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Abstract—We consider the problem of scheduling transmis-
sions over low-latency wireless communication links to control
various control systems. Low-latency requirements are critical
in developing wireless technology for industrial control, but
are inherently challenging to meet while also maintaining re-
liable performance. An alternative to ultra reliable low latency
communications is a framework in which reliability is adapted
to control system demands. We formulate the control-aware
scheduling problem as a constrained statistical optimization
problem in which the optimal scheduler is a function of current
control and channel states. The scheduler is parameterized
with a deep neural network, and the constrained problem is
solved using techniques from primal-dual learning, which have a
necessary model-free property in that they do not require explicit
knowledge of channels models, performance metrics, or system
dynamics to execute. The resulting control-aware deep scheduler
is evaluated in empirical simulations and strong performance is
shown relative to other model-free heuristic scheduling methods.

Index Terms—wireless control, low-latency, deep learning,
primal-dual

I. INTRODUCTION

The recent advances in wireless technology and automation

have given rise to efforts in integrating wireless communica-

tions in autonomous environments, particularly in industrial

control settings where the scale of wired networks is proving

increasingly costly [1]. The analysis of control systems operat-

ing over wireless communication links is thus an integral apart

in enabling these wireless industrial automation applications.

However, the performance specifications of Tactile Internet

applications demands the design of wireless networks that

can meet both the high reliability and low latency demands of

the system [1]–[3]. Ultra reliable low latency communications

(URLLC) is inherently challenging as the physical medium

of wireless communication trades off reliability and latency,

making it hard to meet both demands.

One promising direction in enabling low latency commu-

nications involves specific developments in radio resource

allocation, or scheduling. For low latency applications, tra-

ditional delay-aware schedulers [4]–[6] have been employed,

in addition to more recent URLLC techniques based on

various forms of diversity [2], [7], [8]—all of which are

agnostic to the control system. However, due to the physical

limitations of the wireless channel, it is often necessary to
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use information from the control system to make proper

use of scheduling resources in meeting latency requirements.

While there exist numerous ways in which control system

information is incorporated into “control-aware” scheduling

methods [9]–[14], these are agnostic to latency requirements

of the system. More recent work [15] looks at heuristic based

scheduling methods that are both control and latency aware,

but whose practical use in low latency systems is limited both

by its computational complexity at every scheduling cycle and

reliance on explicit knowledge of the communication model

and control dynamics.

Such existing methods, however, rely on accurate system

knowledge, including plant dynamics and communication

network parameters. Most practical systems present in modern

industrial environments do not have accurate models available,

inspiring the use of machine learning approaches to make

intelligent scheduling and resource allocation decisions in

wireless control systems without requiring model knowledge.

This leads to a natural use of learning models, such as

deep neural networks (DNNs), for designing schedulers. Most

DNN training techniques are not immediately usable here

as the latency requirements of the system pose constraints

in the optimization problem [16]. Recent advancements ap-

ply techniques from both reinforcement learning and deep

learning for control-aware scheduling in simple systems [12]–

[14] and traditional wireless systems with latency constraints

[17], [18]. Learning-based scheduling policies are well suited

for URLLC and control as the computational complexity at

each scheduling round is very low and can furthermore be

implemented model-free when system dynamics and com-

munication models are unknown. Our contributions namely

consist of

1) formulating a statistical learning problem for control-

aware, low latency scheduling as a function of both

channel and control states,

2) parameterizing the scheduling policy with a deep neural

network (DNN), and

3) utilizing a model-free, primal-dual learning framework

to find control-aware scheduling policies.

This paper is organized as follows. We discuss the wireless

control system in which state information is communicated to

the control over a wireless channel as a switched dynamical

system (Section II). We formulate the optimal scheduling

problem that minimizes a control cost under latency con-

straints (Section II-A) and parameterize the optimal policy

with a deep neural network (Section II-B). The constrained
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Fig. 1: A series of independent wireless control systems send

state information over a shared wireless medium to a base

station, where control information is fed back to the systems.

