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Abstract—Radio stripes (RSs) is an emerging technology in
beyond 5G and 6G wireless networks to support the deployment
of cell-free architectures. In this paper, we investigate the potential
use of RSs to enable joint positioning and synchronization in the
uplink channel at sub-6 GHz bands. The considered scenario
consists of a single-antenna user equipment (UE) that com-
municates with a network of multiple-antenna RSs distributed
over a wide area. The UE is assumed to be unsynchronized
to the RSs network, while individual RSs are time- and phase-
synchronized. We formulate the problem of joint estimation of
position, clock offset and phase offset of the UE and derive
the corresponding maximum-likelihood (ML) estimator, both
with and without exploiting carrier phase information. To gain
fundamental insights into the achievable performance, we also
conduct a Fisher information analysis and inspect the theoretical
lower bounds numerically. Simulation results demonstrate that
promising positioning and synchronization performance can be
obtained in cell-free architectures supported by RSs, revealing at
the same time the benefits of carrier phase exploitation through
phase-synchronized RSs.

Index Terms– Radio stripes, cell-free massive MIMO, position-
ing, synchronization, carrier phase, sub-6 GHz.

I. INTRODUCTION

Cell-free massive multiple-input-multiple-output (MIMO)

has recently emerged as a promising technology for beyond

5G wireless networks to overcome challenges associated with

conventional network-centric implementations, such as inter-

cell interference and large intra-cell variations in data rate

[1]–[3]. In user-centric cell-free architectures, each user equip-

ment (UE) communicates with a UE-specific subset of widely

distributed access points (APs) that cooperatively serve it

using phase-synchronized transmission/reception enabled by

fronthaul links [2]. Such an architecture not only improves

communication metrics (i.e., more uniform coverage and better

interference management), but also brings significant benefits

for positioning and sensing [4]–[7], which is an opportunity for

integrated sensing and communications (ISAC) in the cell-free

context [8]. In particular, phase-coherent processing with wide

aperture enables exploitation of wavefront curvature effects

(i.e., near-field) [4], [7] and high-resolution carrier phase (CP)

information [9] to estimate UE/object positions.

Among cell-free implementation alternatives, the RSs tech-

nology holds great potential as a cost-efficient architecture for

dense area deployments, such as stadiums and railway stations

[3], [10]. RSs, also called RadioWeaves [11]–[13], consist of

multiple antenna elements and processing units fitted inside the

same cable, which can be easily deployed over a large area [3].

Serially connected RSs communicate with a central processing

unit (CPU) via a shared bus that simultaneously provides

synchronization and power supply [3]. From the viewpoint of

positioning and sensing, synchronization of distributed arrays

has been experimentally shown to improve angle-of-arrival
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Fig. 1. General scenario of uplink UE positioning supported by a radio stripe
(RS) network with N stripes.

(AoA) estimation accuracy [14]. Hence, phase-synchronized

and distributed RSs offer a viable cell-free deployment solution

to reap the benefits in positioning and sensing.

Despite a considerable amount of research on the commu-

nications [10], [11], [13], [15], wireless power transfer [12],

[16], and sensing [4], [7] aspects of RSs, no studies have inves-

tigated the potential of positioning aided by widely distributed

RSs at sub-6 GHz bands. Recent work investigated coherent

localization in distributed millimeter-wave (mmWave) massive

MIMO systems [17]–[19]. However, two major differences ex-

ist between sub-6 GHz and mmWave operation. First, ensuring

phase synchronization and calibration among distributed arrays

at mmWave bands is extremely challenging since hardware

imperfections (e.g., phase noise and frequency errors) become

more severe as the carrier frequency increases [20, Sec. 6.2.1].

Second, unlike the sparse nature of mmWave propagation, sub-

6 GHz channels involve dense multipath components (DMCs)

[12], [21] that should be incorporated into signal modeling as a

disturbance with certain statistical characterization. Therefore,

the question remains unanswered as to under what conditions

and to what extent phase synchronization and accompanying

phase-coherent processing can improve positioning in a widely

distributed RSs network at sub-6 GHz. To fill this knowledge

gap, this paper addresses the problem of uplink positioning and

synchronization of a UE supported by a network of RSs geo-

graphically distributed over a large area in a cell-free deploy-

ment scenario. In contrast to co-located massive MIMO based

localization (e.g., [22]), distributed MIMO setups with phase-

coherent processing enable exploitation of spherical wavefront

through near-field conditions and CP information to obtain

high-resolution location estimates. The main contributions of

the paper are as follows:

• We investigate the problem of uplink joint positioning and

synchronization of a UE with the emerging technology of
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distributed RSs, considering the distinctive properties of

sub-6 GHz operation, including phase and time synchro-

nization capability [23], dense multipath environment [12]

and CP exploitation.

