbr, and v1 =

1√
M
aRIS(ϕAOD, θAOD). We can then rewrite (16) as

y = wHu1λ1v
H
1 diag(h)φx + ñ = wHu1ṽ

H
1 φx+ ñ, (22)



where ṽ1 = λ1diag(h
∗)v1. Accordingly, the SNR in (17) can

be simplified as

SNR =
ρ|wHu1|2|ṽH

1 φ|2
σ2

. (23)

This expression enables separate optimization of the receive
combining w and the RIS configuration φ. The maximum
SNR is achieved when w = u1 [14] and the unit-modulus
entries of φ have the same phase as the corresponding entries
in ṽ1. The latter corresponds to maximizing |ṽH

1 φ|2 =
|λ1|2|vH

1 diag(h)φ|2 = |λ1|2|vH
1 diag(φtx)diag(φrx)h|2,

which is achieved by φtx =
√
Mv1 and φrx = e−j·arg(h).

In case of a LOS channel h = ζaRIS(ϕAOA, θAOA), then
|wHu1|2 = 1 and |ṽH

1 φ|2 = M |λ1ζ|2 = M2N |βbrζ|2.
Hence, under perfect CSI, the SNR is proportional to N and
to M2. This is the behavior to strive for with imperfect CSI.

C. Joint Channel Estimation and Phase Shift Optimization

Upon the network deployment, the angles ϕBS, ϕAOD, and
θAOD in (21) are fixed and known to the BS. Following
the discussion in Sec. IV-B, the vectors w and φtx can
then be selected optimally as w = u1 = 1√

N
aBS(ϕBS)

and φtx =
√
Mv1 = aRIS(ϕAOD, θAOD). The key practical

challenge is to select φrx = e−j arg(h) when the UE-RIS
channel h is unknown a priori. To estimate the unknown part
of the cascaded channel, the UE transmits a constant pilot
signal x =

√
ρ with power ρ at η time instances. We configure

the RIS phase shift vector at each time instance as

φt = φtx ⊙ aRIS(ϕt, θt), (24)

by considering the set of orthogonal basis vectors
aRIS(ϕt, θt) ∈ B derived in Sec. III. By adding time
indices on the received signal, RIS configuration, and noise,
we can rewrite (22) for t = 1, . . . , η as

yt =
√
ρwHu1ṽ

H
1 φt + ñt =

√
ρwHVφt + ñt, (25)

where the scalar wHVφt is the projection of wHV onto φt.
Since w = u1, it follows that wHu1 = 1 and yt therefore
corresponds to the projection of ṽ1 on φt. By collecting the
received signals in (25) in the vector y ∈ Cη and the RIS
configurations in Φ = [φ1, · · · ,φη] ∈ CM×η , we obtain

yT =
√
ρṽH

1 Φ+ ñT . (26)

We can compute the reduced-subspace LS (RS-LS) estimate
of ṽ1 in the subspace spanned by the columns of Φ as

ˆ̃v1 =
Φy∗

M
√
ρ
=

1

M
ΦΦH ṽ1 +

1

M
√
ρ
Φñ∗, (27)

where 1
M
ΦΦH is the projection matrix onto the subspace of

dimension η that we derived in Sec. III. Since we know that ṽ1

approximately falls into this subspace, the projection matrix
1
M
ΦΦH basically works as an identity matrix. However, the

noise term 1
M

√
ρ
Φñ∗ has the covariance matrix σ2

ρM2ΦΦH

with the trace σ2

ρ
η
M

, thus all the noise outside the signal

subspace is removed which improves the estimation quality.
The resulting estimate of the entire cascaded channel is

V̂ = u1
ˆ̃vH
1 = wˆ̃vH

1 . (28)

In line with Sec. IV-B, we select the phase configuration as

φ̂ = ej·arg(
ˆ̃v1). (29)

V. NUMERICAL EVALUATION

We consider a LOS simulation scenario where the user
can be anywhere in the RIS coverage area specified by
ϕ ∈ [−π/3, π/3], θ ∈ [−π/2, 0], and distance d ∈ [30, 50]
meters with uniform probability. The carrier frequency is 28
GHz, the noise power is σ2 = −96 dBm, and the bandwidth
is 20 MHz. The BS is equipped with a ULA of 128 antennas
with antenna spacing dBS = 1/2. The RIS is equipped with
a UPA with MH = MV = 128 elements, and the element
spacing dH = dV = 1