The uplink transmissions (red arrow) is subject to latency

constraint tmax.

learning problem is solved using a so-called primal-dual

learning method (Section III). We further discuss ways in

which the primal-dual method can be approximated without

explicit model knowledge (Section III-A). The performance of

the learned control-aware scheduling method is analyzed in a

numerical simulation and compared against existing baseline

scheduling methods (Section IV) to show benefits of model-

free learning and the consideration of control and channel

conditions in making scheduling decisions.

II. WIRELESS CONTROL SYSTEMS

We consider a series of m control systems—each a wireless

device or plant—operating over a shared wireless channel

as shown in Figure 1. The state of system i at control

cycle index k is given by the variable xk
i ∈ R

p. At each

control/scheduling cycle, the sensor measures the state xk
i and

transmits it over a wireless channel to a common base station

(BS) that is co-located with the controller. Given the state

information, the controller determines the necessary control

input which is fed back to the system. This is referred to as the

closed-loop configuration of the control cycle. Given the noisy

nature of the wireless channel, there is the potential for the

communications packet containing the state information to be

dropped, resulting in an open-loop configuration of the control

cycle. We may model the linear dynamics of the wireless

control system for system i as

xk+1
i =

{
Âix

k
i +wk if packet received

Åix
k
i +wk otherwise

, (1)

where Âi ∈ R
p×p is the closed loop gain, Åi ∈ R

p×p is the

open loop gain, and wk ∈ R
p is zero-mean i.i.d. disturbance

process with covariance W. The closed loop and open loop

gains may reflect, e.g., controlled dynamics using accurate and

estimated state information, respectively. We assume that the

closed loop gains are preferable to the open loop gain, i.e.

λmax(Âi) < λmax(Åi). Further note this model restricts its

attention to wireless connections in uplink of the control loop,

while downlink is assumed to occur over an ideal channel—

i.e. no packet drops.

Transmission time

Channel 3

Channel 2

Channel 1

Fig. 2: Example of scheduling of m = 4 users colored in

yellow, red, blue and green across n = 3 channels using

TDMA in each channel.

Given this dynamical model of the wireless control systems,

the communications goal is to allocate radio resources among

the various systems to maintain strong performance across

all the systems. To do so, we present a generic frequency

and time division multiplexing scheduling architecture with

which the BS allocates scheduling resources to the systems.

A scheduling window occupies the uplink of a single cycle

in the control loop in which each system has a single packet

containing state information to transmit. For URLLC systems,

the total length of this scheduling window is subject to a tight

low-latency bound tmax.

We assume that transmissions are scheduled by the BS

across n available channels occupying different (possibly non-

consecutive) frequency bands. Each channel is subject to

continuous time division multiple access (TDMA), meaning

that multiple transmissions in the same channel will occur in

sequence. For full generality, we assume that a single device

may be schedule the same packet in multiple channels in a

single cycle to add redundancy and improve chance of success.

Denote by ςi ∈ {0, 1}n a binary vector whose jth element

ςi,j is 1 if the ith device transmits in the jth channel, and 0

otherwise. Further denote for each device a data rate selection

μi ∈ [μmin, μmax]. These two scheduling parameters together

define the scheduling decision made for the ith system. An

illustration of m = 4 users making multiple transmission

across n = 3 channels is shown in Figure 2.

The achieved communications performance by a given

scheduling decision can be formulated as follows. We first

define hk
i ∈ R

n
+ to be the set of fading channel states

experienced by device i at cycle k, where the j element

hk
i,j is the fading channel gain in channel j. We assume that

these channel conditions do not change over the course of a

scheduling window. In any given channel with fading state h,

we define a function q(h, μ) that returns the packet delivery

rate (PDR), or the probability of successful transmission of

the packet, when transmitting with data rate μ. Likewise, we

define a function τ(μ) that returns the transmission time to

transmit a packet of fixed length with data rate μ. These two

functions play a critical role in designing low-latency wireless

control systems, as they allow us to explore the trade-off

between PDR and transmission time and the resulting effect

on control system performance. We may consider that the

functions q(h, μ) and τ(μ) both get smaller as we increase



data rate μ, i.e.

