
GAN Based Noise Generation to Aid Activity
Recognition when Augmenting Measured WiFi

Radar Data with Simulations
Shelly Vishwakarma∗, Chong Tang∗,Wenda Li∗, Karl Woodbridge†, Raviraj Adve‡, Kevin Chetty∗

∗Department of Security and Crime Science, University College London, UK
†Department of Electronic and Electrical Engineering, University College London, UK
‡ Department of Electrical and Computer Engineering, University of Toronto, Canada

{s.vishwakarma, chong.tang.18, wenda.li, k.woodbridge, k.chetty}@ucl.ac.uk, rsadve@comm.utoronto.ca

Abstract—This work considers the use of a passive WiFi radar
(PWR) to monitor human activities. Real-time uncooperative
monitoring of people has numerous applications ranging from
smart cities and transport to IoT and security. In e-healthcare,
PWR technology could be used for ambient assisted living and
early detection of chronic health conditions. Large training
datasets could drive forward machine-learning-focused research
in the above applications. However, generating and labeling large
volumes of high-quality, diverse radar datasets is an onerous task.
Therefore, we present an open-source motion capture data-driven
simulation tool, SimHumalator, that can generate large volumes
of human micro-Doppler radar data at multiple IEEE WiFi
standards(IEEE 802.11g, n, and ad). We qualitatively compare
the micro-Doppler signatures generated through SimHumalator
with the measured signatures. To create a more realistic training
dataset, we artificially add noise to our clean simulated spec-
trograms. A noise distribution is directly learned from real radar
measurements using a Generative Adversarial Network (GAN). We
observe improvements in the classification performances between
3 to 8%. Our results suggest that simulation data can be used
to make adequate training data when the available measurement
training support is low.

Index Terms—Passive WiFi Sensing, micro-Doppler, activity
recognition, generative adversarial networks

I. INTRODUCTION

A significant growth in an aging population and the num-
ber of people with long-term disability and chronic health
conditions has necessitated the development of technologies
enabling healthy living such as activity monitoring systems,
wearable sensors, etc. [1]. RF sensing has received increased
attention among various technologies, as it is minimally
invasive, privacy-preserving, and can continuously monitor
human activities remotely. It is low-cost and typically easy to
deploy using commercial off-the-shelf (COTS) components.

When illuminated by a radio-frequency (RF) source, hu-
man hands and legs’ movement gives rise to frequency
variations along the main body Doppler (popularly known
as micro-Dopplers). Micro-Dopplers possess unique and dis-
criminative features when observed in joint time-frequency
space [2]. Extensive researches have exploited these signa-
tures for indoor healthcare applications such as assisted
living [3], and bio-medical applications (for non-intrusively
monitoring patients) [4].

Micro-Dopplers have been captured using both active and
passive RF sensors. Active sensing uses the system’s own

transmissions as a source of illumination, whereas passive
sensing leverages existing opportunistic signals such as WiFi
(or other wireless) communications to capture RF returns
passively [5]. Due to the number of advantages, such as its re-
ceive only nature, low energy consumption, and the possible
presence of multiple illuminators, passive sensing systems
have become increasingly popular [5], [6]. All these works’
essential functionality has been human activity classification
using deep learning assisted solutions.

Training any deep learning model, however, requires high
volumes of good quality labeled data. The amount of data
captured in radars are often limited due to the following
reasons: first, collecting real-world micro-Doppler data can
be a very laborious and costly task; Second, the data is
affected by various environmental factors, sensor parameters,
and target characteristics. There have been significant efforts
to overcome the constraints associated with the limited
measurement databases. The work in [7], [8], used data aug-
mentation technique to generate more extensive databases
through operations such as flipping, time-shifting, or using
generative adversarial networks (GANs).

Our previous work presented an open-source simula-
tion tool for the passive WiFi radar (PWR) scenario, called
SimHumalator [9] where we leveraged human micro-Doppler
data generated using SimHumalator to augment our mea-
sured data [10]. The results highlight that augmentation can
improve the classification performance when only limited
experimental data is available for training. However, the
simulated spectrograms considered in our previous study did
not consider environmental factors such as noise, occlusions,
multipath, and propagation loss. Most realistic scenarios
certainly have factors that significantly affect the resulting
micro-Doppler signatures.

