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Abstract—This paper considers the problem of ground user
localization based on received signal strength (RSS) measure-
ments obtained by an unmanned aerial vehicle (UAV). We treat
UAV-user link channel model parameters and antenna radiation
pattern of the UAV as unknowns that need to be estimated. A
hybrid channel model is proposed that consists of a traditional
path loss model combined with a neural network approximating
the UAV antenna gain function. With this model and a set
of offline RSS measurements, the unknown parameters are
estimated. We then employ the particle swarm optimization
(PSO) technique which utilizes the learned hybrid channel model
along with a 3D map of the environment to accurately localize
the ground users. The performance of the developed algorithm is
evaluated through simulations and also real-world experiments.

Index Terms—UAV, localization, map, rssi, wireless networks

I. INTRODUCTION

In a wireless localization system, nodes with perfectly-

known positions known as anchor nodes (which can be sta-

tionary or mobile) collect various radio measurements from

the emitted radio frequency (RF) signals from the users in

the network, and use them for localization purposes. Various

measurements such as received signal strength (RSS), time-of-

arrival (TOA), angle of arrival (AOA), etc., can be obtained

from the RF signals by the anchor nodes [1], [2].

On the other hand, advancement in robotic technologies

and miniaturization of wireless equipment have made it pos-

sible to have flying radio networks (FRANs), where wire-

less connectivity to ground users can be provided by aerial

base stations (BSs) that are mounted on unmanned aerial

vehicles (UAVs) [3], [4]. Advantage of FRANs include, fast

and dynamic network deployment during an emergency or

temporary crowded events, providing connectivity in areas

lacking network infrastructure, etc. While in terrestrial radio

access networks static BSs are used as anchor nodes, in

FRANs UAV BSs can be used as mobile anchor nodes.

Localization of ground users using RSS measurements col-

lected by aerial UAV anchor nodes has gained interest recently

[5]–[12]. The main advantage of using UAV BS anchors in

localization compared to static BSs is that UAV BSs with their

inherent 3D mobility can collect radio measurements in dif-

ference geographic locations which improves the localization

performance. Generally, RSS measurements are easy to obtain

in many wireless networks and does not require stringent

synchronization and calibration constraints associated with

timing based measurements. The works in [8]–[10] assumed

that the UAV flies high enough so that the RSS of the UAV-

user or Air-to-ground (A2G) link is modeled as a simple

line-of-sight (LoS) channel. This LoS assumption is generally

not valid in urban scenarios as A2G links are often blocked by

city buildings. To over come this, the authors of [11], [12] have

used a segmented pathloss model that differentiates between

LoS and non-line-of-sight (NLoS) channel conditions and

showed improvement in localization performance. Moreover,

in [12] it is shown that by exploiting the 3D city map which

contains the building locations and height information, one can

significantly improve the localization performance.

One common assumption in all the works in [5]–[12], is

that the UAV is assumed to have a perfect isotropic radiating

antennas. However, in reality this is not true and several

complications arise with UAV BSs as opposed to static BSs:

a) The UAV altitude and heading changes depending on its

mobility pattern, hence the antenna gain changes with the UAV

location and orientation [13] b) The radiation pattern of the

antenna mounted on UAV is affected by the chassis, and hence

it is difficult to measure the actual antenna pattern while UAV

is flying [14], [15]. The work in [16] has demonstrated that

the 3D radiation pattern of an antenna mounted on a drone can

significantly influence the RSS of the A2G link. Therefore, it

is important to consider this in a practical localization system

using UAV BS anchors.

The impact of the antenna radiation pattern in A2G channels

in a 3D localization system using time-difference-of-arrival

(TDOA) measurements has been studied in [17]. However,

the authors assume that the radiation pattern of the UAV

antenna is known. To the best of our knowledge, localizing

users with a UAV with an unknown radiation pattern and RSS

measurements has not been studied before. Specifically, our

contributions are as follows:

• The unknown antenna radiation pattern of the UAV

during the flight is parameterized by a neural network

by feeding RSS measurements in the training phase.

• An optimization framework is proposed capable of using

the trained model, which characterizes the path loss and

the antenna gain pattern, along with the 3D map of the

environment to improve the localization performance.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a scenario similar to the one illustrated in Fig.

