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Abstract—Video transmission over ultra-reliable and low-
latency communication (URLLC) is a promising trend to support
various multimedia services. However, in view of the rapid
surge in video content demand along with a stringent resolution
requirement, there is an unprecedented burden on wireless
networks with limited yet precious bandwidth resources. In
this paper, we propose a VIdeo transmission framework over
Semantic communicaTion Approach (VISTA), where semantics
rather than all bits of a video should be transmitted with the
aim of reducing bandwidth consumption while keeping a high
visual perception. Specifically, the semantic segmentation module
in VISTA is first developed to classify and encode the dynamic
and static segments in source video separately. Next, the semantic
location graphs (SLGs) are built to describe semantics and
location relations among the detected dynamic objects. Through
the joint source-channel coding (JSCC) module which is adaptive
to different channel conditions, the encoded semantic features and
SLGs are transmitted over wireless channel. Finally, the video
is recovered at the receiver end based on the distorted semantic
features and SLGs with the assistance of frame interpolation
module. Simulation results demonstrate that VISTA outperforms
two benchmarks in terms of required bandwidth reduction
and robustness against channel noise, further satisfying the
requirements on URLLC.

I. INTRODUCTION

With the prosperity of multimedia services, it was witnessed
that video streaming has occupied approximately 82 percent
of all Internet traffic in 2022 [1] to cover a wide range of ap-
plications including live streaming, virtual/augmented/mixed
reality, virtual meeting, etc. To further improve the quality
of services (QoS) for users, ultra-reliable and low-latency
communication (URLLC) is required, especially for real-
time video applications such as augmented reality (AR) and
virtual reality (VR). However, since the traditional wireless
video transmission focuses on video compression and recovery
via image pixels encoding and decoding, which consumes
unprecedented amount of wireless spectrum and transmission
time. Additionally, it may fail to achieve a satisfactory visual
perception due to unstable wireless channel condition.

Fortunately, semantic communication (SemCom) [2]–[5]
concerning with the meaning of source information rather than
bits/symbols themselves, has been recently deemed as a great
revolution of communication system. Generally, transmitter
in SemCom system first extracts and encodes the semantic
information from the source adapting to wireless channel con-
dition, then transmits semantic information wirelessly, finally

meaning of the source is recovered at the receiver aiming to
minimize semantic error. In this way, SemCom is expected
to dramatically reduce the amount of delivered bits, thus
greatly saving the wireless resources consumption. Further-
more, considering that adjacent frames are tightly coupled at
the semantic level, SemCom could achieve high robustness
especially under poor wireless channels by exploiting decoder
to correctly recover blurry video pixels based on semantics.

Despite many superiorities of SemCom-enabled video trans-
mission, there are several inevitable challenges. It should
be first noted that static and dynamic objects may coexist
in multiple consecutive video frames, where the semantics
implicit in each static object between different frames are
normally identical and the change process of each dynamic
object in consecutive frames should be regular. Hence, how to
realize efficient semantic representation and reconstruction for
consecutive frames is the first nontrivial challenge. Besides,
signal attenuation and distortion in wireless channels may
impose severe semantic ambiguity on transmitted videos and
further greatly affect the final rendered video quality, thus the
second challenge should be how to take into account different
channel status in SemCom-enabled video transmission. A few
pioneering works on DL-based video transmission in SemCom
have been recently presented [6]–[8]. The authors in [6] design
a deep joint source-channel coding framework aiming at trans-
mitting semantics of the whole video over arbitrary wireless
channels. [7] focuses on transmitting keypoints for semantic
video conferencing and proposes an incremental redundancy
hybrid automatic repeat-request framework to adapt varying
channels. Furthermore, [8] discusses the prospect of URLLC
in semantic VR delivery between the mobile edge computing
server and VR users.

