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Abstract—Federated Learning (FL) techniques are emerging in
the automotive context to support connected automated driving
services. Yet, when applied to vehicular use cases, conventional
centralized FL policies show some drawbacks in terms of latency
and scalability. This paper focuses on decentralized FL solutions,
which attempt to overcome such limitations, by introducing
a distributed computing architecture: vehicles exchange the
parameters of a shared Machine Learning (ML) model via V2V
links, without the need of a central orchestrator. Sharing all ML
parameters, however, might not be feasible when minimal V2X
bandwidth usage is required or the model is highly complex (e.g.,
extremely deep networks) as in advanced scenarios for high levels
of automation. We thus propose a modular decentralized FL solu-
tion and we discuss its application to road user classification in a
cooperative vehicular sensing use case. The proposed FL solution
performs the point cloud processing of Lidar sensor inputs using
a PointNet compliant architecture. It enables the exchange of
a subset of the model parameters, namely selected ML model
layers, optimized for communication efficiency, convergence and
accuracy. We use real sensor data extracted from a publicly
available dataset to validate the method, focusing on non-uniform
scenarios where sensor data are highly unbalanced across the
connected vehicles. For all cases, FL is shown to outperform the
ego-sensing approach with minimal bandwidth usage.

Index Terms—Federated Learning, Connected automated driv-
ing, V2X, Artificial Intelligence, Distributed processing

I. INTRODUCTION

Distributed Machine Learning (DML) is a key enabling
technology for connected automated driving (CAD) where
networked vehicles, with increased level of intelligence and
autonomy, are expected to cooperate to improve safety, effi-
ciency and driving comfort. CAD relies on big-data-driven
training of large-size Machine Learning (ML) models for
several automated functions [1], as well as ultra-reliable low-
latency Vehicle to Everything (V2X) interactions with road
infrastructure (V2I) and other vehicles (V2V) for cooperative
sensing/maneuvering tasks. In such context, the integration
of DML techniques [2] with vehicles acting as distributed
learners is expected to enable faster, more accurate and flexible
training as well as novel decision-making opportunities.

In conventional DML paradigms, the training procedure is
supervised by a central orchestrator, e.g., a road side unit
(RSU) or a mobile edge cloud (MEC). This is in charge of
distributing/collecting raw data to/from the vehicles, learning
the ML model from such data, and finally sending back the
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Fig. 1. Decentralized FL architecture: vehicles collectively optimize the ML
model by sharing the parameters via V2V communication links.

ML model updates to the participating nodes. In spite of
the promising features DML exhibits, privacy concerns may
arise as the data is distributed pre-training to all participants,
which may be intercepted by performing adversarial attacks.
Over the past few years, Federated Learning (FL) [3]-[6],
is being actively considered for overcoming the limitations
of DML. Rather than exchanging raw data, in FL the inter-
connected devices share locally trained instances of the ML
model parameters, i.e., the weights and biases of the Neural
Networks (NN). Furthermore, the data never leaves the holder
which makes the overall system more privacy conservative.
However, conventional FL techniques require a Parameter
Server (PS), namely a central orchestrator to aggregate, update
and distribute the local model parameters. With many client
connections, PS may slow down the overall training process.
Decentralized FL techniques [5], [7] bring further advances as
they rely on a fully distributed network architecture rather than
the PS. Interconnected devices cooperate with each other by
exchanging the model updates with their respective neighbors
and implementing a consensus policy.