In this study, we artificially add two types of noise to
our clean simulated spectrograms. The first is additive white
Gaussian noise (AWGN) which is always present in the
measurement data. AWGN is pixel-independent, spatially
uncorrelated, but does not incorporate practical phenomena
such as clutter and multipath. Therefore, to mimic complex
real-world scenarios, we propose a second type of noise
modeling method based on a GAN. We use a GAN to



Fig. 1: The experimental setup comprising two synchronized systems- a motion capture Kinect v2 sensor and a PWR system for monitoring
human activities in indoor scenarios.

learn noise distribution models directly from the measured
spectrograms. We then add this realistic noise signal to our
clean simulated spectrograms.

We apply our approach to perform a detailed augmen-
tation study using three simulation datasets- one with no
noise, the second with added AWGN noise, and finally with
GAN-based noise. To sum up, our contributions in this paper
are the following:

1) We use synthetic signatures generated by SimHumala-
tor for data augmentation to solve the practical prob-
lem associated with limited or unbalanced micro-
Doppler training datasets.

2) We use a GAN to learn noise directly from measure-
ment data, considering factors such as clutter, noise,
and multipath. We then add this noise to simulated
data to enable a more accurate representation of the
sensing scenario.

3) Finally, we study two data augmentation methods-
Replacement and Augmentation and validate their per-
formance in different scenarios using a convolutional
neural network (CNN).

We observe an increase in average classification accuracy
between 3% to 8% for GAN-generated noise, which suggests
that simulation data can be used to improve recognition
without the burden of collecting significant quantities of
experimental training data.

Our paper is organized as follows. Section II describes
the experimental setup, data collection, and the proposed
noise modeling framework based on the GANs. Section III
shows interesting classification scenarios where we augment
measurement data with simulation data under - no-noise
conditions, AWGN noise, and GAN generated noise. We
finally conclude our paper in Section IV.

II. EXPERIMENTAL SETUP AND DATA COLLECTION

Fig. 1 presents our experimental setup comprising two
synchronized systems: an infrared motion capture Kinect v2
sensor and a non-contact physical activity monitoring PWR
system.

A. Experimental System Framework
The PWR system is set up using two Yagi antennas, each

with a gain of 14dBm, two National Instruments (NI) USRP-

Fig. 2: (a)-(f) presents measured spectrograms and (g)-(l) simulated
spectrograms corresponding to a human six different activities:
siting-down on a chair, standing up from a chair, walk-to-sit, sit-to-
walk, walk to fall-down, and stand-from-floor to walk, respectively.

2921 [11] and a Netgear R6300 transmitter acting as the WiFi
AP. We configure the WiFi AP to transmit a 802.11g standard-
compliant waveform at a center frequency of 2.472GHz.
The PWR system uses one antenna, a reference antenna,
to capture direct WiFi transmissions from the AP. Simul-
taneously, the second is a surveillance antenna to capture
signals reflected off targets in the propagation environment.
The reference WiFi signal and the surveillance signal are
then cross-correlated to generate the radar micro-Doppler
signatures in real-time.

Kinect v2 sensor, on the other hand, being a depth camera
captures three-dimensional (3D) information of the joints on
the human body [12], [13]. We use our open-source simu-
lation tool SimHumalator to generate radar micro-Doppler
signatures from the Kinect animation data [9]. SimHumalator
simulates an IEEE 802.11g standard-compliant WiFi signal
using MATLAB’s WLAN toolbox and combines it with ani-
mation data to simulate the reflected signals. We refer the
readers to [9] for a detailed description of the SimHumalator
working methodology.

Since we are capturing IEEE 802.11g WiFi transmissions,
the signal bandwidth is limited to 20MHz, which is insuffi-
cient to locate targets in most indoor scenarios. Therefore,
we focus on extracting only the time-varying micro-Doppler
information in joint time-frequency space.

