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Abstract—The pervasiveness of the wireless cellular network
can be a key enabler for the deployment of autonomous un-
manned aerial vehicles (UAVs) in beyond visual line of sight
scenarios without human control. However, traditional cellular
networks are optimized for ground user equipment (GUE) such
as smartphones which makes providing connectivity to flying
UAVs very challenging. Moreover, ensuring better connectivity to
a moving cellular-connected UAV is notoriously difficult due to
the complex air-to-ground path loss model. In this paper, a novel
mechanism is proposed to ensure robust wireless connectivity
and mobility support for cellular-connected UAVs by tuning the
downtilt (DT) angles of all the ground base stations (GBSs). By
leveraging tools from reinforcement learning (RL), DT angles
are dynamically adjusted by using a model-free RL algorithm.
The goal is to provide efficient mobility support in the sky
by maximizing the received signal quality at the UAV while
also maintaining good throughput performance of the ground
users. Simulation results show that the proposed RL-based
mobility management (MM) technique can reduce the number of
handovers while maintaining the performance goals, compared
to the baseline MM scheme in which the network always keeps
the DT angle fixed.

Index Terms—3GPP, antenna radiation, mobility management,
reinforcement learning, trajectory, UAV.

I. INTRODUCTION

The use of unmanned aerial vehicles (UAVs) in both civilian
and commercial applications is a promising technology for
next-generation cellular networks. Thanks to their ease of
deployment, high flexibility, and the ability to increase network
capacity, UAVs can be deployed in surveillance, remote sens-
ing, package delivery, and disaster-relief applications. Hence,
significant efforts in both academia and industry have been
devoted to different aspects of UAV applications. However,
most of the above-mentioned UAV cases are operated by
trained pilots.

To fully reap the benefits of UAV deployment, beyond
visual line of sight operations are of critical importance where
UAVs acting as aerial users, can maintain communication with
the ground base stations (GBSs) for command and control
(C&C) purposes in the downlink (DL) [1]. UAVs flying in the
sky may be served by the sidelobes of base station antennas
which provide lower antenna gains [1], [2]. This poses major
challenges on the mobility management (MM) for the cellular-
connected UAVs based on reference signal received power
(RSRP). The GBS providing the highest RSRP might be
located far away from the UAV. An example is shown in
Fig. 1, where a cellular-connected UAV is flying over a rural
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(a) Scenario: 1

(b) Scenario: 2

Fig. 1. HO scenario of a cellular-connected UAV moving towards horizontal
direction. (a) UAV is associated with GBS 2 due to its higher side-lobe gain
than GBS 1. (b) After moving forward, the UAV is now associated with GBS
1 due to its higher sidelobe gain.

environment. This type of patchy signal coverage of GBSs will
result in poor mobility performance such as handover failure
(HOF), radio link failure, as well as unnecessary handovers
(HOs), called ping-pong events. Apart from these, due to
the loss of the C&C signal, the UAV may collide with a
commercial aircraft or even crash into a populated area which
might result in hazardous events. Hence, effective MM for
providing reliable communications between UAVs and GBSs
is of critical importance.

MM techniques for ground user equipment (GUE) in both
homogeneous and heterogeneous cellular networks have been
studied extensively in the literature [3]–[5]. However, the
research in MM for cellular-connected UAVs is still in its
infancy. Motivated by this, considering an interference-limited
DL cellular network, the main contribution of this paper is
a novel a reinforcement learning (RL) based MM technique
that can ensure better connectivity at the UAV while also
maintaining a reasonable throughput performance for existing
GUE. The proposed approach exploits Q-learning [6] for
tuning the downtilt (DT) angles of GBSs to meet these goals.In
this regard, we assume that the UAV’s trajectory is known
beforehand and the network can control the RSRP values at
different discrete waypoints of the predefined UAV trajectory
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by changing the DT angles. We also consider the presence
of correlated shadow fading [7] for the predetermined UAV
trajectory. We introduce a reward function that takes into
account both RSRP at the UAV and the capacity of the GUE,
and we study the performance of different weight combina-
tions associated with both of these performance criteria. Our
simulations demonstrate a tradeoff between the RSRP quality
at the UAV and the GUE capacity. Moreover, in a scenario,
where the network considers maximizing the RSRP values,
the number of HOs can be reduced by 40%, compared to a
scheme where the DT angle is remained fixed.