1, where a UAV BS that is connected to K ground level users

in an urban area consisting of a number of city buildings.
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Fig. 1: UAV-aided ground user localization system.

The users are spread over the city and uk = [xk, yk]
T ∈

R
2, k ∈ [1,K] denotes the k-th user’s location. The users are

considered static and their locations are unknown. A 3D map

of the environment where the UAV and users are located is

assumed to be available.

The aim of the UAV is to estimate the unknown user

locations based on RSS measurements taken in N different

time steps from the users. In the n-th time step, the UAV/drone

position is denoted by vn = [x[n], y[n], z[n]]T ∈ R
3. We

assume that the UAV is equipped with a GPS receiver, hence

vn, ∀n is known.

A. Channel Model

We now describe the radio channel model between the UAV

and ground users. Note that the channel parameters and the

UAV antenna pattern are unknown and need to be learned. In

general, the channel between UAV position v and user location

u in dB can be modeled as

gz = φz(v,u) + γ(v,u, ψ) + ηz , (1)

where φz(v,u) is the path loss between the UAV and the

user link, γ(v,u, ψ) stands for the antenna gain of the UAV

with ψ denoting the heading angle of the UAV with respect

to the north pole, and ηz is the shadowing component that

is modeled as a Gaussian random variable with N (0, σ2
z).

z ∈ {LoS,NLoS} emphasizes the strong dependence of the

propagation parameters on the LoS or NLoS segments. The

variance of the shadowing component (σ2
z) is assumed to

be known for both segments. Note that (1) represents the

logarithm of the channel gain which is averaged over the small

scale fading of unit variance.

Classically, the path loss φz(v,u) between two radio nodes

is modeled as [18]

φz(v,u) , φz(d) = ßz − 10αz log10 (d) , (2)

where d = ‖v − u‖2, αz is the path loss exponent, and ßz is

the log of average path loss at the reference point d = 1m.

We assume that the users are equipped with an omnidirectional

antenna. However, the antenna mounted on the UAV does not

have a specific gain pattern and can have a very complex form

depending on the design of the antenna and also the type of

materials used in the UAV itself.

III. RADIO CHANNEL LEARNING AND USER

LOCALIZATION

In this section, we propose a map-based algorithm to esti-

mate the user locations from the channel gain measurements

collected by the UAV. Let us denote an arbitrary set of

measurements taken by the UAV during the mission by a

sequence χ = {vn, n ∈ [1, N ]}. From each of these locations,

the UAV collects radio measurements form all K users. We

denote the channel gain or RSS measurement (in dB scale)

obtained from the k-th user by the UAV in the n-th time step

with gn,k. Using the channel model in (1) we can write

gn,k=

{

φLoS(dn,k) + γ(vn,uk, ψn) + η
n,k,LoS if LoS

φNLoS(dn,k) + γ(vn,uk, ψn) + η
n,k,NLoS if NLoS,

(3)

where dn,k = ‖vn − uk‖2, and ψn is the UAV heading

angle at time step n. The function γ(.) is the antenna gain

which is unknown and it needs to be learned. The probability

distribution of a single measurement in (3) is modeled as

p(gn,k) = (fn,k,LoS)
wn,k(fn,k,NLoS)

(1−wn,k), (4)

where ωn,k ∈ {0, 1} is the classifier binary variable (yet

unknown) indicating whether a measurement falls into the LoS

or NLoS category, and fn,k,z has a Gaussian distribution with

N (φz(dn,k) + γ(vn,uk, ψn), σ
2
z).

Assuming that collected measurements conditioned on the

channel and user positions are independent and identically

distributed (i.i.d) [18], using (4), the negative log-likelihood

of measurements leads to

L = log

(

σ2
LoS

σ2
NLoS

)

K
∑

k=1

N
∑

n=1

ωn,k+

K
∑

k=1

N
∑

n=1

ωn,k

σ2
LoS

∣

∣gn,k−φLoS(dn,k)− γ(vn,uk, ψn)
∣

∣

2
+

K
∑

k=1

N
∑

n=1

(1 − ωn,k)

σ2
NLoS

∣

∣gn,k−φNLoS(dn,k)− γ(vn,uk, ψn)
∣

∣

2
.

(5)

The estimate of the unknown channel parameters {αz, ßz},

uk, and γ(.) can then be obtained by solving

min
ωn,k,uk

αz,ßz ,γ(.)