B. Data Collection

We monitor three participants (two males and one female)
performing six different activities: (i) siting-down on a chair,
(ii) standing up from a chair, (iii) walk-to-sit, (iv) sit-to-
walk, (v) walk to fall-down, and (vi) stand-from-floor to walk.
This study restricts our measurements to direct line-of-sight



Fig. 3: Noise modeling framework based on GANs

conditions with targets moving between 0.8m to 3.8m in front
of the system. Each activity is recorded for 5sec. We repeated
the measurements 20 times for each participant, resulting
in 360 total measurements. We simultaneously recorded 360
animation files.

Fig. 2 shows the qualitative comparison between the
micro-Doppler spectrograms generated using the PWR mea-
surement system and the SimHumalator for each of the six
activities. Fig. 2 (a)-(f) corresponds to the measured spec-
trogram while Fig. 2 (g)-(i) are the corresponding simulated
spectrograms. We can observe a close similarity between
the simulated spectrograms and the measured spectrograms.
The spectrograms’ signals’ strength differs, likely because
our simulations do not synthesize environmental factors like
noise, propagation loss, occlusions, and multipath.

C. Spectrograms Evaluation Under Noisy Conditions

We add noise to our clean simulated spectrogram to mimic
a more realistic scenario and use noisy signatures for data
augmentation to improve the classification performance.
Most studies assume the noise model to be AWGN [14],
[15]. This preference, however, has some limitations. AWGN
does account for factors such as multipath and clutter. As a
result, inspired by our denoising study [16], we adopt a GAN-
based measurement noise model (MNM), where we learn the
model directly from real measurements to generate a more
realistic noise. Fig. 3 presents the proposed GAN-based noise
simulation framework.

• Step1: Measurement Noise Extraction: The primary step
is the noise extraction from the measured spectrograms.
We split our activity monitoring periods into-Idle time
(when there is no activity) and the second period when
a human is undergoing a particular activity. We extract
noise patches from the idle time zones as it is hard
to separate noise from the regions that contain target
motion characteristics.

• Step2: Training GAN: We use WGAN-GP [17] as it can
effectively overcome the gradient disappearance and
training instability issues that hinder traditional GANs.
GAN includes a generator model, and a discriminator
model. The generator aims to fool the discriminator by
mimicking the distribution of the measurement noise.
By contrast, the discriminator first learns the distribu-
tion from the measured samples, and then examines

how close the generated distribution and the distribu-
tion of the measurement noise are, providing a reality
score. Finally, the reality score is fed back to the genera-
tor and discriminator to adjust the network parameters
until the network converges. Learning a measurement
noise model fundamentally involves minimizing the ob-
jective function

L = E x̃∼pg [D(x)]−Ex∼pr [D(x)] +λE x̂∼p x̂

[
(||∇x̂ D(x̂)||2−1)2]

(1)
where pr represents the data distribution over the mea-
surement noise, pg is the noise distribution learned by
the generator and p x̂ is uniformly sampled along straight
lines between pairs of points sampled from pr and pg .
Note that the inner-structure of the generator and dis-
criminator uses convolutional neural networks (CNNs).
We refer the readers to [16] for detailed description of
network architecture.

• Step3: SNR Fixation: In practical scenarios, we normally
evaluate the noise level by the signal-to-noise ratio
(SNR), which can be calculated as:

(2)SN R = 10 ∗ log 10(
σ2

si g nal s

σ2
noi se

)

where σ2 represent the variance of data. For a given
noise patch, we can control σ2

noi se by multiplying the
noise patch by a factor, α. To obtain α, we first deduce
the desired variance of the noise patch, σ2

noi se
′
, from

the given SNR value and 2. Second, we calculate the
original variance of the noise patch as σ2

noi se
o . We finally

compute α = sqr t (
σ2

noi se
′

σ2
noi se

o ) and add the noisy patch to our

clean spectrograms.

Fig. 4 presents the synthetic spectrograms with varying SNR
levels for a human undergoing a motion of sitting down
on a chair. Fig. 4(a)-(c) corresponds to spectrograms with
added AWGN noise and Fig. 4(d)-(f) shows the spectrograms
added with MNM noise for three SNRs-0dB, 9dB, and 21dB
respectively. We can observe that the noise distribution in
Fig. 4(d)-(f) is close to the noise distribution of the mea-
sured spectrogram thus is more realistic compared to the
spectrograms added with AWGN noise.