In responding to the aforementioned challenges, in this
paper, we propose a novel VIdeo transmission framework over
Semantic communicaTion Approach, named VISTA. VISTA
has three modules, where the semantic segmentation module
and frame interpolation module account for semantic encoding
and decoding respectively, while the joint source-channel
coding (JSCC) module is for SNR-adaptive wireless transmis-
sion. The main contributions of this work are summarized as
followed:

• A semantic segmentation module is developed at the
transmitter, where it first detects and recognizes the



dynamic objects and static background for each frame in
the source video. Then, a semantic location graph (SLG)
is built to describe the locations and relationships for all
dynamic objects and accurately extract semantics.

• VISTA separates each video frame into environment (im-
age of static background) and behavior segments (image
of all the dynamic objects), which requires only one-
frame environment and several key behavior segments to
be fed in JSCC module for wireless transmission.

• A frame interpolation module is developed at the receiver
end to accurately recover the video based on the segments
and semantics with the help of SLG.

• We test the performance of VISTA over a real video
dataset, and the results demonstrate its superiorities in
terms of transmitted data volume, video processing time
and video quality (especially under low SNR scenario)
compared with other two benchmarks.

II. VIDEO TRANSMISSION FRAMEWORK IN VISTA
To achieve SemCom video transmission, VISTA is proposed

in this work. We start with the video transmission framework
in VISTA in this section. Generally, the semantic coding model
is to extract (at the sender side) and restore (at the receiver
side) semantic information of transmitted videos, while the
channel coding model takes into account different physical
channel conditions for accurate semantics delivery. A shared
knowledge base (KB) [9] is assumed between transmitter and
receiver during video delivery.

Consider a source video composed of T sequential frames,
i.e., s =

{
s1, . . . , sT

}
∈ RH×W×T , where H and W

respectively denote the height and width of a frame. These
frames are first fed in the convolutional semantic-encoder to
distill the textual semantic information g. In addition, the
semantic-encoder divides the source video into two parts:
environment (static background) se and behavior segments
(dynamic objects) sb individually. Thus, the encoded frames
can be written as ŝ = {se, sb,g} under the semantic-encoder
network S(·) with parameter set αs, i.e.,

ŝ = {se, sb,g} = S (s;αs) . (1)

The encoded frames ŝ then flow into JSCC module for
SNR-adaptive wireless transmission. In this module, source-
encoder E and channel-encoder C with parameter sets αϵ and
αc generate the symbols x to be transmitted,

x = C (E (ŝ;αϵ) ;αc) . (2)

At the receiver side, y is denoted as the received symbols for
the input x over the wireless channel with additive noise w,
i.e.,

y = h ∗ x+ w, (3)

where h denotes the channel gain. y is then fed to the
channel-decoder C−1 and source-decoder E−1 sequentially to
reconstruct the environment s̃e and behavior segments s̃b with
the help of the semantics. The decoded frames x̃ is presented
as

x̃ = {s̃e, s̃b} = E−1
(
C−1 (y;βc) ;βϵ

)
. (4)

where βc and βϵ denote the parameters of channel-decoder
and source-decoder networks, respectively.

Finally, the recovered video s̃ should be constructed as per
the two parts of segments s̃e and s̃b. The semantic-decoder
network and its parameters are given as S−1 and βs. Thus,
the final recovered video is expressed as

s̃ = S−1 (x̃;βs) . (5)

In this work, the ultimate goal is minimizing the semantic
ambiguity of the recovered video. We use average peak signal-
to-noise ratio (PSNR) [10], a popular video quality metric, to
measure the differences between the recovered and original
video frames. In detail, for the t-th frame with the size m×n,
the mean squared error (MSE) between the original frame st

and the recovered one s̃t is calculated as

MSE t =
1

mn

m∑
i=1

n∑
j=1

[
st (i, j)− s̃t (i, j)

]
. (6)

Thus, the average of PSNR of the original and recovered video
is expressed as

PSNR =
1

T

T∑
t=1

10 · log10
(
Imax

2

MSE t

)
, (7)

where Imax
2 represents the maximum pixel value of the frame.

