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Abstract—Orthogonal time frequency space (OTFS) is a
promising alternative to orthogonal frequency division multiplex-
ing (OFDM) in high-mobility beyond 5G communications. In this
paper, we consider the problem of radar sensing with OTFS
joint radar-communications waveform and derive a novel OTFS
radar signal model by explicitly taking into account the inter-
symbol interference (ISI) and inter-carrier interference (ICI)
effects. On the basis of the new model, we show how ISI and
ICI phenomena can be turned into an advantage to surpass the
maximum unambiguous detection limits in range and velocity,
arising in existing OFDM and OTFS radar systems. Moreover, we
design a generalized likelihood ratio test based detector/estimator
that can embrace ISI and ICI effects. Simulation results illustrate
the potential of embracing ISI/ICI and demonstrate its superior
detection and estimation performance over conventional base-
lines.

Index Terms– OTFS, OFDM, joint radar-communications,
inter-symbol interference, inter-carrier interference.

I. INTRODUCTION

As 5G systems are being rolled out, the time has come
to conceive and develop Beyond 5G (B5G) communication
systems. There are now several initiatives in Europa, the USA,
and Asia to define what B5G will be in terms of use cases
and requirements [1]–[3]. As with all previous generations,
one requirement will be a 10-fold increase in peak data rate.
Different from previous generations is the increased emphasis
on joint radar and communication (JRC) [4], driven not only
by localization use cases but also the inherent geometric nature
of the wireless propagation channel [5], [6].

In the pursuit of higher data rates, lower latency, and
higher sensing accuracies, we have no choice but to consider
larger carrier frequencies, above the 24 GHz band in 5G, as
this is where larger bandwidths are available [7]. At lower
frequencies, (despite intense competition) OFDM has remained
the communication waveform of choice, due to its robustness
to multipath, its straightforward integration with multi-antenna
systems, and its high flexibility in terms of power and rate
allocation [8]. In addition, OFDM is suitable for JRC with
standard FFT-processing, in both mono-static and bi-static
configurations [9]. However, at B5G frequencies, OFDM is
challenged by several effects, which force us to consider
alternative modulation formats: OFDM suffers from a high
peak-to-average power ratio (PAPR), leading to reduced power
efficiency, which becomes a limiting factor at high carriers.
Secondly, OFDM require frequent adaptation due to mobility
and fading, which would lead to prohibitive overheads at high
carriers due to the short coherence times [8]. Moreover, the
robustness to multipath comes at a cost of inserting a cyclic
prefix (CP) between OFDM symbols, resulting in a rate loss,
to combat inter-symbol interference (ISI). Finally, for radar,
OFDM is sensitive to inter-carrier-interference (ICI), resulting
from Doppler shifts under high target velocities [10].
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Sample

Fig. 1. OTFS JRC system, where the delay-Doppler data XDD ∈ CN×M is
converted to the time-frequency domain, and then to the time-domain, where
pulse shaping occurs and a single CP is added to the entire frame. The signal
y(t) is sampled in the time domain at t = `T/N for ` = 0, . . . , NM − 1
and the frequency domain at f = n∆f/M for n = 0, . . . , NM − 1.

These perceived drawbacks of OFDM have renewed the
interest in alternative modulation formats, in particular with
favorable properties in terms of JRC performance. Orthogonal
time frequency space (OTFS) has become a promising candi-
date in this respect, as it has lower PAPR [11], requires less
frequent adaptation [12], has a much lower cyclic overhead
[13], and can cope with much larger Doppler shifts [14]. In
contrast to OFDM’s 2D modulation in the time–frequency
domain, OTFS relies on the delay–Doppler domain. This
implies that a time-varying channel with constant Doppler will
appear time-invariant to OTFS [15]. Since radar detections
are of the form of range (delay) and velocity (Doppler)
tuples, OTFS is a natural candidate for JRC, as evidenced
by recent activity in this area [16]–[19]. Target detection and
estimation of their range and velocity is done by converting
the received time-domain signal back to the delay-Doppler
domain. This leads to high complexity, e.g., requiring iterative
interference cancellation-based processing due to significant
side-lobe levels [17]. In addition, the expression of the signal
in the delay-Doppler domain is complicated (see, e.g., [19,
Eq. (12)] and [17, Eq. (11)]), making it difficult to derive
insights into the structure of the OTFS signal in terms of ISI
and ICI effects. Finally, the existing approaches are limited
in terms of ISI and ICI due to standard ambiguity limits in
[17]–[19].