FL is increasingly being applied to a variety of applica-
tions. However, few studies have been reported for automated
driving use cases. Connected automated vehicles are expected



to handle huge data streams up to 1 Gbps [8] to support
advanced services and improve situational awareness. As the
level of automation increases, sharing such large volumes
of data become unfeasible due to the extremely stringent
requirements envisioned for full self-driving scenarios. FL has
the potential to support low-latency and privacy preserving
cooperative driving functionalities, as it does not require raw
sensor data sharing among vehicles. In [9], a FL approach is
developed for joint power and resource allocation in Vehicle to
Vehicle (V2V) communications. A FL-based traffic prediction
algorithm is presented in [10], while in [11] a federated
transfer reinforcement learning approach is developed for real-
time knowledge extraction. Other studies focus on model se-
lection for aggregation [12] or contract-based FL to maximize
energy efficiency in electric vehicle networks [13]. Finally,
[14] presents an initial feasibility study on FL for vehicular
networks.

In this paper, we propose the use of a decentralized FL
policy for classification of road user/object (here referred to
as road actor) in connected vehicular scenarios. The proposed
FL tool implements the ML model parameter exchange over
V2V links and is shown to augment the recognition capa-
bility compared with ego-vehicle approaches. Lidar sensor’s
readings are used as input to a Deep Learning (DL) model,
namely PointNet [15], which is in charge of inferring the actual
type of road actors. Considering FL over deep architectures,
typically adopted for solving automated vehicle tasks, a novel,
modular approach is proposed, in which the FL process can
be enabled across a variable number of ML model layers.
Real measurements extracted from a large-scale automotive
dataset are used to assess the developed techniques’ perfor-
mance. Experimental results indicate that FL is particularly
effective, compared with ego learning approaches, in practical
settings characterized by highly imbalanced data distributions
across vehicles, or non-independent and identically distributed
(non-IID) information. These settings are indeed represen-
tative of real-world scenarios where vehicles with outdated,
or partially trained models, coexist with highly-automated
fully-equipped vehicles and benefit from their cooperation.
Compared to raw sensor’s data sharing, the proposed approach
heavily reduces the amount of information to be exchanged
and thereby the communication latency, so as to comply with
the requirements of next-generation V2X communications for
high levels of automation [8].

The paper is organized as follows: Sec. II introduces the
proposed FL algorithm, Sec. III explains in details the use
case considered throughout the paper, Sec. IV describes the
setup used for the validation and Sec. V presents the numerical
results. Finally, Sec. VI draws conclusions.

II. DECENTRALIZED FEDERATED LEARNING

In decentralized FL, federated vehicles combine local mod-
els with neighboring ones by distributed averaging. Next, they
update (adapt) the combined models using an assigned opti-
mizer. The FL process runs for a number of communication

rounds and ends when a consensus is obtained, namely when
local models converge to a common representation [7].

Considering a deep NN composed of N layers, the goal of
FL is to learn a global model W = W) that encapsulates
the parameters of the NN, from the available input data x
and for all N layers. The input data samples collected by the
vehicles consist here of Lidar sensor readings. The overall
dataset € is unevenly distributed across K vehicles {&;}< |,
in addition, the number of examples Ej, held by each vehicle
is much lower compared to the overall pool of examples,
ie., By < E = |&|. Samples can be generally expressed
in the form (zp,yn) with h = 1,..., Ey, where y,, is the
desired output, namely information about true road actors,
corresponding to the input x5. In FL the parameters W can
be learned by applying a minimization procedure to any finite-
sum objective function L(W) as:

K
min L(W) = min ) _ o x Li(W), ()

=1

L(W)

where py = Ey/E and Ly (W) is the local loss of device k:

Ey
1
Li,(W) = o E U(zh, yn; W) 2)
h=1

and £(xzp,yn; W) is the loss computed over the examples
(zh,yn) when the parameters W hold. For the specific case of
road actor classification, described in Sect. IV, {(zp; yn; W)
is the loss presented in [15], computed with C classes,
corresponding here to road actor categories.