III. SLG-BASED TRANSCEIVER DESIGN IN VISTA

Based on the above video transmission framework, let
us illustrate how to design the transceiver in VISTA. As
depicted in Fig.1, there are three modules in VISTA, semantic
segmentation, JSCC and frame interpolation, where semantic
segmentation along with JSCC encoder is deployed at the
transmitter side, while frame interpolation with JSCC-decoder
at the receiver side. Notably, several SLGs are established
in semantic segmentation and utilized in frame interpola-
tion. These modules are trained separately with different loss
functions to achieve the goal of PSNR minimization for the
recovered video. In the following, we will discuss how to
construct and train the neural networks in three modules.

A. Semantic Segmentation Module

Semantic segmentation module is deployed at the trans-
mitter to recognize and distill the dynamic objects from
video. Four tasks should be performed in this module, object
detection, trajectory prediction, SLG construction and frame
sampling. Generally, we first bound all objects using rectan-
gular boxes in each frame and differ the dynamic objects
from static background via velocity testing. The semantic
information of each dynamic object is able to be extracted
by the means of category recognition. However, the occlusion
caused by overlapping objects in the video will affect the
accuracy of position detection and semantics extraction. Thus,
we predict the trajectory of each object for the continuous
frames in the second task. After trajectory prediction, an SLG
is designed to assist in reserving the estimated positions and
semantics of all dynamic objects in each frame. Finally, we
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Fig. 1. The diagram of transceiver in VISTA.

sample the frames and send them along with SLGs to JSCC
module. Let us below illustrate the design of the four tasks
separately.

Object detection: Borrowing the idea from [11], we apply a
conventional network to outline bounding boxes using features
of the entire frame. Specifically, we initialize several bounding
boxes and they are projected to enlarge and shift dynamically
until all the objects are bounded with the optimized confidence
scores. In this way, each bounding box is associated with six
predictions: 2D-coordinates (u, v) of the center for the object,
the width and height (w, h) of the box containing relative
to the whole image of the object, object category l and the
associated confidence score c.

Trajectory prediction: After getting these objective detec-
tions, we should guarantee that every dynamic objects can
be captured completely. Therefore, we deploy the trajectory
prediction module to track the dynamic objects when they are
occluded. The input of the network of trajectory prediction
is the images of dynamic objects and the five predictions
of the corresponding bounding boxes. We first define an
“observation” of a bounding box as z = [u, v, w, h, c]

⊤.
Moreover, we employ the Kalman filter (KF) to generate the
state q = [u, v, a, r, u̇, v̇, ȧ]

⊤, where a is the bounding box
scale (area), r is the width-to-height ratio of the bounding
box, and the other three variables (u̇, v̇ and ȧ) are the related
time derivatives.

Next, we utilize an observation-centric tracker [12] with the
object movement. Specifically, since a non-linear motion can
be regarded as a synthesis of many small-scale linear motions
in a reasonably short time [12], we calculate the velocity
consistency (momentum) to gain the accurate velocity value
and direction. Then, for an untracked object, an observation-
centric online smoothing strategy is performed through a
virtual trajectory ẑt starting from its last occurrence and
ending at the re-associated observation, which is denoted as

ẑt = Tv
(
zt1 , zt2 , t

)
, t1 < t < t2, (8)

where zt1 is the the last observation before being untracked,

zt2 is observation triggering the re-association, and Tv()
represents the network of virtual trajectory. Along this virtual
trajectory, the status at t1 is recalled back to check the filter
parameters. Thus, the refreshed state q̂t is estimated as

q̂t = Ftq̂t−1 +Kt
(
ẑt −HtFtq̂t−1

)
, (9)

where Kt denotes the KF matrix, Ft and Ht denote the
state transition and observation model respectively. With the
instruction of q̂t, for the t-th frame in the video, we update
the bounding boxes of dynamic objects and use the behavior
segments ŝtb to represent the images of all estimated boxes
covering. Moreover, the rest of this frame is represented by
the environment ŝte.