Fig. 4: Noisy simulated spectrograms with: (a)-(c) AWGN noise, (d)-
(f) GAN generated MNM noise for three SNRs- 0dB, 9dB and 21dB
respectively.

III. EXPERIMENTAL RESULTS AND ANALYSIS
We investigate the data augmentation performance in four

different scenarios.
• Case 1:Both training and test dataset comprise measure-

ment data only (TMTM).
• Case 2: Training dataset created by combining the clean

simulation data and measurement data.
• Case 3: Training dataset created by combining the sim-

ulation data with added AWGN noise and measurement
data.

• Case 4: Training dataset created by combining the sim-
ulation data with added MNM noise and measurement
data.

We split the total measurements dataset (M = 360) into two
50% for training and 50% for the test, resulting in a mea-
surement data split ratio of m = 0.5. We used an eight-layered
convolutional neural network (CNN) to test the classification
performance. Each spectrogram’s size is fixed to 100 by 100;
the batch size is set to 32; the adaptive moment estimation
optimizer’s learning rate is set to 0.01, and the epoch is set
to 150. We kept identical training parameters for all the cases
under consideration and repeated the experiments ten times.
We finally report the average classification accuracy achieved
in each scenario. Note the average classification accuracy
when the training and test datasets comprise measurement
data only is 92.7%.

A. Replacement Study
Fig. 5 presents a replacement study where we replace a

percentage of measurement data with simulation data in
the training dataset. s is the percentage of replacement.
Fig. 6 presents the classification accuracy as a function
of the varying percentage of replacement s for two SNRs-
0dB, 21dB and for two noise scenarios- AWGN and MNM
noise. We can observe that MNM noise performance is
higher than simulation data with AWGN noise for both
SNRs (≈ 8.5% when s = 90%). The classification accuracy
although decreases with an increase of s, which is due to
the inherent differences between measurement data and
simulated data. For a practical system up to 50%, corrupted
measurement data can be replaced with simulation data
before classification performance becomes unreliable. Table
I report the classification accuracy for: simulation data with
no noise, with AWGN noise and MNM noise as a function of
varying SNR. Some of the observations from the study are:

Fig. 5: Replacement study: The ratio of measurement data replaced
with simulation data is varied to study the impact of data replace-
ment on the classification performance. s=0, is a special case where
both training and test data comprise of measured spectrograms only
(TMTM).

Fig. 6: Classification accuracies as a function of percentage of
replacement data for two noise models: AWGN and MNM noise
for two SNRs- 0dB and 21dB.

• Under low SNR scenarios, the performance of simulation
data with MNM noise is higher compared to data with
AWGN noise for almost all s. This is because the AWGN
signal corrupts the micro-Doppler signatures to the
extent where it is hard to extract the discriminating
feature, resulting in reduced classification performance.

• For a specific s, the performance improves until a certain
SNR is reached. This indicates that the SNR of the
measured data is likely to be within this range.

• For almost all cases, the data’s performance with MNM
noise is higher than simulation data with either no noise
or AWGN noise. We have highlighted the best performing
cases in red for all SNRs and each s.

We believe that the replacement with MNM noise data can
significantly improve classification accuracy compared to
no noise and AWGN noise cases under low measurement
training support.

B. Augmentation Study
In this study, s percentage of the simulation data S is

added to the entire measurement training data mM resulting
in increased training support of size (mM + sS). The study
is summarized in Fig. 7. Like the replacement study, we
present classification accuracies in Fig. 8 for two SNRs- 0dB
and 21dB. The classification performance almost remains
constant for all the s and both noisy datasets. However, MNM
noisy data’s performance is better than data with AWGN
noise. It is also important to note that augmentation is 3%
better than when s = 0. TABLE II presents the augmentation



TABLE I: Classification accuracy results for replacement study. m is fixed to 50%. s is varied from 0% to 90% and SNR is varied from 0dB
to 21dB with an interval of 3dB. The best performing cases for all SNRs and each s are highlighted in red color.