As depicted in Fig. 1, in decentralized FL the vehicles learn
the global objective (1) by relying only on local computa-
tions and parameters W exchange with neighbors through
V2V communications. To limit the model size and thus the
communication overhead, we propose a modular approach
in which the federated optimization is implemented over
a subset of model layers (¢ < N, while the remaining
N — @ ones are learned using local data only and the chosen
optimizer. In particular, for an assigned number of layers
@, the federated optimization targets a collaborative learning
of the @ layers closest to the outputs, as more sensitive to
unbalanced distributions since they learn features specific to
the dataset considered [16]. For @) layers, the corresponding
model parameters W = W) to be exchanged on each
communication round are now

W(Q):[w%7Q7bN7Q7"' 7w1’1\17’bN]7 3

with w,, and b,, being the NN weights and biases of the layer
n=N—Q,---,N. The optimized number () of layers for
the chosen study is analyzed in Sect. V.

The vehicles are assumed as connected according to a
directed graph G = (V,€), where V = 1..., K are the set
of nodes and ¢ are the edges. We also denote the set of
neighbors to k as N = N \ {k}. This set may change
over time to reflect the current connectivity graph, according



to the relative distance among vehicles and to account for
intermittent connections. For vehicle k£ and time ¢, using the
same notations in (3), let the local model parameters subject
to decentralized FL process be represented as Wy ;, = WE%),
on every communication round ¢ > 0 the vehicle k fuses the
parameters received from its neighbors i € Ny as:

Ve = 0k kWi + Z ik Wy, “4)
iEN@
where ;) are the mixing weights for the received models

which are chosen as o; ;, = EL [7]. Once the aggrega-
i€

- Ei
tion phase is completed, the vehicle adapts its fused 1y j
parameters to minimize the local loss, namely Ly (W) of
(2). In this paper, we consider the Adam optimizer [17], being
the preferred option for PointNet based architectures [15].
Therefore, using the fused parameters v ;, the last stage is
implemented as W1 = ¢y, — Aty i with:

V1-p54 miyg g
A — . . :

wt,k Kt 1— 6% Vv Vit+1,k + 1) (5)
myyq = fimyg + (1 —51)VELp(rr)
Vipik = Bovig + (1 — B2)VZLy o (Yr k)

where my ;5 and v¢4q are the estimates of the first and
second moment of the gradients VL, (v ) at round ¢ +
1. Other parameters /51,02 € [0,1), s and 0 are defined in
[17]. Model adaptation in (5) is computed over a mini-batch
B of local training examples. The new parameters W, 1 ;, are
forwarded to the the neighbors of vehicle £ and a new round
starts. This procedure is iterated until the parameters W ;
converge to the desired loss values.

III. VEHICULAR SCENARIO AND DATASET

In this section, we present the considered scenario and the
dataset used for the experimental validation of the proposed
FL approach. We assume that V' vehicles participate in the FL
process and are able to collaboratively optimize the ML model
for road actors classification by exchanging the NN parameters
through V2X links. They do so by applying the decentralized
FL algorithm presented in Sec. II. As depicted in the Fig.
2, the road actor classification system in each vehicle uses
the Lidar point clouds as inputs for object detection and it
consists of two subsystems. First, the input raw Lidar data are
processed independently on each vehicle to extract a bounding
box that provides object segmentation information. We thus
aggregate 10 Lidar sweeps and extract the point clouds that
fall within the boxes. Next, on a second stage (classification
sub-system), these segmented point clouds are used as inputs
for classification using the NN PoinNet model. On each FL
round, federated optimization is applied to the classification
sub-system while bounding box processing is implemented
locally without applying any model federation. This choice
is shown as practical enough to minimize the communication
overhead.