L
(6a)

s.t. ωn,k ∈ {0, 1}, ∀n, ∀k. (6b)



The binary variables ωn,k in objective function (5), and the fact

that γ(.) is not explicitly known and is a function of user loca-

tions, make problem (6) challenging to solve since it is a joint

classification, channel learning and user localization problem.

To tackle this difficulty, we split (6) into two sub-problems

of offline channel learning and online user localization . We

also exploit the 3D map of the city for the measurements

classification which will be elaborated next.

A. Offline Radio Channel Learning

We aim to learn the radio channel using a set of offline radio

measurements which are collected from users with known

locations in advance. In this manner, we have a set of training

data set to learn the radio channel. Since the characteristic of

the radio channel is independent of the user location and only

affected by the structure of the city (i.e. the blocking objects

in the environment) and the UAV antenna pattern, therefore

learning the radio channel from a set of offline training data set

can provide a good approximation for the radio channel. We

also exploit the 3D map of the city to perform the LoS/NLoS

classification of the measurements, since for a user with a

known location the classification variables ωn,k can be directly

inferred from a trivial geometry argument: for a given UAV

position, the user is considered in LoS to the UAV if the

straight line passing through the UAV’s and the user position

lies higher than any buildings in between. Moreover, we use

a neural network with parameters θ as an approximation of

the UAV antenna gain γθ(.). We call this channel model

a hybrid channel model, since it consists of a traditional

path loss representation φz(.) along with a neural network

approximating the UAV antenna gain. The main reason for

choosing such a channel model lies in the fact that a rough

estimation of the channel can be obtained using the classical

path loss model (2), while all the uncertainties which can not

be captured by the path loss function are then modeled using

a neural network.

Now having classified the measurement and using the hybrid

channel model, problem (6) just by considering the offline

training data set (with known user locations) can be rewritten

as follows

min
αz,ßz,θ

L, (7)

where θ is the parameters of the neural network for estimating

of the antenna gain. Solving this problem is still challenging

since the UAV antenna gain is the same for both LoS and

NLoS measurements. To alleviate this burden, we split up our

problem into two phases. In the first phase, we only find the

path loss parameters by solving the following optimization

problem

α∗

z , ß
∗

z := argmin
αz,ßz

L̄, (8)

where

L̄ =

K
∑

k=1

N
∑

n=1

ωn,k

σ2
LoS

∣

∣gn,k−φLoS(dn,k)
∣

∣

2
+

K
∑

k=1

N
∑

n=1

(1 − ωn,k)

σ2
NLoS

∣

∣gn,k−φNLoS(dn,k)
∣

∣

2
.

(9)

In (9) the effect of the UAV antenna gain is ignored which

allows us to find the closest estimate to the measurements

using the path loss model. The parameters obtained by solving

(8) are denoted as α∗

z , ß
∗

z.

In the second phase, the path loss parameters are fixed to

α∗

z, ß
∗

z and the UAV antenna gain parameters are obtained as

follows
θ
∗ := argmin

θ

L|α∗

z ,ß
∗

z
. (10)

Note that, both problems (8), (10) can be solved using standard

optimization frameworks (i.e. any gradient-based optimizer).

B. User Localization

Having learned the radio channel, we continue to localize

the unknown users in the online data set. The optimization

problem (6) by utilizing the learned radio channel can be

reformulated as follows:

min
ωn,k,uk

L∗

(11a)

s.t. ωn,k ∈ {0, 1}, ∀k, ∀n, (11b)

where L∗ is obtained by substituting the channel model with

learned parameters α∗

z , ß
∗

z, θ
∗ in (5). It is hard to find a

closed form and analytical solution to problem (11) due to

the binary random variables ωn,k, and the non-linear and

non-convex objective function L∗. We employ the particle

swarm optimization (PSO) technique to solve this problem

since PSO is suitable for solving various non-convex and

non-linear optimization problems. More specifically, PSO is

a population-based optimization technique that tries to find a

solution to an optimization problem by iteratively trying to

improve a candidate solution with regard to a given measure

of quality (or objective function). The algorithm is initialized

with a population of random solutions, called particles, and

a search for the optimal solution is performed by iteratively

updating each particle’s velocity and position based on a

simple mathematical formula (for more details on PSO see

[19]). As will be clear later, the PSO algorithm is enhanced

to exploit the side information stemming from the 3D map

of the environment which improves the performance of user

localization and reduce the complexity of solving (11), since

the binary variables ωn,k can be obtained directly from the 3D

map [12].