4 . We will vary the transmit power ρ.
The LOS propagation channel between the RIS and BS is

generated according to (21), where βbr = β0e
−j 2π

λ
dbr with

β0 = −81.4 dB corresponding to the distance of dbr = 10m
[18]. For simplicity we assume the RIS is deployed at the
same elevation as the BS such that the BS see the RIS at the
boresight; that is, ϕBS = θAOD = 0 and ϕAOD = π/6.

We adopt a correlated Rician fading model to generate the
channel between the RIS and UE. The Rician factor (the
ratio of the power of the LOS component to all the NLOS
components) is evaluated based on K = 13− 0.03 · d

1m [dB],
where d is the distance between the RIS and UE [19]. Initially,
the LOS complex coefficient is evaluated as β0e

−j 2π
λ

d, where
β0 = −61.4 − 20 log10(d/1m) dB [18]. Accordingly, for
the NLOS paths ℓ 6= 1, we generate the complex channel
coefficient as ζℓ ∼ NC(0, γℓ), where the associated power γℓ
is evaluated based on the parameters reported in [18].

We will now evaluate the performance of the proposed
approach that we described in Sec. IV, where we estimated the
channel using (28) and configured φ according to (29). We use
the conventional LS estimator from [8] as the benchmark. The
receive combining and RIS configuration are then computed
through the alternating optimization in (18) and (19) by
treating the LS estimate as being perfect. For an estimated
cascaded channel V̂ we define the normalized mean-squared-
error (NMSE) as

NMSE =
1

K

K∑

i=1

‖Vi − V̂i‖2F
‖Vi‖2F

, (30)

where K is the number of realizations in the Monte Carlo
simulation, and ‖ · ‖F is the Frobenius norm. Fig. 4 shows the
NMSE as a function of the pilot transmit power ρ, averaged
over K = 500 user locations. According to (27), our designed
estimator reduces the total noise power by a factor η/M
compared to the LS estimator, without reducing the total
received signal power. In this setup, η/M ≈ 0.198. The figure
shows that our proposed scheme vastly outperforms LS in
terms of NMSE although the pilot length in our method is
only 19.8% of that with the LS estimator. Moreover, we notice



Fig. 4: NMSE versus pilot transmit power.

Fig. 5: Average SNR with respect to the transmit power.

that the NMSE with our estimator approaches an error floor
at very high transmit power. We anticipated such behavior
in Sec. III since our proposed algorithm discards channel
dimensions containing very low power and only accounts for
the significant dimensions. Nevertheless, the attained accuracy
is adequate to configure the RIS phase shift very well.

Fig. 5 shows the average SNR for data transmission in
(17) with respect to the pilot transmit power. We compare
our proposed method with the maximum SNR obtained with
perfect CSI and with the LS estimator as before. By increasing
the transmit power, the gap between the optimal and achieved
SNR decreases. This is due to the higher SNR during the chan-
nel estimation. Our method outperforms LS when the power
budget is limited while the LS estimator is slightly better at
very high transmit power values. This is a consequence of the
fact that a tiny fraction of the channel power falls outside the
proposed subspace considered in the channel estimation. Such
a loss is acceptable considering that our method reduced the
pilot overhead by 80.2% compared to the LS estimator. This
overhead saving improves the overall data rate as more time
is dedicated to data transmission.

VI. CONCLUSION

In this paper, we proposed a resource-efficient joint channel
estimation and RIS phase configuration method that exploits
the fact that the channels involving the RIS approximately
reside in a low-dimensional subspace. We first characterized

this subspace by deriving a set of basis vectors that spans it
and used these bases to obtain a set of RIS configurations to
consider during channel estimation. We demonstrated that our
method outperforms the conventional LS estimator in terms
of channel estimation accuracy while requiring a shorter pilot
length. For example, when the element spacing is a quarter of
the wavelength, the pilot overhead can be reduced by 80%.
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