The dataset considered for the experimental validation is
nuScenes [18]. It is a large-scale autonomous driving dataset
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Fig. 2. Road actor classificator consisting of 2 subsystems: i) the bounding
box segmentation and ii) the classifier based on the PointNet model. FL is
applied for distributed training of the PointNet NN model parameters.

published by nuTonomy in 2019, consisting of 1000, 20
second-long, scenes of driving captured across Boston and
Singapore. The dataset offers scenes with different weather
conditions, traffic densities as well as lighting. The vehicle
used for the recordings is equipped with a full sensors’ suite,
composed by a 360 degree Lidar, 5 long-range Radars, 6
cameras and an Inertial Measurement Unit (IMU) sensor. All
objects detected in the scenes are annotated manually at a
frequency of 2Hz to ensure high accuracy. Each annotated
object consists of a 3D bounding box as well as the object’s
category. Overall, 23 road actors categories are available,
ranging from large vehicles, i.e., trailer and truck, to little
objects, i.e., traffic cones.

IV. PROCESSING AND MODELING OF SENSORS DATA FOR
ROAD ACTOR CLASSIFICATION

FL have been simulated using the Lidar dataset of nuScenes.
A virtual environment allows to deploy vehicles acting as
virtual mobile devices that learn over a configurable subset of
data. The overall database used for classification is composed
by 9000 examples in total, equally divided for each one of
the considered categories: pedestrian, car, bus, bicycle, barrier
and traffic cones. The h-th training example contains the point
cloud z;, that fall into the box and the corresponding category.
To simulate FL. performance the database can be distributed
to the virtual devices according to an arbitrary policy (IID and
non-IID). Before feeding the training examples to the local NN
PoinNet model, we normalize the input point clouds such that
they are contained into a unit area sphere. In addition, as the
NN model requires a fixed number of points for the input point
cloud, we upsample/downsample z; to contain 2048 points.
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Fig. 3. Analysis of the proposed FL approach for unbalanced IID data partitioning. Results are presented considering the validation loss for: (a) po = 2%,
(b) po = 4%, (c) po = 6%. Similarly, the validation accuracy is reported for: (d) po = 2%, (e) po = 4%, (f) po = 6%.

The PointNet ML model [15] is used for 3D shape clas-
sification and segmentation from point cloud data. As this
model was originally developed for the ModelNet40 dataset,
which takes into account 40 different classes, we adapted
the model structure and parameters to reflect the considered
learning tasks. In particular, the number of filters used in
the convolutional layers and the number of neurons in the
Fully Connected (FC) layers are reduced by a factor of §,
the dropout layers have been removed and the final layer now
considers only C' = 6 output neurons. Furthermore, the Batch
Normalization (BN) layers apply a momentum factor of 0.9.
In the proposed implementation, FL is not applied to the BN
layers, so the statistics are only updated locally without the
cooperation of other vehicles. With such modifications, the
number of trainable layers is N = 20 while the total number
of model parameters that can be exchanged is 40855.

V. NUMERICAL RESULTS

This section presents the numerical results and the valida-
tion of the proposed FL tools. Subsec. V-A presents the results
for the IID case, while Subsec. V-B focuses on the non-IID
one. Finally, Subsec. V-C discusses the communication aspects
of the FL approach.

A. IID Results

The validation of the proposed FL approach is performed
over a virtual environment composed by V' = 4 vehicles, con-
nected according to a random network topology. In particular,

at every communication round, each vehicle chooses randomly
two other neighbors from the set N7 and sends its parameters
for model averaging. Before the training starts, the overall
database is partitioned and distributed among the vehicles
according to a predefined policy, either being IID or non-IID.
Local optimization is performed over mini-batches of B = 30
examples each. The Adam optimizer of (2) is configured as
py = 51075, 81 = 0.9, By = 0.999 and § = 1-10~7. The main
metrics used for performance evaluation are the validation
loss, accuracy and Receiver Operating Characteristic (ROC)
curves, computed over a separated dataset consisting of 2400
examples, equally split among the classes. As introduced
before, decentralized FL is implemented by considering a
variable number () < N of layers as input for distributed
optimization. In particular, in what follows performances are
analyzed by varying the fraction M = @Q/N of the layers
subject to federation. This ranges from M = 20%, (i.e.,
corresponding to the last Q = 4 layers at the output of the
NN model) up to M = 100%. FL is also compared against
opportunistic behaviours, referred to as Ego Learning (EL),
where vehicles do not participate in FL and rely solely on their
local data for minimizing (2). To further analyze the proposed
technique, we also compare it with a DML implementation,
referred to as Centralized Learning (CL), where the training
process is coordinated by a single entity, namely a data center.