• We derive the maximum likelihood (ML) estimators and

the corresponding Cramér-Rao lower bounds (CRLBs) on

position, clock and phase offset estimation, both with and

without exploiting CP information.

• We carry out extensive simulation analysis to showcase

the impact of various system parameters (i.e., bandwidth,

aperture size, signal-to-dense multipath-plus-noise ratio

(SDNR), presence/absence of phase synchronization) on

positioning and clock offset estimation accuracy, offering

valuable insights into practical RS deployments towards

6G networks.

Notations: Toep(x,xH) denotes a Hermitian Toeplitz ma-

trix with first column x and first row xH. reshapeM,K (·)
reshapes a vector into an M × K matrix. [x]i denotes the

i-th element of the vector x and [X]i,j the element of row i
and column j of the matrix X . The vector 1n is 1 at the n-th

entry and 0 elsewhere. ℜ{x} denotes the real part of x.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe the uplink positioning scenario

with RSs acting as receivers and a single UE in the role of

transmitter, illustrate the signal model at the RSs and formulate

the joint positioning and synchronization problem.

A. Uplink Positioning Scenario with Radio Stripes

Consider a single-input-multiple-output (SIMO) system with

a RSs network composed of N stripes, each consisting of M
antennas, and a single UE equipped with a single antenna

and communicating with the network through the uplink (UL)

channel [10], [16]. The RSs network is assumed to have per-

fect phase synchronization among individual stripes, thereby

effectively turning it into a large multiple-antenna access point

[3, Sec. 3.1], while the UE has unknown phase offset δφ and

unknown clock offset δτ with respect to the RSs network. The

wavefront of the signal transmitted by the UE is assumed

planar over each individual RS (i.e., individual RSs lie in

the far-field of the UE), but no longer planar over the RSs

network seen as a whole due to a large aperture distributed

over a wide area. The RSs are deployed around a rectangle

located at a specific height from the floor level, as depicted

in Fig. 1. Each individual RS is placed at a known position

pRS

n = [xRS

n yRS

n zRS

n ]
T with known orientation βn around the z-

axis, measured counter-clockwise from the x-axis1, while the

UE is located at an unknown position p = [px py pz]
T.

B. Signal and Channel Models

For UL communications, the UE transmits orthogo-

nal frequency division multiplexing (OFDM) pilots s =
[s0 · · · sK−1]

T ∈ CK×1 over K subcarriers with subcarrier

spacing ∆f , e.g., sounding reference signal (SRS) for 5G new

radio (NR) UL positioning [24]. Assuming a quasi-static block

fading condition, the UL received signal at the n-th RS over

subcarrier k can be written as [12], [22]

yn,k = hn,ksk +wDMC

n,ksk + zn,k ∈ C
M×1 , (1)

1The orientation of each RS is defined by a single angle representing the
rotation around the z-axis, meaning that the RSs are completely aligned with
the x− y plane of the coordinate system.

where hn,k ∈ CM×1 denotes the deterministic channel com-

ponents including the line-of-sight (LoS) path and the pos-

sible non-line-of-sight (NLoS) contributions originating from

dominant reflections from large objects in the surrounding

environment, wDMC

n,k ∈ C
M×1 represents the contribution from

DMCs, and zn,k ∈ CM×1 denotes circularly symmetric

complex Gaussian noise with zn,k ∼ CN (0M , σ
2
IM ), with

σ2 denoting the noise power. In this work, we consider the

simplified scenario in which the LoS path over each UE-RS

link is assumed to be dominant compared to the additional

NLoS paths, giving rise to the following geometric channel

model [12], [16], [22]

hn,k = αne
jφna(θn)e

−j2πk∆f τ̃n , (2)

where

• αn ∈ R is the large-scale fading amplitude coefficient.

• φn is the phase term involving the effects of one-way

signal propagation (related to the UE position p) and

phase offset between the RSs network and UE, given by

φn = −2πfcτn + δφ , (3)

with

τn =
1

c
‖p− pRS

n ‖. (4)

• τ̃n is the pseudo-delay including the effect of one-way

propagation and the clock offset of the UE, namely

τ̃n = τn + δτ . (5)

• a(θn) ∈ C
M×1 is the RS array response to a signal

impinging with AoA θn (azimuth angle relative to the

boresight of the n-th RS antenna array). Without loss of

generality, we assume that each RS is equipped with a

uniform linear array (ULA) with antenna element spac-

ing2 d, so that the array response vector takes the form

a(θ) ,
[
e−j 2π

λ
d(M−1

2 ) sin θ · · · ej 2π
λ

d(M−1

2 ) sin θ
]T

(6)

with λ = c/fc, fc and c denoting the wavelength, carrier

frequency and speed of propagation, respectively. The

AoA θn relates the known position and orientation of the

n-th RS and the unknown UE position according to

θn =
π

2
− atan2 ([p′

n]2, [p
′
n]1) , (7)

where atan2(y, x) denotes the four-quadrant arc tangent

function and

p′
n = M−1(βn)(p− pRS

n ) (8)

is the UE position in the local reference frame of the n-th

RS, and M(β) is the rotation matrix around the z-axis.