In this paper, we pursue a different and computationally
more appealing approach where the time-domain observations
are directly utilized to estimate target parameters without trans-
formation from time to delay-Doppler domain. This reveals the
explicit dependency of the observation on target delays and
Dopplers, which facilitates detector/estimator design, leading
to a low-complexity multi-target generalized likelihood ratio
test (GLRT) detector. In addition, the proposed time-domain
processing approach provides insights into the OTFS waveform
structure and thus enables exploitation of the ISI and ICI
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effects to surpass the standard ambiguity limits. The main
contributions of this paper can be summarized as follows:
• We derive a novel time-domain signal model for OTFS

radar by explicitly taking into account the ISI and ICI
effects. This allows detection of targets directly using
the time-domain observations in a low-complexity man-
ner without transformation to delay-Doppler domain and
enables turning ISI/ICI into an advantage for sensing.

• Based on the new model, we propose an ISI/ICI embrac-
ing approach to surpass the range/velocity ambiguity bar-
rier encountered in existing OFDM [20], [21] and OTFS
[17]–[19] radar algorithms, which enables detection of
any practically relevant range/velocity.

• We design a generalized likelihood ratio test (GLRT)
based detector/estimator for OTFS radar that simultane-
ously compensates for the ISI/ICI and harnesses their
properties to improve performance.

II. OTFS RADAR SIGNAL MODEL

We consider an OTFS JRC system consisting of an OTFS
JRC transceiver and an OTFS communications receiver, as
shown in Fig. 1. The OTFS transceiver is equipped with an
OTFS transmitter that generates the JRC signal for communi-
cating with the OTFS communication receiver and an OTFS
radar receiver that processes the backscattered signals for
target detection. In this section, we derive OTFS radar signal
model for the single-CP OTFS modulation architecture from
[18], [19], [22], [23]. As our contribution is not on OTFS
communication, the processing at the OTFS communication
receiver will be ignored.

The OTFS system has a total bandwidth N∆f and total
frame duration MT (excluding any CP), where N and M
denote the number of subcarriers and the number of symbols,
respectively, ∆f is the subcarrier spacing and T = 1/∆f
represents the symbol duration. Let XDD ∈ CN×M denote
the two-dimensional (2-D) OTFS frame in the delay-Doppler
domain consisting of NM transmit data symbols that reside
on the delay-Doppler grid (see Fig. 1)

G =

{(
n

N∆f
,
m

MT

) ∣∣∣ 0 ≤ n ≤ N − 1, 0 ≤ m ≤M − 1

}
.

Applying an inverse symplectic finite Fourier transform
(ISFFT) (i.e., an N -point FFT over the columns and an M -
point IFFT over the rows of XDD), we transform the 2-D
transmit data block from the delay-Doppler domain to the
frequency-time domain [12], [22], [24]–[26]

X = FNXDDFHM , (1)

where X ∈ CN×M is the frequency-time domain signal and
FN ∈ CN×N is the unitary DFT matrix with [FN ]`,n =

1√
N
e−j2πn

`
N .

To map the frequency-time domain 2-D sequence X to a
time domain signal transmitted over the wireless channel, we
apply the Heisenberg transform [12], [26], which entails an N -
point IFFT together with a transmit pulse-shaping waveform
gtx(t) (which is time limited to [0, T ]). The time domain
signal corresponding to the mth symbol after the Heisenberg
transform can be written as

sm(t) =
1√
N

N−1∑
n=0

xn,m e
j2πn∆ftgtx(t) , 0 ≤ t ≤ T , (2)

where xn,m , [X]n,m. Hence, the time domain signal for the
entire OTFS frame without CP is given by

s(t) =

M−1∑
m=0

sm(t−mT ) , 0 ≤ t ≤MT . (3)

Finally, the entire time domain signal with CP is given by

sCP(t) =

{
s(t), 0 ≤ t ≤MT

s(t+MT ), − Tcp ≤ t ≤ 0
, (4)

where Tcp denotes the CP duration.
We consider a K-tap doubly selective, narrowband radar

channel model as h(t, τ) =
∑K−1
k=0 αkδ(τ − τk)ej2πνkt [19],

[27], where the kth target is characterized by a complex
channel gain αk, a round-trip delay τk = 2Rk/c and a Doppler
shift νk = 2vk/λ, with Rk, vk, c and λ denoting the range,
radial velocity, speed of propagation and carrier wavelength,
respectively.