μ′ > μ =⇒ q(h, μ) ≤ q(h, μ′), τ(μ′) ≤ τ(μ). (2)

Thus, by increasing the data rate we may reduce the trans-

mission time to satisfy latency constraints, but at the cost of

control system performance, as characterized by the switched

dynamics in (1).

Remark 1: The communication architecture utilized here

has a generic form that assumes both continuous time division

and simultaneous transmission in independent, unsynchro-

nized channels. We present the architecture in this form both

for the purposes of a more tractable mathematical model as

well as its generalization of the architectures used in, e.g.,

Bluetooth or centralized scheduled WiFi. Note that common

OFDMA architectures, such as 5G [19] and next-generation

WiFi IEEE 802.11ax [20], do not conform precisely to this

architecture although it can be adapted as such with slight

modifications. We leave the consideration of a synchronized,

OFDMA architecture as a point of future work.

A. Optimal scheduling design

We are interested in designing scheduling policies that

optimize control performance, subject to the strict low latency

constraints of the system. To do so, we first formulate the

global control-based performance given a scheduling decision.

Collect in the matrix Σ ∈ {0, 1}n×m all of the channel

transmission vectors ςi for i = 1, . . . ,m and collect in the

vector μ ∈ [μmin, μmax]
m the data rates μi for i = 1, . . . ,m.

Given that a device may transmit in multiple channels within

a single scheduling cycle, the probability of successful trans-

mission can be given as the probability that the transmission

was successful in at least one channel, i.e.

q̃(hi, ςi, μi) := 1−
n∏

j=1

(1− ςi,jq(hi,j , μi)) . (3)

The total delivery rate in (3) can be viewed as the prob-

ability of receiving the packet and experiencing the closed

loop dynamics in (1). Now, to evaluate the performance of

a given system at a particular state x, define a quadratic

Lyapunov function Li(x) := xTPix with some positive

definite matrix Pi ∈ R
p×p. Such a function can be used

to evaluate performance or stability of the control system.

Because the control system evolves in a random manner, the

cost of a given scheduling decision {ςi, μi} for the ith system

can be formulated as the expected future Lyapunov cost under

such a schedule. As the probability of closing the loop in (1)

is given by q̃(hk
i , ςi, μi), we may write this expected future

cost as

Ji(xi,hi, ςi, μi) := E
[
Li(x

k+1
i ) | xk

i = xi,h
k
i = hi

]
(4)

= q̃(hi, ςi, μi)(Âixi)
TPi(Âixi) +

(1− q̃(hi, ςi, μi))(Åiξ)
TPi(Åixi)

+ Tr(PiWi).

Observe that the local control cost for the ith system

Ji(x
k
i ,h

k
i , ςi, μi) is a function of both the system states—the

fading channel hk
i and control state xk

i —and the scheduler

actions—channel selection ςi and data rate μi. The objective

is to choose the actions ςi and μi that minimizes the cost

relative to states hk
i and xk

i .

In addition to minimizing a control cost, we must make

scheduling decisions that respect the low-latency requirements

of the system. To formulate this constraint, consider the total
time of a global scheduling decision Σ,μ of channel j as the

sum of all active transmissions, i.e.

τ̃j(Σ,μ) :=
m∑
i=1

ςi,jτ(μi). (5)

Combining all the local costs for systems i = 1, . . . ,m
in (4) with the a constraint on the latency costs for all

channels j = 1, . . . , n in (5), we may define the optimal

scheduling design problem. Because we are interested in long-

term, or average, performance across random channels and

control states, we optimize with respect to expected costs and

probabilistic constraints. Collect all channel vectors hi in a

matrix H ∈ R
n×m
+ and states xi in a matrix X ∈ R

p×n.