For ease of exposition, we first solve (11) by assuming

only one unknown user. Then we will generalize our proposed

solution to the multi-user case. To apply the PSO algorithm,

we define each particle to have the following form

cj = [xj , yj]
T ∈ R

2, j ∈ [1, C], (12)



where C is the number of particles and each particle is an

instance of the possible user location in the city. Therefore,

by treating each particle as a potential candidate for the user

location, the negative log-likelihood (5) for a given particle

and learned parameters α∗

z , ß
∗

z, θ
∗ can be rewritten as follows

L
∗(c

(i)
j ) = log

(

σ2

LoS
σ2

NLoS

)

∣

∣

∣
MLoS,1,j

∣

∣

∣
+

∑

z∈{LoS,NLoS}

∑

n∈Mz,1,j

1

σ2
z

∣

∣

∣gn,1−φz(dn,j)− γθ∗(vn, c
(i)
j , ψn)

∣

∣

∣

2

,

(13)

where c
(i)
j is the j-th particle at the i-th iteration of the PSO

algorithm, dn,j = ‖vn − c
(i)
j ‖2, and Mz,1,j is a set of time

indices of measurements collected from user 1 which are in

segment z by assuming that the location of user 1 is the

same as particle j. To form Mz,1,j , a 3D map of the city

is utilized. For example, measurement gn,1 is considered LoS,

if the straight line passing through c
(i)
j and the drone location

vn lies higher than any buildings in between. Therefore, the

best particle minimizing (13) can be obtained from solving the

following optimization

j∗ := arg min
j∈[1,C]

L∗(c
(i)
j ), (14)

where j∗ is the index of the best particle which minimizes

the objective function in (14). In the next iteration of the PSO

algorithm, the position and the velocity of particles are updated

and the algorithm repeats for τ iterations. The best particle

position in the last iteration is considered as the estimate of

the user location.

Note that for the multi-user case, without loss of optimality,

the problem can be transformed into multiple single-user

localization problems, and then each problem can be solved

individually. This stems from the fact that the radio channel

is learned beforehand and is assumed to have the same

characteristics for all the UAV-user links (the radio channel

parameters and the UAV antenna pattern are independent of

user locations).

IV. NUMERICAL RESULTS

We consider a dense urban city neighborhood comprising

buildings and streets as shown in Fig. 2-a. The height of the

buildings is Rayleigh distributed in the range of 5 to 40m
[20]. The true propagation parameters are chosen as αLoS =
2.2, αNLoS = 3.2, ßLoS = −32 dB, ßNLoS = −35 dB

according to an urban micro scenario [21]. The variances of

the shadowing components in LoS and NLoS scenarios are

σ2
LoS

= 2 dB, and σ2
NLoS

= 5 dB, respectively. The following

UAV antenna gain is considered to conduct the simulation

γ(vn,uk, ψn) = 15 (|cos(ρn,k)|+ 2|sin(ϕn,k + ψn)|) ,
(15)

where ρn,k, ϕn,k are , respectively, the elevation and azimuth

angles between the UAV and the user, and ψn is the heading

angle of the UAV. The hybrid channel model is trained in the

(a)

(b)

Fig. 2: (a) Localization performance by utilizing the proposed

hybrid channel model and the conventional channel model,

(b) Corresponding test radio measurements collected from the

same user and the estimation using different algorithms.

same city as shown in Fig. 2-a by collecting radio measure-

ments from K = 10 different random users and over N = 200
individual random UAV locations. To train the hybrid model,

we first need to learn the pathloss parameters. To do so, we

use the training data set Dtr
pl = {(dn,k, gn,k), ∀n, k}. The path

loss parameters can then be obtained by solving (8). Now we

continue to learn the UAV antenna gain. To estimate the UAV

antenna gain, a neural network with four hidden layers is used

where the first and the second layers have 60 neurons with the

tanh activation function, and the third and the fourth layers

with 40 neurons and the relu activation function. To train this

network the training data set Dtr
ag = {(dn,k,xn,k, gn,k), ∀n, k}

is used where xn,k is the input vector to the neural network

and is defined as follows

xn,k = [
x[n]− xk

‖vn − uk‖2
,
y[n]− yk

‖vn − uk‖2
,

z[n]

‖vn − uk‖2
, ψn]

T.