C. Dense Multipath Components

The dense multipath term in (1) can be modeled as a

stochastic component with distribution [22], [26]

wDMC

n ∼ CN (0MK ,R
DMC(ηDMC)) , (9)

with wDMC

n , [(wDMC

n,0)
T · · · (wDMC

n,K−1)
T]T ∈ C

MK×1 de-

notes the DMC observed in the spatial-frequency domain, and

RDMC ∈ CMK×MK is the spatial-frequency covariance matrix

of the DMC. Assuming spatially white DMC and the Kro-

necker separability of the spatial and frequency domains (i.e.,

2For RS deployments, the element spacing can be larger than the standard
half-wavelength spacing to increase spatial resolution [13], [25, Ch. 2.2.4].



uncorrelated scattering between angle and delay domains),

RDMC can be written as [21, Eq. (2.69)], [22], [26]

RDMC(ηDMC) = Rf (ηDMC)⊗ IM , (10)

where Rf (ηDMC) ∈ CK×K is the frequency domain covariance

matrix with a Toeplitz structure

Rf (ηDMC) = Toep(κ(ηDMC),κ(ηDMC)
H) . (11)

In (11), ηDMC = [αd βd τd]
T is the DMC parameter vector

consisting of the peak power αd, the normalized coherence

bandwidth βd and the normalized onset time τd, and κ(ηDMC) ∈
CK×1 represents the sampled version of the DMC power

spectral density [21, Eq. (2.61)]

ψDMC(f) =
αd

βd + j2πf
e−j2πfτd . (12)

D. Spatial-Frequency Observations at Radio Stripes

Aggregating the received signals in (1) over K subcarriers

and using the geometric model in (2) and the DMC model in

(9), the spatial-frequency observation matrix at the n-th RS is

Yn , [yn,0 · · · yn,K−1] ∈ C
M×K

= αne
jφna(θn)(b(τ̃n)⊙ s)T +Wn , (13)

where

b(τ) ,
[
1 e−j2π∆fτ · · · e−j2π(K−1)∆f τ

]T
∈ C

K×1 (14)

is the frequency domain steering vector, and

Wn = W DMC

n ⊙ 1sT +Zn ∈ C
M×K (15)

represents the disturbance term consisting of the DMCs and

additive white noise, with W DMC

n = reshapeM,K (wDMC

n ) ∈
CM×K and Zn = [zn,0 · · ·zn,K−1] ∈ CM×K . After simple

manipulations (details omitted due to lack of space), it can be

shown that Wn has the distribution

vec (Wn) ∼ CN (0MK ,R(ηDMC, σ
2)) , (16)

where

R(ηDMC, σ
2) =

(
Rf (ηDMC)⊙ ssH

)
⊗ IM + σ2

IMK . (17)

Different methods have been proposed to estimate the DMC

parameters. For instance, in [21, Sec. 6.1.8] authors provide a

suitable method for finding suboptimal though accurate esti-

mates of the DMC parameters starting from covariance matrix

estimates (obtained from the observed data) and exploiting the

peculiar Toeplitz structure of R(ηDMC, σ
2). A similar method

is adopted in [22, Sec. III-C1] to find good estimates of the

DMC parameters and reconstruct an estimate of R(ηDMC, σ
2).

In the following, to decouple the less investigated problem

of joint localization and synchronization of a UE supported

by a network of RSs from the more understood problem of

estimating DMC parameters, we assume that a preliminary

calibration phase has been performed to estimate R(ηDMC, σ
2),

by resorting to one of the methods presented in [22], [21].

E. Problem Formulation

In the considered UL communication scenario supported by

a network of RSs, our goal is to estimate the position of the UE

and to synchronize its clock and phase to the RSs network. To

ease the exposition and without loss of generality,we assume

that the height of the UE (pz coordinate) is assigned and the

ultimate positioning problem then consists in retrieving the

(px, py) coordinates, i.e., locating the UE in the x− y plane.3

Accordingly, p2D = [px py]
T is the 2D UE position vector.

Given the observations {Yn}N−1
n=0 in (13) collected from all

RSs, the problem of interest is to estimate the UE position

p2D, its clock offset δτ and its phase offset δφ. The unknown

parameter vector for this estimation problem is defined as

η = [pT

2D
δτ δφ αT ]T ∈ R

(N+4)×1 , (18)

where α , [α0 · · · αN−1]
T ∈ RN×1.