The rest of this paper is outlined as follows. In Section II,
we provide a literature review pertinent to MM of cellular-
connected UAVs. Section III describes the system model. We
discuss the proposed MM technique is Section IV. Related
simulations results are presented in Section V. Finally, Sec-
tion VI concludes this paper.

II. RELATED WORKS

Integrating UAVs as aerial user equipment with existing
GUE has attracted attention in recent years. For instance,
authors in [8] presented an analytical framework for co-
existing UAV and GUE considering beamforming technique.
In [9], authors provided the upper and lower bounds on the
coverage probability of UAVs considering a coordinated multi-
point technique. Authors in [10] investigated the problem
of interference-aware optimal path planning of cellular-
connected UAVs using deep RL in the uplink (UL) scenario.
In [11], authors explored the effects of practical antenna
configurations on the mobility of cellular-connected UAVs
and showed that increasing the number of antenna elements
can increase the number of HOs for vertically-mobile UAVs.

In [12] and [13], real-world industrial experiments were
conducted to test the feasibility of integrating UAVs in existing
cellular networks. The Third Generation Partnership Project
(3GPP) also studied the potential of integrating UAVs as aerial
UEs in existing cellular networks and pointed out the chal-
lenges in providing reliable mobility support [14]. According
to [15], downlink (DL) performance and UL interference can
be mitigated by introducing antenna selection or beamforming
capabilities at the UAVs. By conducting extensive 3GPP com-
pliant simulations, in [16], the authors showed that existing
cellular networks will be able to support a small number of
aerial user equipment (UE) with good mobility support.

In recent work, the authors explored the RL algorithm to
maximize the received signal quality at a cellular-connected
UAV while minimizing the number of HO [17]. A novel HO
performance optimization algorithm by tuning the values of
the 3GPP specified HO parameters in an automated manner
was introduced in [18]. An RL-based HO optimization scheme
for ground UEs in a 5G cellular network was proposed in [19].

However, none of these prior works [8]–[15], [17], [19]
studied the problem of concurrently maintaining good RSRP
quality for the UAV and high throughput for GUE while
considering practical antenna pattern of the GBS. It is worth
noting that the network can control the received power quality
of the users by changing the DT angle [20]. DT angles can
be easily and remotely carried out by adjusting the relative
phases of antenna elements of an antenna array in such a way
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Fig. 2. Illustration of cellular network with linear mobility model.

that the radiation pattern can be downtilted uniformly in all
horizontal directions [21]. To the best of our knowledge, no
prior work has considered tuning DT angles dynamically for
effective MM of cellular-connected UAVs.

III. SYSTEM MODEL

A. Network Model

Consider the DL of an interference-limited cellular network
in which a single UAV acting as an aerial user, is flying along
a two dimensional (2D) linear trajectory at a fixed height
huav. The network consists of M GBSs and K static GUE
with similar height hGUE. We also assume that all GBSs have
equal altitudes hGBS and transmission power PGBS. The set of
the GUE can be denoted as K with horizontal coordinates
rk = [xk, yk, zk]T ∈ R3x1, k ∈ K. We define M as the
set of the GBSs. The GBSs have three sectors separated
by 120°, while each sector is equipped with 8 × 1 cross-
polarized antennas downtilted by the same DT angle β. We
assume that the UAV and the GUE are each equipped with
an omnidirectional antenna. We consider the 3GPP antenna
radiation model to characterize the antenna radiation at the
GBS [22].

We consider the sub-6 GHz band for the cellular network
and, hence, the presence of thermal noise power at the
receivers is negligible compared to the interference power.
We also assume that the GBSs share a common transmission
bandwidth and full buffer traffic is used in every cell. All DL
transmissions are scheduled using a round-robin scheduling
algorithm, and all the receivers are capable of mitigating the
Doppler effect [23], [24].

B. UAV Mobility Model

A simple UAV mobility scenario is considered whereby the
UAV travels along a linear trajectory (for instance, through
the horizontal x-axis) with constant speed v km/h and a fixed
altitude of huav. We consider the linear mobility model due
to its simplicity and suitability for UAVs flying in the sky
with virtually no obstacle. In Fig. 2, we provide an illustrative
example of the linear UAV mobility model for v = 120 km/h
in an area of 4× 4 km2 with M = 48.