After transmission through the channel, the backscattered
signal at the OTFS radar receiver can be expressed as

yCP(t) =

K−1∑
k=0

αksCP(t− τk)ej2πνkt + w(t) (5)

for −Tcp ≤ t ≤MT , where sCP(t) is given by (4) and w(t) is
additive white Gaussian noise. We assume that the CP duration
is larger than the round-trip delay of the furthermost target, i.e.,
Tcp ≥ maxk∈{0,...,K−1} τk.

III. NOVEL OTFS SIGNAL MODEL FOR ISI/ICI
EXPLOITATION

In this section, we derive a novel compact representation of
the received signal in (5) for OTFS radar and show how it can
be exploited to improve radar performance.

A. Derivation of Received Signal for OTFS Radar

We first remove the CP in (5) (i.e., the interval [−Tcp, 0])
to obtain

y(t) =

{
yCP(t), 0 ≤ t ≤MT

0, − Tcp ≤ t ≤ 0
. (6)

Under the assumption Tcp ≥ maxk τk, the signal in (6)
becomes a superposition of cyclically shifted copies of the
transmit signal s(t) in (3) [22, eq. (6)]:

y(t) =

K−1∑
k=0

αks([t− τk]MT )ej2πνkt + w(t) , (7)

where [·]T denotes modulo-T .
Let S(f) , F{s(t)} =

∫MT

0
s(t)e−j2πft dt denote

the Fourier transform of s(t). Then, a cyclic shift of s(t)
corresponds to a phase shift in S(f), i.e.,

s([t− τk]MT ) = F−1
{
S(f)e−j2πfτk

}
, (8)

where F−1{·} represents the inverse Fourier transform. Sam-
pling the time domain at t = `T/N for ` = 0, . . . , NM−1 and
the frequency domain at f = n∆f/M for n = 0, . . . , NM−1,
the equivalent discrete-time representation of (7) can be written
as

y =

K−1∑
k=0

αk F
H
(
Fs� b(τk)

)
� c(νk) + w , (9)



where � is the Hadamard (element-wise) product, F ∈
CNM×NM is the unitary DFT matrix, s ∈ CNM×1 and
y ∈ CNM×1 denote the sampled versions of s(t) and y(t),
respectively, w ∈ CNM×1 is the additive white Gaussian noise
with w ∼ CN (0, σ2I),

b(τ) = bN (τ)⊗ bM (τ) ∈ CNM×1 (10)

is the frequency-domain steering vector with

bM (τ) ,
[
1, e−j2π

1
M ∆fτ , . . . , e−j2π

M−1
M ∆fτ

]T
∈ CM×1 ,

bN (τ) ,
[
1, e−j2π∆fτ , . . . , e−j2π(N−1)∆fτ

]T
∈ CN×1 ,

and,
c(ν) = cM (ν)⊗ cN (ν) ∈ CNM×1 (11)

is the temporal steering vector with

cM (ν) ,
[
1, ej2πTν , . . . , ej2π(M−1)Tν

]T
∈ CM×1 ,

cN (ν) ,
[
1, ej2π

T
N ν , . . . , ej2π

T (N−1)
N ν

]T
∈ CN×1 .

Here, ⊗ denotes the Kronecker product. The vectors bN (τ)
and cM (ν) are commonly encountered in OFDM radar, used
for recovering the range and velocity, respectively. In contrast,
the vectors bM (τ) and cN (ν) are commonly seen as dis-
turbances that degrade the performance. In particular, bN (τ)
quantifies delay-dependent frequency-domain phase rotations
corresponding to the Fourier transform of fast-time (hereafter
called fast-frequency domain), while bM (τ) involves inter-
symbol (slow-time) delay-dependent phase rotations (hereafter
called slow-frequency domain), leading to inter-symbol in-
terference (ISI). Similarly, cN (ν) represents Doppler-induced
fast-time phase rotations causing inter-carrier interference
(ICI), similar to the carrier frequency offset (CFO) effect in
OFDM communications [28], while cM (ν) captures Doppler-
dependent slow-time phase progressions.