III. JOINT UPLINK POSITIONING AND SYNCHRONIZATION

In this section, we derive novel algorithms based on the

ML theory to solve the joint positioning and synchronization

problem formulated in Sec. II-E.

A. Joint Direct Positioning and Synchronization

Leveraging the ML rationale, we formulate the positioning

and synchronization problem as a direct joint estimation prob-

lem where the sought p2D, δτ , and δφ parameters are directly

inferred from the raw observations collected at all RSs as

η̂ML = argmax
η

p({Yn}N−1
n=0 | η) . (19)

Assuming independent realizations of the disturbance compo-

nent Wn in (13) across the RSs, the log-likelihood version of

the objective function in (19) can be written as

log p({Yn}N−1
n=0 | η) =

N−1∑

n=0

log p(Yn | η) , (20)

where

log p(Yn | η) = −
∥∥∥R−1/2

[
yn − αne

jφnc(θn, τ̃n)
]∥∥∥

2

2

−MK log π − log detR , (21)

c(θ, τ) , (b(τ) ⊙ s) ⊗ a(θ) ∈ CMK×1, yn , vec (Yn) ∈
CMK×1 and R is defined in (17) (for conciseness, we omit the

dependencies on ηDMC and σ2). Neglecting irrelevant constant

terms in (20), the problem in (19) becomes

η̂ML = argmin
η

LML(η) , (22)

where

LML(η) ,
N−1∑

n=0

∥∥∥y′
n − αne

jφnc′(θn, τ̃n)
∥∥∥
2

2
, (23)

y′
n , R−1/2yn and c′(θ, τ) , R−1/2c(θ, τ). To tackle the

ML estimation problem, we first notice that the amplitudes

αn in (22) can be estimated in closed-form on a per-RS basis

as a function of the remaining parameters belonging to the

respective RS as

α̂ML

n =
ℜ
{
(ejφnc′(θn, τ̃n))

Hy′
n

}

‖ejφnc′(θn, τ̃n)‖22
=
ℜ
{
(ejφnc′(θn, τ̃n))

Hy′
n

}

‖c′(θn, τ̃n)‖22
=

(
(ejφnc′(θn, τ̃n))

Hy′
n+(ejφn(y′

n)
Hc′(θn, τ̃n))

)

2 ‖c′(θn, τ̃n)‖22
. (24)

3Note that the z-component of the UE position can be determined using
ULAs and delay information, though with a lower accuracy due to the absence
of angular elevation information. The considered scenario can be easily
extended to provide accurate 3D localization by using 2D planar arrays (e.g.,
rectangular) in place of ULA-RSs and by including the estimation elevation
angles in the estimation problem. Note that no theoretical issues will arise
when extending the proposed estimation approaches to 3D localization, except
for a higher computational complexity due to the increased dimension of the
estimation problem.



Plugging (24) back into (23), utilizing (3) and dropping the

dependency on α, we obtain the compressed log-likelihood

LML(p2D, δτ , δφ)=

N−1∑

n=0

∥∥∥

,y̆n(θn,τ̃n)︷ ︸︸ ︷
y′
n − (c′(θn, τ̃n))

Hy′
n

2 ‖c′(θn, τ̃n)‖22
c′(θn, τ̃n)

− ej2φn(y′
n)

Hc′(θn, τ̃n)

2 ‖c′(θn, τ̃n)‖22
c′(θn, τ̃n)

∥∥∥
2

2
,

=
N−1∑

n=0

∥∥∥y̆n(θn, τ̃n)− ej2δφ c̆n(θn, τ̃n, τn)
∥∥∥
2

2
,

(25)

where

c̆n(θn, τ̃n, τn) ,
e−j4πfcτn(y′

n)
Hc′(θn, τ̃n)

2 ‖c′(θn, τ̃n)‖22
c′(θn, τ̃n) . (26)

It is not difficult to show that also the phase offset δφ can

be estimated in closed-form as a function of the remaining

parameters. More specifically, the optimal δφ minimizing (25)

can be readily obtained as

δ̂ML

φ =
∠
(∑N−1

n=0 c̆Hn(θn, τ̃n, τn)y̆n(θn, τ̃n)
)

2
+Aπ , (27)

where A ∈ Z is introduced to account for possible integer

ambiguities in phase estimation. Inserting (27) into (25) yields

LML(p2D, δτ ) =

N−1∑

n=0

(
‖y̆n(θn, τ̃n)‖22 + ‖c̆n(θn, τ̃n, τn)‖22

)

− 2

∣∣∣∣∣

N−1∑

n=0

c̆Hn(θn, τ̃n, τn)y̆n(θn, τ̃n)

∣∣∣∣∣ , (28)

where the direct geometric relation between the position pa-

rameters p = [p2D pz]
T, δτ and the per-RS channel parameters

{θn, τ̃n, τn}N−1
n=0 is specified in (4), (5), (7) and (8). The final

expression of the direct ML estimator than becomes

[p̂ML

2D
δ̂ML

τ ] = arg min
p2D,δτ

LML(p2D, δτ ) , (29)

where, interestingly, the dependencies left are only upon the

parameters of interest p2D and δτ . In principle, solving (29)

would require a joint optimization over the continuous support

defined by the three parameters p2D and δτ , which unfortu-

nately is not feasible in closed-form. A more practical way

to tackle (29) consists in griding the parameters support and

then employing an exhaustive, but computationally demanding

3D grid search. In the following Proposition, we illustrate an

alternative approach to obtain a low-complexity estimate δ̂τ .