The first analysis focuses on how IID, but unbalanced, data
partitioning affects the FL. performances. In this scenario, the
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Fig. 4. Analysis of the proposed FL approach for non-IID data partitioning. ROC curves are presented for: (a) Class 1 (barrier), (b) Class 2 (traffic cone)

and (c) average over all classes.

local dataset contains the same number of examples for each
class but the overall percentage varies considering different
vehicles. More specifically, one vehicle, i.e. £k = 0, retains a
small percentage py = Fo/FE < 25% of the database, while
the remaining ones hold p, = 25%, Vk > 0. In the following,
performances are presented for the vehicle (k = 0) retaining
the lowest amount of data as more critical.

Fig. 3 presents the logarithmic validation loss (top) and
validation accuracy (bottom) for pg = 2% (Fig. 3a and Fig.
3d), po = 4% (Fig. 3b and Fig. 3e) and pg = 6% (Fig. 3c and
Fig. 3f). FL is able to outperform EL in the majority of the
cases considered, while approaching the performances of CL
when M = 100%. For py = 2%, it is sufficient to exchange
only the M = 20% of the layers to increase the classification
accuracy by almost 10% compared to EL. Considering now
po = 4% and py = 6%, the mutual exchange of the M = 20%
of the NN layers provides a small increase in accuracy with
respect to EL. However, by increasing the number of shared
layers to M = 40%, the accuracy improvements exceed 10%.

Focusing on the performances of FL with varying M, it is
evident that the classification accuracy increases with the num-
ber of layers exchanged among interconnected vehicles. This
is reasonable since the vehicle retaining the lowest amount
of data can adapt its NN model parameters cooperating with
vehicles that have a refined set of features as they hold a much
larger pool of examples. As the number of shared parameters
grows, the vehicle holding the smallest dataset can fine tune
its model to better adhere to the overall features learned by
other vehicles, and consequently increase the classification
accuracy. Clearly, all layers should be exchanged to maximize
accuracy, however, limited communication resources in the
V2X network may not permit to do so and a trade-off
between bandwidth usage and classification accuracy should
be carefully analyzed. This further aspect is better investigated
in Sect. V-C.

B. Non-IID Results

The second scenario considered focuses on how non-IID
data affects the performances of the proposed FL approach.

TABLE I
COMPARISON OF AUC VALUES

ELM=20%M=40%M = 60% M =80% M = 100% CL

Class 1 0.41  0.65 0.80 0.84 0.93 097 099
Class 2 0.41  0.55 0.76 0.82 0.82 0.88 091
Average 0.73  0.80 0.88 0.90 0.91 094 096

In this context, the vehicle k = 0 stores py = 16.7% of the
overall database, equally divided among 4 classes, excluding
Class 1 (barrier) and Class 2 (traffic cone), while the others
retain prp = 25%,Vk > 0, evenly distributed among all
available classes. Performances are again presented for the
vehicle holding the non-I1ID dataset, i.e., k = 0.

Fig. 4 highlights the performances of the proposed FL
approach ranging from M = 20% up to M = 100%, and
using now the ROC as metric for comparison with CL and EL.
To show the benefits of employing FL, the ROC curves are
computed for Class 1 (Fig. 4a), Class 2 (Fig. 4b) and averaged
over all classes (Fig. 4c). Table I reports the Area Under The
Curve (AUC) values for all methods, focusing on Class 1,
Class 2 and the average among classes. Results indicate that
FL is able to achieve a substantially higher true positive rate
compared to EL, still approaching the performances of CL
when all layers are exchanged during federated optimization.
For Class 1, a strong performance improvement with respect to
EL can be obtained when M = 20%, or equivalently sharing
only Q = 4 layers: the AUC is 0.65 compared to 0.41 of
EL. Class 2 requires more layers to be exchanged as the
performances of FL and EL are similar when M < 20%.
Considering average performances, EL can be outperformed
by a large margin when M > 40%. Good classification scores,
i.e., when AUC >= 0.80, can be achieved with M = 60%.
This heavily reduces the communication resources compared
to M = 100% at the cost of a small loss of accuracy.