Consider a scheduling policy p(H,X) := {Σ,μ} that, given

a set of channel states H and control states X, returns a

schedule defined by the channel selection matrix Σ and data

rate selection vector μ. The optimal low-latency constrained

scheduling policy for the wireless control systems is the one

which solves the program

J∗ := min
p(H,X)

EH,X

[
m∑
i=1

Ji(xi,hi, ςi, μi)

]
, (6)

s. t. PH,X (τ̃j(Σ,μ) ≤ tmax) ≥ 1− δ j = 1 . . . , n,

p(H,X) := {Σ ∈ {0, 1}n×m,μ ∈ [μmin, μmax]
m}.

In (6), we minimize the average cost over the distribution

of channel and control states, subject to the condition that

the probability of violating the latency constraint over the

distribution of states is less than some small value δ. Because

each channel’s transmission time varies, we impose this con-

straint independently for each channel. The above scheduling

problem can be viewed as a constrained statistical learning

problem [16]. While such a problem characterizes the optimal

scheduling decision for the latency-constraint wireless control

system, finding solutions to such a problem is a significant

challenge. This is due to a number of complexities in (6),

namely: (i) it requires functional optimization, (ii) it contains

explicit constraints, and (iii) we typically do not have analytic

forms for the functions and distributions in (6). The first of

these complexities can be resolved using a standard technique

in statistical learning, discussed next in Section II-B. The latter

two of these complexities are discussed and resolved later in

Sections III and III-A, respectively.

B. Deep learning parameterization

The scheduling problem in (6) is computationally chal-

lenging because it requires finding a policy—or function—

p(H,X). In statistical learning, or regression, problems the



regression function is replaced by some given parameteriza-

tion φ(H,X,θ) that is defined with some finite dimensional

parameter θ ∈ R
q . There exist a wide variety of choices of this

parameterization, but in modern machine learning problems

the deep neural network (DNN) is commonly employed. This

is due to the fact the DNN can be shown both empirically

and analytically to contain strong representative power and

generalization ability, meaning that it can approximate almost

any function well. A DNN is defined as a composition of L
layers, each of which consisting of a linear operation followed

by a point-wise nonlinearity—also known as an activation

function. More specifically, the layer l is defined by the linear

operation Wl ∈ R
ql−1×ql followed by a non-linear activation

function σl : R
ql → R

ql . Common choices of activation

functions σl include a sigmoid function or a rectifier function

(commonly referred to as ReLu).

Given an input from the l−1 layer wl−1 ∈ R
ql−1 , the result-

ing output wl ∈ R
ql is then computed as wl := σl(Wlwl−1).

The full DNN-parameterization of the scheduling policy is

then defined as an L-layer DNN whose input at the initial

layer is the concatenation of states w0 := [vec(H); vec(X)],
i.e.

φ(H,X,θ) := σL(WL(σL−1(WL−1(. . . (σ1(W1w0)))))).
(7)

The parameter vector θ ∈ R
q that defines the DNN is

then the entries of {Wl}Ll=1 with q =
∑L−1

l=1 qlql+1. Further

note that we can easily construct an activation function at

the final layer σL—or the output layer—such that the outputs

φ(H,X,θ) are in the space {0, 1}n×m × [μmin, μmax] that

contains possible schedules. With this DNN parameterization,

the control-aware scheduling problem can be rewritten as

J∗φ := min
θ∈Rq

EH,X

[
m∑
i=1

Ji(xi,hi, ςi, μi)

]
, (8)

s. t. PH,X (τ̃j(Σ,μ) ≤ tmax) ≥ 1− δ ∀j,
φ(H,X,θ) := {Σ ∈ {0, 1}n×m,μ ∈ [μmin, μmax]

m}.
Observe in (8) that the optimization is performed over θ rather

than the scheduling policy directly. In other words, we look

for the interlayer weights that define a DNN that minimizers

the total control cost while satisfying the latency constraints.

We proceed then to discuss a learning method that can find

solutions to the constrained optimization problem in (8).