Proposition 1. A coarse estimate of δτ can be obtained by

using a multilateration approach based on a low-complexity

iterative least squares (ILS) procedure [27]. Specifically, by

defining Ȳn = IFFT(Y T

n ) as the IFFT-transformed observa-

tions over NF points for each UE-RS link, we first perform

a noncoherent integration across the spatial domain (i.e.,

samples over the M antennas at each RS) and seek for the

index of the maximum element in the cost function

q̂ = argmax
q

[
M∑

m=1

|[Ȳn][q,m]|2 : 0 ≤ q ≤ NF − 1

]

with |[Ȳn][q,m]| denoting the absolute value of the (q,m)-th
entry of Ȳn. Accordingly, a coarse estimate of the pseudo-

delay τ̃n can be obtained by mapping the index q̂ with the

corresponding IFFT bin as ̂̃τn = q̂/(NF∆f). Once the

set of pseudo-delays {̂̃τn}Nn=1 for all UE-RS links has been

estimated, it can be used to set up a system of equations

expressed as a function of the parameter of interest δτ (in

addition to p) according to (5). This over-determined system

(for N > 3) can be efficiently solved by adopting an ILS

procedure as detailed in [28, Sec. 3.1]. We refer to the obtained

clock offset estimate as δ̂ILS

τ .

The estimate δ̂ILS

τ can be plugged back into (28) to reduce

the cost involved in the optimization from 3D to 2D. Solving

(29) for a fixed δτ = δ̂ILS

τ allows us to obtain also an initial

estimate of p2D which, given its strong dependency on the ILS

estimation accuracy, will be denoted for convenience as p̂ILS

2D
.

The actual ML estimates that we retain can be then obtained

using a further low-complexity refinement step where we

solve (29) for (p2D, δτ ) jointly by means of a low-complexity

iterative optimization (e.g., Nelder-Mead algorithm), using the

suboptimal estimates p̂ILS

2D
and δ̂ILS

τ as initialization.

B. Joint Direct Positioning and Synchronization without Ex-

ploiting Carrier Phase Information

In this section, we derive an alternative version of the

direct estimator in (19) where we do not exploit the CP

information in (3). Our aim is to explore the impact of phase

synchronization among the RSs, represented by the parameter

δφ in (19), on localization accuracy (i.e., to study if accuracy

degrades when φn is assumed to be an unknown parameter

that has no relation to the geometry through τn). In this case,

by treating the channel amplitudes as unstructured complex

entities γn = αne
jφn ∀n, the cost function in (23) becomes

LML-NCP(η) ,

N−1∑

n=0

∥∥∥y′
n − γnc

′(θn, τ̃n)
∥∥∥
2

2
, (30)

where γn ∈ C, the label “ML-NCP” denotes no carrier phase

(NCP), and the position-domain unknown parameter vector

becomes

η = [pT

2D
δτ ℜ{γ}T ℑ{γ}T]T ∈ R

(2N+3)×1 , (31)

with γ , [γ0 · · · γN−1]
T. In (30), the estimates of the

complex gains γn, n = 1, . . . , N , can be obtained as

γ̂ML-NCP

n =
(c′(θn, τ̃n))

Hy′
n

‖c′(θn, τ̃n)‖22
, (32)

leading to the compressed log-likelihood cost function

LML-NCP(p2D, δτ ) =

N−1∑

n=0

∥∥∥Π⊥
c′(θn,τ̃n)

y′
n

∥∥∥
2

2
, (33)

where Π
⊥
c′(θn,τ̃n)

= I − c
′(θn,τ̃n)c

′(θn,τ̃n)
H

‖c′(θn,τ̃n)‖2 is the orthogonal

projector onto the null space spanned by c′(θn, τ̃n). Accord-

ingly, the final expression of the direct ML estimator that does

not exploit CP information is

[p̂ML-NCP

2D
δ̂ML-NCP

τ ] = arg min
p2D,δτ

LML-NCP(p2D, δτ ) . (34)

Comparing (33) to (28), we immediately notice in (33) the

absence of a cross-RS correlation term represented by the

last term in (28). This term links the different known RSs

positions and the unknown UE position through a common

phase offset δφ, allowing us to exploit the CP information

collectively available at all RSs to infer information about

the UE location. To solve (34), we follow exactly the same

rationale used for (29).