B. Increasing Unambiguous Detection Intervals via ISI and
ICI Exploitation

The steering vector structures in (10) and (11) suggest
that radar receivers in OTFS suffer from both ISI and ICI
effects [19], similar to the case of OTFS communications [26].
However, unlike OTFS communications, these two effects can
be turned into an advantage for OTFS radar. In particular,
ISI manifests itself through the slow-frequency steering vector
bM (τ) and enables sampling the available bandwidth N∆f at
integer multiples of ∆f/M as observed from the Kronecker
structure in (10). In ISI-free operation, the steering vector in
(10) would only involve the fast-frequency component bN (τ),
which can sample the bandwidth with a spacing of ∆f , i.e.,
the subcarrier spacing. Hence, ISI can increase the maximum
detectable unambiguous delay by a factor of M by sampling
the frequency domain M times faster compared to a standard
ISI-free radar operation (e.g., in OFDM-based OTFS radar1).
More precisely, the unambiguous delays with and without ISI
are given, respectively, by

τ ISI
max = min

{
M

∆f
, Tcp

}
, τmax = min

{
1

∆f
, Tcp

}
, (12)

1Contrary to single-CP OTFS, OFDM-based OTFS systems use separate
CPs for each symbol in the OTFS/OFDM frame to circumvent the ISI effect
[24], [29].

where Tcp is the upper limit to prevent inter-frame interference
(i.e., between consecutive OTFS frames) in OTFS radar and
to prevent ISI between consecutive symbols in OFDM-based
OTFS radar.

Similarly to ISI, ICI can be exploited to increase the maxi-
mum detectable unambiguous Doppler by a factor of N [30].
In addition to the standard slow-time steering vector cM (ν),
Doppler-dependent phase rotations can also be captured by the
fast-time steering vector cN (ν), which allows sampling the
entire time window MT with an interval of T/N . Therefore,
the unambiguous Doppler values with and without ICI can be
expressed, respectively, as

νICI
max =

N

T
, νmax =

1

T
. (13)

IV. DETECTION AND ESTIMATION WITH OTFS RADAR

In this section, we provide the problem statement for OTFS
radar sensing and design a low-complexity detection and
estimation scheme based on the signal model in Sec. III-A.

A. Problem Formulation for OTFS Radar Sensing

Given the transmit signal s, the problem of interest for OTFS
radar sensing is to detect the presence of multiple targets and
estimate their parameters, i.e., their gain-delay-Doppler triplets
{(αk, τk, νk)}K−1

k=0 . This detection and estimation is done from
the time domain observations in (7), or, equivalently, from
its sampled version in (9). Unlike the existing works in
the OTFS radar literature, e.g., [17]–[19], where estimator
design is based on the received symbols in the delay-Doppler
domain, we adopt a low-complexity approach that performs
detection/estimation directly using time-domain observations
without transforming them into delay-Doppler domain.

B. GLRT for Detection/Estimation in OTFS Radar

To design a detector, we first rewrite the signal model in (9)
as

y =

K−1∑
k=0

αkC(νk)FHB(τk)Fs + w , (14)

where B(τ) , diag (b(τ)) ∈ CNM×NM and C(ν) ,
diag (c(ν)) ∈ CNM×NM . The hypothesis testing problem to
test the presence of a single target in (14) can be expressed as

y =

{
w, under H0

αC(ν)FHB(τ)Fs + w, under H1

, (15)

where the hypotheses H0 and H1 represent the absence and
presence of a target, respectively. To solve (15), we treat α, τ
and ν as deterministic unknown parameters and resort to the
GLRT

Λ(y) =
maxα,τ,ν p(y |H1;α, τ, ν)

p(y |H0)

H1

≷
H0

η , (16)

where η is the threshold. Under the assumption w ∼
CN (0, σ2I), the GLRT becomes

Λ(y) (17)

=
exp

(
− 1
σ2 minα,τ,ν

∥∥y − αC(ν)FHB(τ)Fs
∥∥2
)

exp
(
− 1
σ2 ‖y‖2

) H1

≷
H0

η .