III. PRIMAL-DUAL LEARNING

Finding the DNN layer weights θ that provide good so-

lutions to (8) requires the solving of a constraint learning

problem. The standard approach of gradient-based optimiza-

tion methods cannot be applied directly here due to the

presence of the latency constraints. To proceed then, we must

formulate an unconstrained problem that captures the form

of (8). A naive penalty-based reformulation will introduce a

similar but fundamentally different problem, so we thus opt

for constructing a Lagrangian dual problem. For notational

convenience, moving forward we employ the following short-

hands for the state variables, aggregate Lyapunov function,

latency constraint functions, respectively:

w := [vec(H); vec(X)], (9)

f(φ(w,θ),w) : =
m∑
i=1

Ji(xi,hi, ςi, μi), (10)

gj(φ(w,θ),w) := I [τ̃j(Σ,μ) ≤ tmax]− (1− δ) (11)

We introduce the nonnegative dual variables λ ∈ R
n
+ associ-

ated with the vector of constraint functions g(p(w,θ),w) :=
[g1(·); . . . ; gn(·)], and form the Lagrangian as

L(θ,λ) := Ew

[
f(φ(w,θ),w)− λTg(φ(w,θ),w)

]
. (12)

The Lagrangian in (12) penalizes constraint violation through

the second term. Note, however, that the penalty is scaled by

the dual parameter λ. The so-called Lagrangian dual problem

is one in which both the primal variable θ is simultaneously

minimized while the dual parameter λ is maximized. Such a

problem can be written with the saddle point formulation

D∗φ := max
λ≥0

min
θ
L(θ,λ). (13)

The dual optimum D∗φ is the best approximation of the form

in (12) we can have of J∗φ. In fact, under some standard

assumptions on the problem and assuming a sufficiently dense

DNN architecture, we can formally bound the difference

between D∗φ and J∗ to be proportional to the approximation

capacity of the DNN φ(H,X,θ)—see [16] for details on this

result. Thus, we may say that, up to some approximation,

solving the unconstrained problem in (13) is equivalent to

solving the constrained problem in (8).
With the unconstrained saddle point problem in (13), we

may perform standard gradient-based optimization methods

to obtain solutions. The max-min structure necessitates the

use of a primal-dual learning method, in which we iteratively

update both the primal and dual variable in (12) to find a

local stationary point of the KKT conditions of (8). Consider

a learning iteration index t = 0, 1, . . . over which we define a

sequence of primal variables {θt} and dual variables {λt}.
At index t, we determine the value of next primal iterate

xt+1 by adding to the current iterates the corresponding partial

gradients of the Lagrangian in (12) ∇θL, i.e.,

θt+1= θt−αt∇θEw

[
f(φ(w,θt),w)−λT

t g(φ(w,θt),w)
]
,

(14)

where we introduce αt > 0 as a scalar step size. We

subsequently perform a corresponding partial gradient update

to compute the dual iterate λt+1, i.e.

λt+1 = [λt − βtEwg(φ(w,θt+1),w)]+ , (15)

with associated step size βt > 0. Observe in (15) that

we additionally project onto the positive orthant to maintain

the nonnegative constraint on λ. The gradient primal-dual

updates in (14) and (15) successively move the primal and

dual variables towards maximum and minimum points of the

Lagrangian function, respectively.



A. Model-free updates
The updates in (14)-(15) cannot, in general, be applied ex-

actly. To see this, observe that computing the gradients in (14)

requires computing the gradient of Ji(·)—which depends on

PDR function q̃(·) and system dynamics—and the gradient of

an indicator of transmission length function τ̃(·). In practical

systems, we do not typically have easily available analytic

forms for these functions to take gradients. Furthermore, both

the updates in (14) and (15) require to take the expectation

over the distribution of states x and h. These, too, are often

unknown in practice. However, there exist standard ways of

approximating the updates with stochastic, model-free updates

that do not require such knowledge. Most popular among these

is the policy gradient approximation [21].
To compute a policy gradient update, we consider the

scheduling parameters Σ and μ are drawn stochastically from

a distribution with given form πφ(w,θ) whose parameters are

given by the output of the DNN φ(w,θ)—e.g. the mean and

variance of a normal distribution. Using such a stochastic

policy, it can be shown that an unbiased estimators of the

gradients in (14) and (15) can be formed as,

∇̂θEwf(φ(w,θ),w)=f(p̂θ, ŵ)∇θ log πφ(ŵ,θ)(p̂θ) (16)