IV. CRAMÉR-RAO LOWER BOUND

In this section, we adopt the theoretical tool of the CRLB to

investigate the achievable accuracy in terms of joint positioning

and synchronization. The CRLB for the specific problem at

hand is defined as [29]

Eη

[
(η̂ − η)(η̂ − η)T

]
� J−1

η
(35)

where Jη is the Fisher information matrix (FIM) for the

vector η = [p2D δTc αT]T containing the UE position (in

2D), and nuisance parameters in form of the clock and phase

synchronization parameters in δc and the LoS amplitudes for

each RS-UE link α. We assume that each RS n contributes

independent information on η, i.e., assuming identical DMC

and noise statistics, the FIM for the joint positioning and

synchronization problem is the sum of N contributions

Jη =

N−1∑

n=0

J(n)
η

=

N−1∑

n=0

TnJ
(n)

ηchT
T

n (36)

where J
(n)
η represents the FIM contribution provided by the

n-th RS, which are related to the channel parameter FIM J
(n)

ηch

of each RS via the corresponding Jacobian matrix Tn. The

channel parameter vector of the n-th RS is defined as

ηch
n = [θn τ̃n φn αn]

T ∈ R
4×1 (37)

containing the delay τ̃n, the AoA θn, the amplitude αn and

phase φn associated to the n-th LoS path. The elements of the

FIM J
(n)

ηch in (36) are defined as [29, Sec. 15.7]

[J
(n)

ηch ]i,j = 2ℜ
{
∂µn

H

∂[ηch
n ]i

R−1 ∂µn

∂[ηch
n ]j

}
(38)

where µn = γnc(θn, τ̃n).
To gain insights on the achievable performance, we inves-

tigate two different scenarios: i) first, we consider the case

of coherent RSs, which allows us to perform positioning by

exploiting the CP, and ii) second the case of non-coherent

RSs where NCP can be exploited. Due to (36), both cases can

be analyzed by a suitable definition of the synchronization

parameters δc and consequently the Jacobian matrices Tn

Tn=
∂ηchT

n

∂η
=



P θ

n P τ̃
n P φ

n 0

0 C τ̃
n Cφ

n 0

0 0 0 1n


∈ R

N+Nc+2×4. (39)

The block matrices relating channel parameters to the position

are found as P τ̃ = rn

c‖rn‖
from the derivative of (4) w.r.t.

position and as P φ = −2π rn

λ ‖rn‖
from the derivative of (3) (in-

serting (4)) w.r.t. position. The selection vector 1n associates

the amplitude αn in ηch
n with the respective amplitude in α

in η. The definition for P θ is given in Appendix A.

a) Coherent / CP: For the coherent case, the synchro-

nization parameter vector contains clock and phase offset

parameters δc = [δτ δφ]
T which are the same for all RSs,

resulting in Nc = 2 synchronization parameters. The cor-

responding block-matrices relating the phase information of

the n-th RS to phase offset and clock offset are found to be

C τ̃ = [1 0]T and Cφ = [0 1]T.

b) Non-coherent / NCP: For the non-coherent case, the

CP cannot be exploited for positioning, as each RS is assumed

to have a separate phase offset δφ,n that prevents linking the

unknown UE position with the known RS positions through the

phase of the received signal. The synchronization parameter

vector becomes δc = [δτ δφ]
T with δφ = [δφ,1 · · · δφ,N ]T,

resulting in Nc = N + 1 synchronization parameters. Con-

sequently, one obtains a block-matrix for each phase offset

parameters Cφ
n = [0 1

T
n]

T as the derivatives of (3) w.r.t.

the clock parameters and δφ are 1. Similarly, one obtains

Cτ
n = [1 0

T

N ]T for the block-matrix of the clock offset.

A. Bounds for Positioning and Synchronization

To compute the bounds for positioning and synchronization

from the FIM Jη in (36), we partition the parameter vector

as η = [ηT

w ηT

u ]
T, with ηw = [p2D δτ ] containing the

parameters of interest and ηu all remaining parameters as

nuisance parameters [30]. Block-partitioning of the FIM

Jη =

[
Jηwηw

Jηwηu

JT
ηwηu

Jηuηu

]
∈ R

(N+Nc+2)×(N+Nc+2) (40)

allows to make use of the notion of the equivalent

FIM (EFIM) [31], [32] to obtain Je = Jηwηw
−

Jηwηu
J−1
ηuηu

JT
ηwηu

∈ R3×3 [30], The position error bound

(PEB) and clock error bound (CEB) are then defined as

P =
√
tr
{
[J−1

e ]1:2,1:2
}
, Cτ =

√
[J−1

e ]3,3. (41)

V. SIMULATION RESULTS

In this section, we conduct numerical simulation campaigns

to investigate the theoretical performance achievable in terms

of both localization and synchronization via inspection of the

CRLB expressions derived in Sec. IV, as well as to assess

the actual estimation performance provided by the novel ML-

based estimators designed in Sec. III.