C. Communication Requirements Considerations

The proposed modular FL approach allows to optimize the
number of layers to be exchanged during the distributed train-



ing procedure. The communication overhead and resources
used thus heavily depend on this choice. To show the benefits
of FL, here we evaluate the payload required for transmitting
the model parameters and compare it with CL that requires
the fusion of raw data on the data center. Considering the
overall database, each example is comprised of 2048 3D point
clouds, and CL requires a payload of 221.18 Mbytes assuming
single precision encoding (32 bits per sample) as typically
used for Lidar point clouds. On the other hand, FL. with M
ranging from M = 20% to M = 100% needs 12710 up to
40855 model parameters to be exchanged, respectively, with
corresponding payloads of 101.68 Kbytes and 326.84 Kbytes.
Encoding of each parameter has double precision (64 bits
per sample). Notice that compression of model parameters is
not implemented, therefore further improvements are possible.
In all cases, FL substantially reduces the communication
requirements compared to CL, while providing a comparable
accuracy. Same considerations apply to non-IID data parti-
tioning case as the ROC curves, and consequently the AUC
values are comparable. This suggests that FL approaches could
heavily reduce the communication overhead. Finally, it should
be also noted that the payload for FL does not depend on the
data size, as opposed to CL, making it the preferred choice
for vehicular applications handling big data structures.

Focusing now on the required spectral efficiency or data
rate, the total transmission time needed for exchanging the
model parameters should be comparable with the time required
for running the Adam local optimizer. This prevents the
communication rounds to delay the overall FL process. For
the considered study, an average computational time of 6 s
is observed for local optimization. Therefore, the correspond-
ing minimum required communication data rate ranges from
135.57 Kbit/s, for M = 20%, up to 435.79 Kbit/s when
M = 100%. Sending raw Lidar data in 6 s would require
a massive 295.33 Mbit/s for distributing the overall database.
In case of information sharing for high/full automated driving
[8], up to 35 Mbit/sec can be allocated for exchanging Lidar
point cloud data. Considering the proposed use case of Sec.
III, and the required payload of 221.18 Mbytes, CL will thus
require several rounds for transmitting all the dataset, even
using the full available bandwidth, and introduce large delays
during the training process. On the other hand, the proposed
approach keeps the bandwidth usage to a minimum, allowing
the V2X network to allocate resources where they are most
needed.

VI. CONCLUSIONS

In this paper, we developed a decentralized FL technique
for road actor classification in vehicular networks. Real Lidar
point clouds extracted from the nuScenes dataset are processed
by a PointNet based architecture for classification. A modu-
lar approach has been proposed to optimize the number of
exchanged layers to increase the classification accuracy while
minimizing the bandwidth usage. Different data partitioning
strategies, i.e, unbalanced IID and non-IID, have been used to
benchmark the performances of the proposed approach, and

compare against opportunistic (EL) behaviours and centralized
(CL) implementations. In all cases, FL has been shown to
outperform EL while obtaining comparable accuracy with
respect to CL when all parameters are exchanged. Moreover,
FL requires minimal communication resources and complies
with the stringent requirements of the extended sensing use
cases of next-generation V2X services for high levels of au-
tomaton. Further research activities will target the employment
of quantization/sparisification operations applied on the model
parameters to improve communication efficiency and/or the
inclusion of gradient exchange mechanisms to further promote
convergence.
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