(16)
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Fig. 3: The performance of proposed localization algorithm

for multi-user case.

The parameters of the neural network (θ) can be obtained by

solving the optimization problem (10) where L is defined as

follows

L = log

(

σ2
LoS

σ2
NLoS

)

K
∑

k=1

N
∑

n=1

ωn,k+

K
∑

k=1

N
∑

n=1

ωn,k

σ2
LoS

∣

∣gn,k−φLoS(dn,k)− γθ(xn,k)
∣

∣

2
+

K
∑

k=1

N
∑

n=1

(1 − ωn,k)

σ2
NLoS

∣

∣gn,k−φNLoS(dn,k)− γθ(xn,k)
∣

∣

2
.

(17)

Having trained the hybrid channel model, the estimate of

each measurement in accordance with (3) is given by:

ĝn,k=

{

φLoS(dn,k) + γθ(xn,k) if LoS

φNLoS(dn,k) + γθ(xn,k) if NLoS.
(18)

In Fig. 2-a, the result of the user localization after the

training phase is shown. We also compared the performance of

the proposed algorithm with [12] which uses the conventional

channel model consisting of the path loss model without

considering the effect of the UAV antenna gain. Moreover, in

Fig. 2-b the results of the channel model estimation is shown

for different algorithms. It is clear that by using the hybrid

channel model we can obtain a better estimation of the channel

which results in a more precise user localization. Moreover,

the user location estimated using the proposed algorithm for

the multi-user scenario is illustrated in Fig. 3 and confirmed

to be very close to the true user positions.

In Fig. 4, the cumulative distribution function (CDF) of user

localization error of our proposed algorithm with comparison

to [12] over Monte-Carlo simulations is shown. We can see

that the localization accuracy is considerably improved by

using the hybrid channel model.

V. EXPERIMENTAL RESULTS

We have also validated the performance of the proposed

algorithm through real-world experimentation. We established

0 50 100 150 200 250 300 350

Localization error [m]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Hybrid ch. model (proposed)

Ref. [12]

Fig. 4: The CDF of user localization error for different

algorithms.

a Wi-Fi mesh network comprising sets of outdoor ground

nodes and a UAV node. all the nodes are equipped with a

MicroTick Wi-Fi card, which is configured on channel 48 in

the 5 GHz band, with two omnidirectional vertically polarized

dipole antennas. Prior to applying the localization algorithm,

we learned the wireless channel by training the hybrid channel

model over the training measurements collected from different

ground users in the environment where the experiment is

conducted.

Having learned the channel model, different test user loca-

tions are chosen to be localized. In Fig. 5, the top view of the

UAV trajectory taken to collect the test data, the performance

of the localization, and the estimate of the channel using our

proposed method as well as the method in [12] for different

scenarios are shown. In both trajectories, the heading of the

UAV is set to a fixed angle facing towards the south over

the course of the trajectory. It is worth noting that when the

relative angle between the UAV and the ground node changes

drastically, Fig. 5-b, the algorithm in [12] which uses the

convectional channel model fails to localize the users. This

stems from the fact that the UAV antenna pattern is changed

considerably and is no longer symmetric and omnidirectional

due to the proximity to all the components on the UAV (i.e. the

body frame, propellers, motors, etc.) which makes it difficult

to be precisely modeled by conventional channel models.

Moreover, in [22], a video recording of the experiment in

EURECOM campus is captured, illustrating the localization of

two ground nodes while flying the UAV in the environment. As

the UAV collects more measurements from the ground nodes,

the estimate of the user location becomes more accurate.

VI. CONCLUSION

We have studied the problem of user localization using the

RSS measurements collected by a UAV. To do so, we first

proposed a hybrid channel model which aims to accurately

learn the path loss parameters as well as the UAV antenna

pattern. A PSO technique then was employed by exploiting

the learned hybrid channel model and leveraging the 3D map

of the environment to accurately localize the ground users.
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Fig. 5: Left: top view of the UAV trajectory, true user and

estimated user location. Right: corresponding test measure-

ments collected from the user and the channel estimate using

different models.

The performance of the developed algorithm was evaluated

through simulations and also real-world experiments.
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