A. Scenario

The considered scenario consists of a network of N = 4
RSs deployed over a squared area of 10× 10 m placed at the

height of 5m from the floor level, and of a single UE located

at p = [7 3 1]T. The RSs are distributed on each corner of the

perimeter so as to provide uniform coverage of the area. Each

individual RS is equipped with a ULA with M = 4 antennas

spaced at d = λ/2. The UE transmits OFDM signals in the

uplink channel at a carrier frequency fc = 3.5GHz, with a

bandwidth B = 100MHz, over K = 100 different subcarriers.

We set the UE clock offset and phase offset to δτ = 100/c s
and δφ = 10deg, respectively. The channel amplitudes are

generated as αn =
√
Pρn where P denotes the UE transmit

power and ρn is set according to the common path loss model

in free space, i.e., ρn = λ/(4π‖p− pRS

n ‖), whereas the noise

power is σ2 = kBT0B, kB being the Boltzmann constant and

T0 the standard thermal noise temperature. As to the parame-

ters of the DMC, we set the normalized coherence bandwidth

βd = 1/(TdB) with Td = 20/c decay time set to a distance of

20m, the normalized onset time to τd = B
K (τn + 1m/c), i.e.,

the DMC onset is delayed by 1m w.r.t. the LoS, and the peak

power αd is chosen to guarantee a dense-multipath-to-noise

ratio (DNR), defined as DNR = αd/σ
2, equal to 20 dB. To

quantify the average signal power received by the whole RS

network, we define an average SDNR as4

SDNR =
P

NK

N−1∑

n=0

ρ2n cHR−1
n c (42)

where index n is added to R to make explicit that also the

DMC power will vary between RSs, in realistic scenarios.

4This definition should be seen as a positioning-specific metric, being the
additional DMC contributions treated as disturbance terms. Conversely, for
communication-oriented tasks, DMC can be included in the useful signal part
(i.e., summing up with the signal power at the numerator of (42)) since they
can be constructively exploited to convey additional information.
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Fig. 2. PEB as a function of the bandwidth B for different number of
antennas M . The comparison includes RSs either exploiting carrier-phase (CP)
information or ignoring it (NCP), at a fixed SDNR ≈ 12 dB.

B. Analysis of the Positioning Bounds

We start by analyzing the PEBs derived in Sec. IV to

investigate how the number of antennas M per RS and

bandwidth B impact on the ultimate positioning accuracy.

Fig. 2 shows these bounds evaluated for both positioning with

carrier-phase (CP) and without (NCP). During the analysis, we

keep a constant SDNR ≈ 12 dB, which cancels the effect of

a varying array gain when varying M . The first important fact

can be highlighted by comparing the curves corresponding to

the two groups of PEBs: the evident gap between the case in

which CP information is exploited, and the case where it is

not, clearly demonstrates the crucial role that such information

has on the positioning accuracy. As a matter of fact, exploiting

CP information brings about two orders of magnitude improve-

ments in the ultimate UE localization accuracy, with errors that

can be as low as a few millimeters. Delving into more specific

details, in the NCP case we observe that the array aperture, i.e.,

its angular resolution, dominates the PEB for low bandwidths.

For high bandwidths, the PEB is instead dominated by its

high time resolution. In the CP case, interestingly, varying

the number of antennas or bandwidth has a negligible impact

on the PEB. This behavior is linked to the fact that the

accuracy from phase-aided positioning exploiting the fully

coherent RS infrastructure dominates over both its time and

angular resolutions. The likelihood function underlying the

CP-based positioning exhibits very sharp peaks at the spatial

intersections of the wavefronts associated to each RS. The very

informative peak around the true position p2D, however, comes

at the price of a multimodal likelihood function, and thus a

computationally more demanding estimation problem. More

quantitatively, the resolution of (29) involves a computational

cost about 38% higher than the cost needed to solve (34).

C. Algorithms Performance Assessment

We now assess the performance of the ML-based estimation

algorithms developed in Sec. III. In Fig. 3, we report the

root-mean-squared error (RMSE) on the estimation of the

UE position p2D, obtained by averaging the results over 1000
independent Monte Carlo trials, as a function of the SDNR.

The comparison includes the ML algorithm that exploits the

CP information, its relaxed version ML-NCP that ignores the

existence of a relationship between the phase of the signal

received at each RS and the unknown UE position, and

the theoretical lower bounds derived in Sec. IV acting as

benchmark. For completeness, we also report the performance

of the ILS estimator which is used to obtain an initial estimate

of both UE position and synchronization offset.