C. Path-loss Models and GUE Capacity

The path-loss between a GBS and a UAV plays a significant
role in the HO performance due to the RSRP-based cell asso-
ciation. For modeling the path-loss, we consider the RMa-AV-
LoS channel model specified in 3GPP [14]. The instantaneous



path-loss (in dB) under a line-of-sight (LOS) scenario between
GBS m and the UAV can be expressed as:

ξLOS
m,u(t) = max

(
23.9− 1.8 log10(huav), 20

)
log10(dm,u,t)

+ 20 log10

(
40πfc

3

)
+ χLOS,

(1)

where huav is between 10 m to 300 m and fc is the carrier
frequency, while dm,u,t represents the 3D distance between
the UAV and GBS m at time t. χLOS represents the correlated
shadow fading (SF) (in dB) associated with LOS scenario. We
will discuss about SF in the next subsection. It is worth noting
that the probability of LOS is equal to one if the UAV height
falls between 40 m and 300 m [14]. Finally, we can calculate
the RSRP (in dB) from GBS m at time t as RSRPm,u(t) =
PGBS +Gm,u(t)− ξLOS

m,u(t), where Gm,u(t) is the antenna gain
at the UAV from GBS m at time t, which is dependent on the
UAV’s location and β [1].

The path-loss (in dB) observed at GUE k ∈ K from GBS
m is given by: ξk,m = A + B log10(dk,m) + C. Here, dk,m
is the Euclidean distance from GBS m to GUE k. A, B,
and C are factors dependent on the carrier frequency fc and
antenna heights [25]. Then, the received power at GUE k
from GBS m can be calculated as Sk,m =

PGBSGk,m

10
(ξk,m/10)

, where
Gk,m represents the antenna gain at GUE k from GBS m
that depends on the locations of GUE k and GBS m [22].
Note that Gk,m will be dependent on β as shown in [1]. A
GUE associates with the GBS that provides the best signal-to-
interference ratio (SIR). The SIR between GUE k and GBS
m can be calculated as γk,m =

Sk,m∑
j∈M,j 6=m Sk,j

. Assuming
that, GUE k is associated with GBS m, we can express the
achievable data rate per unit bandwidth (bps/Hz) of GUE k
using Shannon’s capacity as:

Ck,m =
log2(1 + γk,m)

Nm
GUE

, (2)

where Nm
GUE is the number of GUEs associated with GBS

m. Since we are considering round-robin scheduling with
full buffer traffic, the available resources will be equally
divided among the GUEs associated with a particular GBS.
Assuming that the set of GUEs associated with GBS m
is Km, the total GUE capacity can be calculated as C =∑

m∈M
∑

k∈Km Ck,m.

D. Shadow Fading Model

SF also known as medium-scale fading, plays a critical
role in characterizing the received power at the receiver. It
is caused mainly due to the presence of large obstacles within
a wireless link [26]. SF is typically modeled as an indepen-
dent Gaussian random variable with zero mean and standard
deviation σ. According to [14], σ (in dB) can be expressed
as σ = 4.2 exp(−0.0046 huav). However, the SF values of
consecutive waypoints of a UAV trajectory might have some
similarities or correlation due to high probability of LOS in
the GBS-to-UAV link. Based on empirical measurements, the
work in [27] first proposed the common analytical model for
auto-correlation among the SF values which assumes that SF is
a first-order auto-regressive process where the auto-correlation

between the SF values at two points separated by distance ∆
is given by [26]:

R(∆) = σ2ρ
∆
Xc , (3)

where, ∆ is the distance between the two points, ρ is the
correlation coefficient, and Xc is the decorrelation distance
[26]. Here, we set Xc = 100 m and ρ = 0.82 [26]. We first
generate independent SF values with zero mean and σ = 1 for
each waypoint and then use Cholesky factorization to generate
the correlated SF values from R(∆) [28].

E. Handover Procedure
Throughout the flight duration, the UAV can measure the

RSRPs from all the adjacent GBSs at subsequent measurement
gaps using (1). We consider a HO mechanism that involves a
HO margin (HOM) parameter, and a time-to-trigger (TTT)
parameter, which is a time window which starts after the
following HO condition (A3 event [29]) is fulfilled.