SLG construction: Aiming at locating the dynamic objects
and illustrating the association between their location and
semantics, we deliver an SLG to concatenate the classes
and location from the refreshed states q̂. With respect to
a frame containing B boxes, the set of object categories
is l = {l1, . . . , lB}, and the 2D-coordinates set are û =
{û1, . . . , ûB} and v̂ = {v̂1, . . . , v̂B}. Thus, the SLG gt ∈{
g1, . . . , gT

}
of the t-th frame can be represented as

gt = {l, û, v̂} . (10)

Frame sampling: According to the results of trajectory
prediction, we split the whole video into environment and
behavior segments and transmit them separately. Since the
environment is fixed, it is supposed that only the environment
of the first frame s1e needs to be transmitted. It is also thriftless
for encoder to cope with behavior segments in the whole
video, so that we sample them every Ts frames and denote
M = ⌈T/Ts⌉ samples as ŝ′b =

{
ŝ1b , ŝ

Ts+1
b , . . . , ŝTb

}
. The

output ŝt of the t-th frame is illustrated as

ŝt =


{
s1e, ŝ

1
b , g

1
}
, t = 1,

{ŝtb, gt} , t = nTs + 1, n = {1, . . . ,M − 1} ,
gt, otherwise.

(11)



Generally, the overall output for all frames after semantic-
encoder is composed of environment of the first frame, behav-
ior segments from the sample frames and SLGs of all frames.

B. JSCC Module

As illustrated, all the extracted semantic segments along
with an SLG should be transmitted through a wireless chan-
nel. In VISTA, we employ an SNR-adaptive JSCC module
which can configure its parameters depending on the SNR
of the channel [13]. Its overall structure can be described as
source-encoder, channel-encoder, channel-decoder and source-
decoder. In more detail, the features f =

{
f1
e , fb

}
are first

extracted from the input of environment and behavior segments
(s1e and ŝ′b) via several conventional layers and some of
them are activated to be transmitted first. After getting f , the
channel-encoder produces two groups of length-L features.
The first group with the length Gs contains either active
or inactive features selected by a policy network P , while
the following Gn groups are always active without selection.
The selection for each input is conducted by a binary mask
Wi, where can only be 0 or 1. The total number of active
groups is demonstrated as G̃ = Gn +

∑Gs

i=1 Wi. All the
active features are passed through the power normalization
network to generate complex-valued transmission symbols{
x0
e, x̂

′
b

}
∈ CG×L/2 with unit average power using the first

half of features as the real part and the other half as the
imaginary part. Moreover, the textual SLGs g =

{
g1, . . . , gT

}
are encoded to bits xg and transmitted directly. In a word, the
total encoded symbols are represented by x =

{
x0
e, x̂

′
b,xg

}
.

Next, y =
{
y1e , ŷ

′
b,yg

}
is received as x should be trans-

mitted over the wireless channel model in (3), where y1e ,
ŷ′
b and yg denote the transmitted symbols of environment,

behavior segments, and SLG, respectively. Then, y is fed
to the channel-decoder and source-decoder sequentially to
reconstruct the environment s̃1e, behavior segments s̃′b and
SLGs g̃. Specifically, s̃1e and s̃′b are recovered through several
convolutional layers while g̃ are decoded to text directly.

It is worth noting that the SNR value is the part of input fed
to the policy network and the SNR adaptive network leveraged
in channel-encoder, channel-decoder [14]. Particularly, for the
SNR adaptive network, the features in one frame are first
pooled averagely across diverse feature channels (different
from the wireless channels) of a neural network and then con-
catenated with the SNR value. Next, the results are received by
two multi-layer perceptrons to produce the factors for channel-
wise scaling and addition. In this way, we adjust the network
of transceiver in JSCC module depending on SNR value.

C. Frame Interpolation Module

After receiving the environment and behavior segments of
sample frames, we complement them and combine the results
to rebuild the video with the help of SLGs g̃ in the semantic-
decoder. In more detail, we make T copies of the one-frame
environment and generate the sequence of environment as
s̃e =

{
s̃1e, . . . , s̃

1
e

}
at first. Then, according to the behavior

segments s̃′b =
{
s̃1b , . . . , s̃

M
b

}
of M sample frames, we

utilize Transformer for frame interpolation with the inspiration
of Video frame interpolation with Transformer (VFIformer)
[15], aiming at predicting the behavior segments for all the
remaining frames. Consider the behavior segments s̃1b and s̃2b
of the two adjacent sample frames, and the intermediate frame
is denoted as s̃tb.