From an algorithmic perspective, it can be noticed that

all the approaches start by exhibiting quite high RMSEs for
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Fig. 3. RMSE on UE position estimation compared to PEB as a function of
the SDNR, either exploiting CP or ignoring it (NCP).
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Fig. 4. RMSE on clock-offset estimation compared to CEB as a function of
the SDNR, either exploiting CP or ignoring it (NCP).

low values of the SDNR. This behavior can be explained by

observing that the suboptimal ILS approach that is used to

initialize the ML estimators is not very accurate in such a

regime. However, as soon as the initialization provided by the

ILS improves, the RMSEs of the ML estimators immediately

drop and tend to approach the corresponding lower bounds.

Remarkably, the proposed ML estimator that exploits CP

information achieves an accuracy in the order of about 1 cm for

SDNR = 15dB, and further enhances until mm-level accuracy

as the SDNR increases. A similar trend is observed in the

RMSE of the ML-NCP, which however requires a SDNR of

about 20 dB to attain values in the order of 10 cm.

To complement the above analysis, in Fig. 4 we evaluate

the performance on the estimation of the UE clock offset δτ
(similar results are obtained also for the phase offset δφ, hence

they are omitted). A direct comparison of the CEBs confirms

that the use of CP information has a beneficial effect also

on the synchronization accuracy, with improvements of about

one order of magnitude compared to the case in which such

information is not exploited. Consistently with the results in

Fig. 3, also in this case the algorithms exhibit higher RMSE

values in the lower SDNR regime, due to the poor accuracy of

the initialization provided by the ILS algorithm. Interestingly,

the proposed ML estimator that leverages CP information

guarantees an accurate synchronization in the order of 1 ns
already for SDNR ≥ 15 dB, significantly outperforming the

ML-NCP algorithm that instead needs about 10 dB more to

achieve a comparable level of accuracy.

VI. CONCLUSION

We addressed the problem of high accuracy positioning

exploiting coherent processing performed by distributed RSs,

seen as a promising technology for future wireless networks.

To take full advantage of the large aperture achieved by the

spatial distribution of the RSs, accurate time- and phase-

synchronization need to be recovered. To this aim, we proposed



a novel ML algorithm that jointly estimates the synchroniza-

tion parameters alongside the UE position, for a propagation

scenario consisting of an LoS-path that can be exploited

for positioning and DMC modeling the disturbance due to

diffuse multipath. Two variants of the ML estimator have been

derived, assuming either a fully coherent or a non-coherent

RS network. The performance of both variants is compared

to the corresponding CRLBs. The obtained results show that

the coherent ML algorithm significantly outperforms its non-

coherent counterpart. Moreover, exploiting the CP allows to

perform high accuracy positioning even with fewer per-RS

antenna elements, as the position-related information conveyed

from the CP is much richer and compensates for the reduced

aperture gain.

APPENDIX A

JACOBIAN MATRIX: BLOCK MATRIX FOR AOA

To obtain P θ we denote the vector from the n-th RS to

the UE as rn = [rxn ryn]
T with rxn = px − xRS

n and ryn =
py − yRS

n . For RSs horizontally non-colocated with the UE,

i.e., rn 6= 0, one obtains

P θ=





[
ryn

r2xn+r2yn

−rxn

r2xn+r2yn

]T
, [p′

n]1 6= 0

0 , [p′
n]1 = 0, [p′

n]2 6= 0
(43)

through the position-related derivatives of (7).

APPENDIX B

FISHER INFORMATION MATRIX

The elements of the FIM Jηch in (38) are given below,

omitting the index n for brevity. Due to symmetry, [Jηch ]j,i =
[Jηch ]i,j holds and the FIM is described through its elements

Jθ,θ = 2ℜ
{
α2
nċ

H

θR
−1ċθ

}
Jθ,τ̃ = 0

Jθ,φ = 0 Jθ,α = 0

Jτ̃ ,τ̃ = 2ℜ
{
α2
nċ

H

τ̃R
−1ċτ̃

}
Jτ̃ ,φ = 2ℜ

{
jα2

nċ
H

τ̃R
−1c

}

Jτ̃ ,α = 2ℜ
{
αnċ

H

τ̃R
−1c

}
Jφ,φ = 2ℜ

{
α2
nc

HR−1c
}

Jφ,α = 0 Jα,α = 2ℜ
{
cHR−1c

}

with c = (b ⊙ s) ⊗ a, ċθ = ∂c
∂θ = (b ⊙ s) ⊗ .

a and ċτ̃ =
∂c
∂τ̃ = (ḃ⊙s)⊗a. Notice that due to the selection of the array

reference point, the elements Jθ,τ̃ , Jθ,φ and Jθ,α vanish.
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