RSRPj > RSRPi +mhyst, (4)

where RSRPj and RSRPi are the RSRP measured from the
serving GBS i and target GBS j, respectively and mhyst is the
HOM set by the network operator. The UAV does not transmit
its measurement report to its current serving GBS before the
TTT timer expires [4].

IV. RL-BASED MOBILITY MANAGEMENT

In this section, we will describe our proposed RL-based
MM framework. The aim is to determine the optimal sequence
of DT angles for each discrete waypoint of the predefined
UAV trajectory for maintaining good RSRP quality at the UAV
while maintaining good GUE rate performance. This problem
can be solved by non-linear optimization techniques [30].
However, optimization-based techniques require the exact
knowledge of the modeling parameters, which might not al-
ways be available. Moreover, even with the perfect information
of all relevant parameters, such an optimization problem is
NP-hard [31] and difficult to solve efficiently due to the
intractability in GBS antenna radiation pattern, HO process,
and channel models considered in this research.

Thus, we consider RL algorithm for solving this sequential
decision problem in which an agent tries to maximize its
cumulative rewards by interacting with an unknown environ-
ment through time [32]. The agent gets an immediate reward
or punishment for taking any action and tries to maximize
the total expected future reward. Usually, the environment
is modeled as a Markov decision process (MDP) which is
characterized by a tuple (S,A, P,R), where S is the set
of states, A is the set of actions, P is the state transition
probability function, with P (s′|s, a) denotes the probability
of moving to the next state s′ ∈ S from the current state
s ∈ S after taking action a ∈ A, and R : S × A → R is
the immediate reward received by the agent. An MDP can
be solved with this information to obtain the optimal policy,
i.e., the action to take at each state which will maximize the
expected sum of discounted future rewards.

A branch of RL known as model-free RL algorithms can
learn optimal policies in finite MDPs without explicit knowl-
edge about the environment modeling, i.e., P and R. They
are typically simpler and more flexible to implement than



their model-based counterpart since the dynamics or the model
of the environment is not required to be known in prior. In
a typical cellular network, to obtain the perfect knowledge
of the environment, a significant amount of information has
to be exchanged between the network components and the
core network, which is not always possible. Hence, for our
proposed MM scheme, we use a well-known model-free RL
algorithm known as Q-learning [6]. Q-learning approximates
a value function of each state-action pair through several
iterations and learns the optimal policy by using this function.

In our proposed algorithm, we divide the predefined UAV
trajectory into discrete states whereby, at each state s, the
network can perform an action a and then the UAV moves
to next state s′. The reward for taking action a in state s
is denoted as R(s, a). The learned action-value Q(s, a) for
performing action a in state s is updated using the following
rule at each iteration:

Q(s, a)← (1− α)Q(s, a) + α
[
R(s, a) + λmax

a′∈A
Q(s′, a′)

]
,

(5)
where λ ∈ [0, 1) is the discount factor, a′ is the action that will
be taken in the next state s′, and α ∈ [0, 1] is the learning rate.
After the iterative process, the agent will eventually learn the
optimal Q-values for each state-action pair, Q∗(s, a) over time.
Then, the optimal policy can be obtained by acting greedily
in every state by the following equation.

π∗ = arg max
a∈A

Q∗(s, a). (6)

We discuss the modeling of state, action, and reward asso-
ciated with our MM scheme in the following subsection.

A. Simulation Setup and Training

1) State Representation: We take the predetermined linear
trajectory of the UAV of duration L and divide into δ equal
segments where δ = L

n . Here n represents the measurement
gap. Note that the given trajectory might already be calculated
offline in order to maximize some performance criteria. We
denote each segment or waypoint (xuav, yuav, huav) as a unique
state. Hence, the number of available states in our setup is δ.

2) Action Representation: The network acting as the agent
can choose β in the range [−2, 12] with 2◦ resolution. In other
words, the number of available actions is eight. The network
can change the values of β by changing the phase of each
antenna element remotely during each n.

3) Reward Model: To obtain the desired performance, we
define a reward function that focuses on maximizing the GUE
sum-rate and the RSRPs at the UAV simultaneously along
the route. During a flight, the agent needs to tune β of the
GBSs while maintaining both of these goals. The weighted
combination of RSRP and GUE capacity for taking action a
at state s can be expressed as:

R(s, a) = wrate × Cs′ + wRSRP × RSRPs′ , (7)

where Cs′ and RSRPs′ are the rate of the GUE and the
RSRP from the serving GBS at following state s′, respectively.
wrate is the weight associated with the GUE rate and wRSRP
represents the weight of the RSRP. The weights are chosen
such that wrate + wRSRP = 1.