A convolutional network called flow estimator is utilized
to obtain the optical flows Ot→1 and Ot→2. Additionally,
the images w1

b and w2
b are restored as per the features f̃1

i

and f̃2
i which are warped by Ot→1 and Ot→2 respectively.

Further, the semantic decoder includes Transformer blocks
(TFB) and each TFB consists of convolutional layers and
several Transformer layers (TFL) with Cross-Scale Window-
based Attention (CSWA) network which is a state-of-the-art
attention mechanism. For the i-th TFB, its output feature f t

i

is formulated as

f t
i = TFB i

(
f t
i−1, f̃

1
i , f̃

2
i

)
, (12)

where f t
i−1 is the output of (i-1)-th TFB.

Then, the intermediate frame s̃tb is generated by a soft mask
H and an image residual ∆s̃tb (from flow errors and occlusion)
in the decoder as follows:

s̃tb = H ⊙ w1
b + (1−H)⊙ w2

b +∆s̃tb, (13)

where ⊙ signifies the Hadamard product. It is worth noting
that the interpolation is under the guidance of SLG. In other
word, the prediction of behavior segments in the intermediate
frames is limited in the bounding boxes provided by SLG.

In terms of model training, the loss should be evaluated from
three aspects. The first is reconstruction loss, which compares
the recovered behavior segments stgt and its ground-truth s̃tb
in t-th frame as

Lrec =
∥∥stgt − s̃tb

∥∥
1
. (14)

Next, the census loss [16] is robust to illumination changes,
which is defined as the soft Hamming distance between
census-transformed [17] image patches of stgt and s̃tb. The
last one is distillation loss for supervising the estimated flows
explicitly,

Ldis =
∥∥∥Õt→1 −Ot→1

∥∥∥
1
+

∥∥∥Õt→2 −Ot→2
∥∥∥
1
, (15)

where Õt→1 and Õt→2 are derived from a pretrained flow
estimation network [18].

As a result, the total loss is presented as

L = λrecLrec + λcssLcss + λdisLdis, (16)

where Lrec, Lcss and Ldis correspond to the reconstruction
loss, census loss and distillation loss with their weights λrec,
λcss and λdis respectively.

After frame interpolation, the behavior segments are esti-
mated as the combination of the sample frames and interme-
diate frames. The recovered video s̃ is the synthesis of the
behavior segments s̃b and the copies of the environment s̃e,
which can be expressed by

s̃ = s̃b ⊕ s̃e. (17)



Fig. 2. PSNR performance of recovered video frames versus varying SNRs.

Herein, we stitch s̃e and s̃b via ⊕ and maintain s̃b as their
overlapping parts.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, we conduct simulations to evaluate the
performance of the proposed VISTA framework in comparison
with two different benchmarks: 1) A JSCC integrated with
VFIformer scheme (JSCC-VFI), which first employs a single
deep neural network to transmit video frames over wireless
channels without any awareness of semantics and then uses the
powerful Transformer model for behavior segments interpola-
tion; 2) A conventional bit-oriented communication scheme
(Conventional scheme) [19], in which all pixels of each video
frame should be encoded into bits based on the prescribed
coding rule (low density parity check in our simulations) for
precise transmission.

We test the performance of VISTA on an open video
dataset [20]. For the simulation settings, the OC-SORT struc-
ture is first leveraged for object segmentation of video frames,
which keeps consistent with the setup given in [12]. Be-
sides, the parameters in JSCC-related channel encoding and
decoding networks are proceeding as those in [13], where
the wireless channel model is simulated as an additive white
Gaussian noise channel with SNR values varying from −9 to
6 dB. Moreover, the architecture details of VFIformer-related
networks can refer to [15]. Note that the Adam optimizer is
adopted to train the VISTA with an initial learning rate of
5× 10−4, and all subsequent simulations are implemented in
a computer with six CPU cores and Inter Core i7 processor,
where the main software environment is Python 3.9.