∇̂θEwg(φ(w,θ),w)=g(p̂θ, ŵ)∇θ log πφ(ŵ,θ)(p̂θ)
T (17)

Êwg(φ(w,θ),w) = g(p̂θ, ŵ), (18)

where ŵ is a sampled state and p̂θ is a sample drawn

from the distribution πφ(ŵ,θ). In practice, we may reduce

the variance of these unbiased estimates by taking B samples

and averaging. Note that the updates here only require taking

gradients of the log likelihoods rather than of the functions

themselves. This implies we can perform the learning process

without explicitly knowing, e.g., system dynamics, perfor-

mance metrics, state distributions. Thus, we can replace the

updates in (14) and (15) with their model free counterparts by

substituting the gradient estimates in (16)-(18). The complete

primal-dual learning algorithm is summarized in Algorithm 1.

We conclude with a brief remark on state sampling.

Algorithm 1 Model-Free Primal-Dual Learning

1: Parameters: Policy model φ(h,θ) and distribution πh,θ

2: Input: Initial states θ0,λ0

3: for t = 0, 1, 2, . . . do {main loop}
4: Draw samples {θ̂, ĥ}, or in batches of size B

5: Compute policy gradients [ c.f. (16)-(18)]
6: Update primal and dual variables

θt+1= θt−αt
̂∇θEw

[

f(φ(w,θt),w)−λT
t g(φ(w,θt),w)

]

, [cf.(14)]

λt+1 =
[

λt − βt
̂Ewg(φ(w,θt+1),w)

]

+
[cf.(15)]

7: end for

Remark 2: In the gradient estimations in, e.g. (16), we

sample both the control states x and channel states h. This
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Fig. 3: Convergence of transmission time for a low-latency,

control aware scheduling policy over the learning process.

The DNN parameterized scheduling policy obtains feasible

latency-contained schedules (tmax = 5 × 10−4 shown in

dashed red line) on both channels.

assumes that such samples can be drawn i.i.d. While this

may generally be true for the channel states h, it will not be

generally be true for the control states x in practice, due to

the fact that the states evolve based on the switched dynamics

in (1), which itself depends on the scheduling actions taken.

A more precise way to model the statistics of the control

states would be with a Markov decision process (MDP). The

generalization of the presented techniques for this setting

make up what is known as reinforcement learning algorithms.

In this work, we nonetheless assume that during training that

x can also be drawn i.i.d. from an approximate distribution.

As shown in the proceeding section, we demonstrate that the

learned policy is still effective when the states evolve via (1)

as would be seen in practice.

IV. SIMULATION RESULTS

We perform a series of simulations on latency-constrained

wireless control systems to evaluate the performance the

learning method in and the resulting control-aware schedul-

ing policies. We generate a series m = 9 systems with

closed-loop gains Âi ∼ Uniform(0.85, 0.95) and open-loop

gains Åi ∼ Uniform(1.01, 1.2). The variance for all system

noise wi is set to be W = 1. All such systems send

their state information over a shared wireless channel with

n = 2 independent channels with a total latency constraint

of tmax = 0.5 ms. A latency bound of this order is typical

of industrial control systems such as printing machines and

presses [1]. We further assume that the states of the systems

are confined to the box [−10, 10]. In simulations, we utilize

a DNN with 2 layers of size 2000 and 1000, with ReLU

activation functions. For the policy distribution πφ(w,θ), we

utilize a Beta distribution scaled between [1.6, 9.0] to select

μ and a Bernoulli distribution to select Σ.