Algorithm 1 Q-learning for UAV mobility management.
1: Input: UAV trajectory, cellular network, ε = 1, α, γ, Q = 0δ×8

2: repeat (for each iteration):
3: if ε ≥ εmin

4: ε=ε × η end if
5: repeat (for each segment of the UAV trajectory):
6: choose action a using ε-greedy policy:
7: take action a, calculate R(s, a) using (7)
8: update Q-value using (5) and by calculating the action

which maximizes Q-value in the next state
9: s← s′

10: until s is terminal
11: Output: Q∗ table

4) Training Process: Our offline Q-learning training pro-
cess consists of multiple iterations or epochs, each with a
number of steps δ. At each step, the network tries to obtain
the highest reward while also checks for other actions that
can improve the estimated future reward. To overcome this
exploration-exploitation dilemma, we adopt ε-greedy method
[33]. The main idea is to choose a random number from [0, 1]
and check whether it is smaller than ε. If so, the agent takes a
random action; otherwise, it goes with the action that has the
highest Q-value. We start our first iteration with ε = 1 and
then reduce ε by multiplying a decay factor η = 0.99 at each
iteration. Each iteration starts with s = 0 (first waypoint of
the UAV trajectory) and finishes when UAV reaches the final
location. The pseudo-code of the proposed Q-learning process
is presented in Algorithm 1.

It is worth noting that the actions chosen by the agent will
impact the RSRP values, which will eventually trigger the
HO condition at each state. We count the number of HOs
for a given trajectory as follows. At the beginning of the
trajectory (s = 0), the RSRPs from all the available GBSs
is calculated and the UAV associates with the one providing
the highest RSRP. We denote the current cell as Ccurr. For the
next waypoint or s = 1, Ccurr remains the same. At s = 2, the
RSRPs from all GBSs is calculated again and the GBS with
the highest RSRP at s = 2 is denoted as Cnext.

If Cnext is different that Ccurr and the measured RSRP of Cnext
is higher than that of Ccurr by HOM, we calculate the RSRP of
Cnext and Ccurr after travelling TTT s between s = 1 and s = 2.
If the RSRP of Cnext is higher than that of Ccurr by HOM, at the
moment when TTT ends, HO to Cnext takes place. Otherwise,
the UAV keeps associated with Ccurr. The same procedure is
repeated at each waypoint until UAV reaches the last state.

5) Analysis of the Algorithm: In our proposed algorithm,
the number of states or the discrete waypoints is finite. The
reward function can take values in the range [0, 1] and the set
of allowed actions is also finite. Moreover, a decision epoch
or iteration finishes when the UAV reaches the final location.
Hence, our MM method is an MDP. If we consider λ < 1
and α ∈ [0, 1], our proposed Q-learning based MM technique
will converge to an optimal action-value function given that
Q-values get sufficient number of updates. The complexity of
the Q-learning algorithm is O(|S||A|), where | · | denotes the
cardinality of a set.
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Fig. 3. Average number of HOs per flight for various weight combinations.

TABLE I
SIMULATION PARAMETERS.

Parameter Value
P gbs 46 dBm
huav 100 m
hgbs 35 m
hgue 1.5 m
fc 1.5 GHz
M 64
K 320
v 120 km/h
n 200 ms [4]
TTT, HOM 160 ms, 3 dB

V. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
RL-based MM technique. We consider terrestrial networks
containing 64 GBSs and 320 GUE in a square area of 4 × 4
km2, where the GBSs and the GUE are placed randomly. We
consider that the UAV is flying at a speed of 120 km/h in a
straight line and the route faces correlated SF. The flying time
of the UAV is considered to be 120 seconds. Here, we ignore
the take-off and landing time of the UAV as well as the time to
reach the altitude huav. Note that our method can allow more
flying time at the expense of higher computational complexity.
For Q-learning training purpose, we consider α = 0.8, and
λ = 0.9. The Q-learning algorithm is trained offline for
1500 iterations or epochs. We consider 100 random networks
for simulation purposes and then compute the average to
study the performance of our proposed method. Note that at
each realization, the UAV trajectory remains the same; the
underlying positions of the GUE and GBSs as well as SF
values associated with trajectory change. For each random
realization, the RSRP samples associated with each discrete
waypoint are linearly transformed to the interval [0,1]. We
also normalize the GUE rates associated with each action or
β for each random network. The simulation parameters and
their default values are listed in Table I.