TABLE I
OTFS PARAMETER SETS FOR SIMULATIONS

Parameter ISI-dominant ICI-dominant
Regime Regime

Carrier Frequency, fc 60 GHz 60 GHz
Subcarrier Spacing, ∆f 781.3 kHz 48.8 kHz
Number of Subcarriers, N 64 1024
Total Bandwidth, B 50 MHz 50 MHz
Symbol Duration, T 1.28µs 20.48µs
Cyclic Prefix Duration, Tcp 7.68µs 20.48µs
Number of Symbols, M 64 8
Frame Duration, MT + Tcp 89.6µs 184.3µs
Range Resolution, ∆R 3 m 3 m
Maximum Range, Rmax 192 m 3072 m
(Standard)
Maximum Range, RISI

max 1152 m 3072 m
(ISI Embracing)
Velocity Resolution, ∆v 30.5 m/s 15.3 m/s
Maximum Velocity, vmax ±976.6 m/s ±61 m/s
(Standard)
Maximum Velocity, vICI

max no practical limit no practical limit
(ICI Embracing)

For fixed τ and ν, the optimal channel gain that maximizes
the numerator in (17) is given by

α =
sHFHBH(τ)FCH(ν)y

‖s‖2
. (18)

Plugging (18) back into (17) and taking the logarithm, we have
the detection test

max
τ,ν

∣∣∣sHFHBH(τ)FCH(ν)y
∣∣∣2

σ2 ‖s‖2
H1

≷
H0

η̃ , (19)

where η̃ = log η. To account for the presence of multiple
targets, the decision statistic in (19) can be computed over a
discretized delay-Doppler region and targets are declared at
those locations where there is a peak exceeding the threshold
[31, Ch. 6.2.4].

V. NUMERICAL RESULTS

In this section, we assess the performance of the proposed
2-D GLRT based detector/estimator in (19). The OTFS radar
observations are generated using (5) instead of the proposed
model in (9) to provide an implicit verification of the transition
from (5) to (9). As a benchmark, we consider a standard 2-D
FFT based processing traditionally employed in OFDM radar
[20], [21]. To evaluate detection performances for both GLRT
and FFT methods, a cell-averaging CFAR detector is employed
with the probability of false alarm Pfa = 10−4 to declare
targets in the delay-Doppler domain. For a target with channel
gain α, we define the signal-to-noise ratio (SNR) as SNR =
|α|2/σ2. In addition, a rectangular pulse shaping waveform is
used for gtx(t) in (2). We consider two different parameter
sets for OTFS, as shown in Table I, to illustrate the results in
both ISI-dominant (i.e., high ∆f ) and ICI-dominant (i.e., small
∆f ) operation regimes. In the ISI-dominant regime, maximum
range is the limiting factor for radar detection performance,
while in the ICI-dominant regime, radar performance is mainly
limited by maximum velocity.

A. Example 1: ISI-dominant Regime

In the ISI-dominant regime, we consider a scenario with
four targets located at the same velocity (20 m/s), but with
different ranges, as shown in Fig. 2 (left). As shown in Fig. 2
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Fig. 2. Scenario for OTFS sensing in the ISI-dominant regime, where target
SNRs are given by {25, 10, 20, 10}dB, respectively.
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Fig. 3. ISI-dominant regime: Range profile at v = 20 m/s obtained by the
different methods (a) for the scenario in Fig. 2, and (b) for a modified version
of the scenario in Fig. 2, where Target 3 moved 30 m further and Target 4
moved 30 m closer.

(right), the standard FFT processing [20], [21] or the existing
OTFS detectors [17]–[19] can detect at most two targets as
Target 3 and Target 4 fall into the same range-velocity bin as
Target 1 and Target 2, respectively.

Fig. 3 shows the range profiles2 of the considered methods
in two different scenarios for a single noise realization. It is ob-
served that by virtue of the ISI embracing, the proposed GLRT
detector in (19) can detect four targets separately by increasing
the maximum range by a factor of 6 (see (12) and Table I),
whereas the 2-D FFT yields a peak only at the location of
Target 1. In addition, the GLRT detector achieves lower side-
lobe levels than the FFT method by taking into account the ISI
in detector design, which enables compensating for its effect on
the range profile. Moreover, even when Target 3 and Target 4
are displaced in Fig. 3(b) so that four targets are resolvable
in the ambiguity region, the FFT can only detect Target 1 due
to the strong ISI effect, while all the target peaks are clearly
visible in the range profile of the GLRT detector. Therefore,