With the scheduling architecture given in Figure 2 for n = 2
channels and m = 9 systems, at a control scheduling interval

each system is given a data rate μi and a set of channels to
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Fig. 4: (Left) A boxplot of medians and quartiles of control costs obtained by proposed DNN-based scheduling and model-free

heuristics. In terms of the quadratic system cost, the DNN outperforms both baselines. In (Right) we simulate the control

system using the learned scheduler and two baseline model-free heuristic scheduler. The NN policy stabilizes most of the

systems faster than RR and PR.

transmit on. In our simulations, we use the modulation and

coding schemes (MCS) of the next-generation IEEE 802.11ax

Wi-Fi protocol as a representative architecture for data rate

selection and packet error rate computation. As such, the

continuous data rates μi are selected in an interval of [1.6, 10]
and rounded down to the nearest discrete MCS selection given

in 802.11ax—see [20] for details on the MCS tables given

in this protocol. The corresponding transmission time τ(μ)
is then calculated assuming a fixed packet size of 100 bytes

and the packet delivery rate q(h, μ) is computed using the

associated AWGN error curve (scaled by the effective SNR

given channel conditions).

In Figure 3 we show the training process for the control-

aware scheduler using the primal-dual scheduler given in

Algorithm 1. In particular, we show the transmission time

utilized over the 2 channels by the NN-based scheduling

policy over the course of 50, 000 learning iterations. As can

be seen, the policies converge to scheduling decisions that

respect latency requirements for both channels after 50, 000
iterations, showcasing the capability of a neural network to

learn latency restrictive policies.

We proceed to compare the performance of the learned pol-

icy in terms of the control metric in (4) against other schedul-

ing heuristics. We compares against a standard, control-

agnostic round-robin scheduling policy (RR) and a control-

aware priority ranking (PR) heuristic in which transmissions

are scheduled iteratively for systems based on control state

value. These methods are chosen as they can be implemented

model-free, to make a reasonable comparison against the

model-free DNN, and are those utilized in modern practical

systems. We point out that both of the scheduling policies used

fixed target PDRs of 0.95 to determine data rate selection. In

the left image of Figure 4 we show a box plot of the quadratic

control costs obtained by each of these methods over 1000

different randomly drawn plant and channel states. It can be

observed that, in terms of this cost, the DNN outperforms both

baselines. Thus, when considering a specific control-aware

cost to optimize, designing scheduling algorithms directly

with respect to this cost can benefit the performance of the

system.

Alternatively to the quadratic cost shown in the left image,

we may observe the end system performance of each of the

scheduling methods by looking at the state evolution of each

of the 9 plants using the respective schedulers—see Remark

2. In the right image of Figure 4 we show evolution of the 9

systems under each method. It can be observed that, while all

systems stabilize using each of the three schedulers, the DNN

is overall able to draw the plant states to zero faster than the

other methods, with one exception. Together, the results in

both figures of Figure 4 demonstrate an improved performance

relative to existing baselines. This can be attributed to the

fact that DNN has been model-free trained to adapt to both

changing channel conditions and the individual dynamics

and states of each of the systems, which allows it to make

more efficient scheduling policies with regards to the varying

system dynamics and latency constraints. In these results we

observe that it is indeed advantageous to incorporate control

system knowledge in the scheduling decision to promote good

performance.

V. CONCLUSION

We consider the setting of scheduling for low-latency

wireless control systems. To handle the challenge of achieving

high reliability performance with limited scheduling resources,

we formulate a control-aware scheduling problem in which re-

liability is adapted to control and channel states. This problem

takes the form of a constrained statistical learning problem, in

which solutions can be found by parameterized the scheduling

policy with a deep neural network and finding optimal weights

with a primal-dual learning algorithm that can be implemented

without system or dynamical models. Numerical simulations



showcase DNN-based scheduling policies that outperform

baseline scheduling procedures.
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