Replacement Study (Measurement data split 50%-50%) SNR(dB)
Percentage of Measurement Data Replaced Noise Model 0 3 6 9 12 15 18 21

No Noise 92.8 92.8 92.8 92.8 92.8 92.8 92.8 92.8
AWGN 89.8 90.4 92.4 92.4 92.7 93.9 91.9 9490%M+10%S

GAN Noise 92.8 92.1 92.5 92.7 92.6 95.1 95.2 94.5
No Noise 91.2 91.2 91.2 91.2 91.2 91.2 91.2 91.2

AWGN 87.1 88.1 90.7 91.1 91.2 91.9 91.9 93.280%M+20%S
GAN Noise 89.7 91.8 92.2 93.6 92.8 92.6 94.1 93.4

No Noise 87.3 87.3 87.3 87.3 87.3 87.3 87.3 87.3
AWGN 87.3 85.9 88.2 87.2 89.3 92.2 89.1 90.870%M+30%S

GAN Noise 86.9 89.3 91.8 92.7 90.6 92.2 92.3 91.9
No Noise 89.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3

AWGN 81.8 82.8 87.9 86.6 86.2 90.6 91.2 88.960%M+40%S
GAN Noise 86.3 88.1 89.7 91.4 90.1 89.1 92.1 90.5

No Noise 83.3 83.3 83.3 83.3 83.3 83.3 83.3 83.3
AWGN 78.9 79.3 85.3 85.1 86.6 85.4 85.7 85.750%M+50%S

GAN Noise 85.7 86.6 88.3 87.7 89.1 88.1 89.2 87.3
No Noise 78.1 78.1 78.1 78.1 78.1 78.1 78.1 78.1

AWGN 76.9 82 78.9 83.4 83.7 85.1 85.1 83.340%M+60%S
GAN Noise 78.9 81.8 84.3 85.8 85.7 86.6 85.4 88.7

No Noise 71.4 71.4 71.4 71.4 71.4 71.4 71.4 71.4
AWGN 70.4 75.4 78 77.8 79.1 78.3 80.5 82.130%M+70%S

GAN Noise 76.1 78.9 80.3 81.9 79.5 83.8 80.2 82.2
No Noise 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9

AWGN 61.6 65.2 71.2 69.9 71.6 73.6 72.2 70.320%M+80%S
GAN Noise 70.1 68.8 72.3 72.4 74.2 72.6 77.4 75.7

No Noise 51.7 51.7 51.7 51.7 51.7 51.7 51.7 51.7
AWGN 44.9 49.3 54.5 54.6 54.9 55.1 55.4 51.310%M+90%S

GAN Noise 53.4 53.3 54.9 54.3 58.6 60.8 61.1 60.6

Fig. 7: Augmentation study: The training dataset changes with the
percentage of simulated data (s) augmented with the measurement
dataset.

Fig. 8: Classification accuracies as a function of the percentage of
augmented data for two noise models: AWGN and MNM noise for
two SNRs- 0dB and 21dB.

results as a function of SNR and percentage of data augmen-
tation for three cases- no noise, data with AWGN noise, and
data with MNM noise. The classification accuracies remain
almost constant with an increase of s but better than the
s = 0 case. The possible reason is increased training support.

At low SNRs, the performance for both data with MNM noise
and AWGN noise drops compared to when s = 0. The drop
is higher for AWGN due to the quality of micro-Doppler
signatures at low SNRs.

IV. CONCLUSION

The paper presents an effective method to augment mea-
sured spectrograms with more realistic synthetic spectro-
grams. We proposed a noise modeling framework based
on GANs where the adversarial training learned the noise
distribution directly from the measured spectrograms. We
compared the classification performance of different data
augmentation schemes under the following scenarios- simu-
lation data with no noise, simulation data with added AWGN,
and simulation data with MNM noise. The results showed
that the data with MNM noise outperformed all other cases
by 3% on an average. The performance is more pronounced,
especially at low SNR scenarios (MNM 8.5% better than
AWGN).

Overall, the paper demonstrates the feasibility of using
more realistic simulated micro-Doppler spectrograms for
data augmentation tasks. Future research will investigate
the possibility of extracting multipath effects, occlusions
directly from real spectrograms. We expect incorporating
these factors into the simulated spectrograms could further
improve the augmentation performance and enhance the
overall training support.
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