2The range profile of the 2-D GLRT in (19) is obtained by plotting the
decision statistic in (19) for a fixed Doppler ν over an interval of delay values
τ . For the 2-D FFT method, range profile corresponds to the range slice of
the 2-D FFT output, taken from a certain Doppler ν.
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Fig. 4. Detection and estimation performance of the considered OTFS radar
algorithms with respect to SNR in the ISI-dominant regime. (a) Probability
of detection, (b) average number of false alarms, and (c) range RMSE.

the proposed approach can simultaneously mitigate ISI to have
low side-lobes and embrace the information conveyed by ISI
to detect targets beyond the standard maximum range limit
Rmax.

To illustrate the detection and estimation performance, we
simulate 100 independent Monte Carlo noise realizations and
choose Target 2 as the reference target. Fig. 4 shows the
probability of detection and root mean-squared error (RMSE)
of range estimates of the reference target, and the average
number of false alarms (detections that do not belong to any
of the targets) with respect to the SNR of the reference target.
It is seen that the proposed GLRT detector/estimator signifi-
cantly outperforms the standard FFT method in terms of both
detection and estimation performances. This is accomplished
through the ISI-aware modeling in (9) and the corresponding
detector design in (19), which performs ISI compensation via
the term BH(τ). We note that the GLRT detector/estimator in
(19) performs block-wise processing of the entire OTFS frame
(NM symbols), while the FFT method applies separate N - and
M -point FFTs over frequency and time domains, respectively,
which provides computational simplicity, but leads to poor
radar performance.

B. Example 2: ICI-dominant Regime

For the ICI-dominant regime, the scenario in Fig. 5 is
considered, where four targets are located at the same range
bin, but with different velocities. Since the maximum velocity
is small, Target 3 and Target 4 lie in the same range-velocity
bin as Target 1 and Target 2, respectively. Hence, standard
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Fig. 5. Scenario for OTFS sensing in the ICI-dominant regime, where target
SNRs are given by {25, 10, 20, 10}dB, respectively.
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Fig. 6. ICI-dominant regime: Velocity profile at R = 120 m obtained by the
different methods (a) for the scenario in Fig. 5, and (b) for a modified version
of the scenario in Fig. 5, where Target 3 and Target 4 move 10 m/s faster.

OFDM [20], [21] and OTFS [17]–[19] radar algorithms cannot
distinguish Target 1-3 and Target 2-4 as two separate echoes.

We plot the velocity profiles obtained by the considered
methods in Fig. 6 for a single noise realization. As indicated
in (13) and Table I, the proposed approach increases the
maximum velocity by a factor of N = 1024, which allows
detection of targets beyond the standard velocity limit vmax.
Hence, the proposed approach can resolve four targets and
detect their true (unambiguous) velocities, while the FFT
method can only detect two targets. This is observed also
in Fig. 6(b), where four targets have different ambiguous
velocities; the targets cannot be resolved by the FFT method
due to poor velocity resolution. Through the ICI embracing
capability of the proposed detector, all targets can be resolved.

Fig. 7 shows the detection and estimation performance
curves with respect to the SNR of the reference target, Target 2,
averaged over 100 realizations. Similar to the ISI-dominant
case, the proposed approach achieves significant performance
gains over the conventional FFT method in terms of both
the probability of detection and velocity RMSE by explicitly
accounting for the ICI effect in detector/estimator design.
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Fig. 7. Detection and estimation performance of the considered OTFS radar
algorithms with respect to SNR in the ICI-dominant regime. (a) Probability
of detection, (b) average number of false alarms, and (c) velocity RMSE.

VI. CONCLUDING REMARKS

In this paper, we have considered the problem of radar
sensing with OTFS waveform and derived a low-complexity
GLRT based detector/estimator by taking into account the ISI
and ICI effects caused by the lack of guard intervals in time
and frequency, respectively. The proposed radar processing
approach not only compensates for the ISI and ICI effects, but
also turns them into an advantage by significantly increasing
maximum detectable range and velocity. Simulation results
have verified the ISI and ICI embracing capability of the
proposed radar receiver and demonstrated improved detection
and estimation performance with respect to the standard FFT
method employed in OFDM radar.
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