We consider different weight combinations of RSRPs and
GUE rates to test the performance of our proposed MM
technique and denote weight vector w = [wrate, wRSRP] to rep-
resent different weight combinations. For instance, [1.0, 0.0]
means that the values of wrate and wRSRP are 1.0 and 0.0,
respectively. To compare the performance of our approach,
we also consider a baseline in which the value of β is kept
fixed at 6◦ as done for the RMA-AV scenario in [14]. Since
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Fig. 4. CDF of RSRP experienced by the UAV for various weight combina-
tions.

Fig. 3 shows the mean number of per-flight HOs completed
by the UAV for different weight combinations. We can observe
that [0.1, 0.9] and [0.0, 1.0] provide 15% and 40% fewer
average HOs, respectively than the baseline scheme where β is
kept fixed. On the other hand, a weight vector [1.0, 0.0] scheme
yields 11.1% more average HOs compared to the baseline.
This is because the more we emphasize the RSRP values,
lower values of β are selected which will steer the main beams
of the GBSs towards the UAV. This leads to smoother signal
coverage in the sky which results in lower HO count. [0.2, 0.8]
and [0.3, 0.7] schemes vary β sharply during the flights which
create patchy GBS coverage from the UAV’s perspective and
hence, causes frequent HOs.

TABLE II
DT ANGLE FOR DIFFERENT WEIGHTS.

Weight vector mean β
[0.0, 1.0] −2◦
[0.1, 0.9] 6.04◦

[0.2, 0.8] 11.97◦

[0.3, 0.7] 11.99◦

[1.0, 0.0] 12◦

In Table II, we present the per flight mean β selected by
the network for different weight combinations. We observe that
when more emphasis is placed on the GUE rate, the GBSs will
then choose higher values for β. This is consistent with the fact
that higher DT angles will decrease the inter-cell interference
among the GBSs and will steer the main beam of the antenna
towards the GUE with higher gains.

In Fig. 4, we show the cumulative distribution function
(CDF) of RSRPs experienced by the UAV in a flight. The
weight vector combination [1.0, 0.0] focuses only on the
GUE rate and hence, ignores the RSRP performance at the
UAV completely. As such, this provides the lowest RSRP for
the UAV. On the other hand, [0.0, 1.0] provides the highest
RSRP. The difference between the fifth percentile RSRP values
associated with these two extremes is around 14 dB. [0.0, 1.0]
also provides about 10 dB higher fifth percentile RSRP than
the baseline scheme, whereas [0.1, 0.9] provides about 9 dB
higher fifth percentile RSRP. The RSRP values associated with
the other two weight vectors are very close to each other since
they maintain the same average β during the flight duration.
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In Fig. 5, we show the per flight mean GUE rate associated
with different weight vectors. As expected, [1.0, 0.0] provides
the best GUE rate while its counterpart [0.0, 1.0] provides the
lowest one. We can see that [0.1, 0.9] performs very close to
the baseline. Overall this weight combination finds a balance
between signal quality at the UAV and providing DL coverage
to GUE. Moreover, choosing w = [0.1, 0.9] provides a smaller
HO count compared to the baseline scheme.

VI. CONCLUSION

In this paper, we have proposed an RL-based MM frame-
work in a DL cellular network for ensuring better connectivity
for both the cellular-connected UAV and the GUE. By ex-
ploiting Q-learning, we have provided a flexible technique for
finding a balance between these two contradictory goals. The
network can trade-off the received signal strength at the UAV
with the GUE rate by adjusting the respective weights of these
quantities in the reward function and thus by tuning the DT
angles accordingly. Our simulation results have demonstrated
that the proposed approach can reduce the number of HOs
while maintaining good connectivity to the UAV and the GUE,
compared to the scenario where the DT angle is always kept
fixed. Future extensions can include the case in which multiple
UAVs are considered as well as scenarios where the GUE
are mobile. In addition, the presence of intelligent reflective
surfaces that are facing upward is an interesting future work.
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