Fig. 2 first shows the PSNR performance under varying
SNRs from −9 to 6 dB, where three differing interpolation
proportions 0, 50%, and 75% are considered. It can be seen
that the PSNR of all schemes increases with SNR, which is
because the higher SNR leads to less impairment of transmit-
ted semantic features so as to render a more accurate frame

Fig. 3. Visual comparison on a video frame sample from VIRAT dataset [20],
where (1) the original frame, (2) the frames restored via VISTA with no
interpolation, (3) VISTA with 50% interpolation, (4) VISTA with 75%
interpolation, (5) JSCC-VFI with no interpolation, (6) JSCC-VFI with 50%
interpolation, (7) JSCC-VFI with 75% interpolation, and (8) the conventional
scheme with no interpolation are all presented.

Fig. 4. Total processing time for 20 consecutive video frames under different
interpolation proportions.

recovery. Meanwhile, we can see a better PSNR of VISTA
at a higher interpolation proportion. This trend is attributed
to the fact that using fewer behavior frames for transmission
means that more compressed features could be lost between
consecutive dynamic objects, thereby resulting in a worse
PSNR performance. Furthermore, it can be found that in the
same condition without interpolation, the PSNR of VISTA
can always outperform the conventional scheme when SNR is
lower than 3 dB. Such a performance gain of VISTA can be
credited to its accurate semantic calibration function provided
by SLG, which sufficiently guarantees high reliability of video
transmission even in low-SNR conditions. For further visual
comparisons, we exhibit a specific frame of the video in Fig. 3,
where the frames of all different situations of Fig. 2 along with
their corresponding original frame are presented at an SNR of
0 dB. Similar to the conclusions in Fig. 2, we can obviously
see that all objects in the frames of VISTA are well recovered,
while presenting a higher image quality than the conventional
scheme.

Next, we test the processing time for a total of 20 consec-
utive video frames with different interpolation proportions in



Fig. 5. Total transmission bits consumed for 20 consecutive video frames
under different interpolation proportions.

Fig. 4, which is precisely obtained based on the aforemen-
tioned computer configuration. It can be seen that without
interpolation, the proposed VISTA only needs 0.22s process-
ing time, which saves around 2.63 s/frame compared with the
conventional scheme and saves nearly half the time of JSCC-
VFI at any proportion of interpolation. This is because only
behavior segments of a few video frames need to be processed
in VISTA thanks to the used SLG mechanism, thereby fewer
pixels are required to be encoded and decoded so as to save
a significant processing time. In addition, a higher proportion
of interpolation leads to a higher processing time, since more
intermediate frames should be sampled and interpolated.

Finally, Fig. 5 demonstrates the number of required bits
for transmitting 20 consecutive video frames with the same
three interpolation proportions. It is implied that the proposed
VISTA indeed shows its amazing superiority in communica-
tion resource saving, whose bit consumption is only 6.4%
of the conventional scheme and 19.2% of the JSCC-VFI
scheme when no interpolation is set. Moreover, we can see
that the amount of transmitted bits of VISTA decreases as
the interpolation proportion improves. Such a trend is easy to
understand because the core semantics are more compressed at
the high interpolation proportion, enabling these video frames
to be sent with fewer bits.

V. CONCLUSIONS

In this paper, we propose a SemCom-enabled wireless video
transmission framework, named VISTA. A novel transceiver
in VISTA is designed to perform semantic encoding and
decoding, where we construct a semantic location graph to
work in conjunction with several neural networks for video
semantics extraction and recovery. Simulation results show an
excellent reduction in transmitted bits with no compromise
(even an improvement when SNR is below 3 dB) on video
quality and time consumed in transmission. This original work
is expected as a pioneer in exploiting SemCom in wireless

video transmission to significantly alleviate the bandwidth
shortage in future communication systems.
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