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ABSTRACT
AN EVOLUTIONARY ALGORITHM FOR GENERAL SYMBOL SEGMENTATION

Stephen Pearce Advisor:
University of Guelph , 2003 Dr. M. Ahmed
One of the most common forms of visual communication is that of written words and line
diagrams. These words and diagrams take many forms ranging from written script in
English, Arabic, or other languages to symbolic diagrams like electrical circut
schematics and process flow diagrams. These scripts and diagrams can be easily
digitized using a scanner, or camera, but only exist in image format. It would be of a
great advantage to be able to convert these images to a more useful knowledge based
format, but automatic processes to recognize and understand the meaning of them face
many difficulties. = Many researchers have developed techniques to accurately recognize

clean isolated symbols such as individual characters or symbols in a line diagram.

Clean isolated symbols.
However, all these systems face difficulty when two or more symbols are connected.




Touching and connected symbols.
Due to the range of possible scripts, diagrams, or combination thereof, it is a daunting

task to develop approaches to the poblem. One approach, that will work for segmenting

a variety of scripts and diagram types into clean isolated symbols is presented here.

This technique is based on a genetic, or evolutionary algorithms, and uses an
independent and replaceable system to verify valid symbols in any connected string of
characters or line diagrams. The input to the system is a scanned image of the connected
string or diagram, that is first converted to black and white, then thinned to a single pixel
width line. The line image is then represented by a powerful graph structure that is used
to interchange between individuals in the evolutionary algorithm, and binary image form.
The population is initialized using a special splitting algorithm based on depth first
searching of the graph, and is evolved until a number of sub graphs that represent the
symbols contained in the connected string are isolated. These sub graphs can then be
drawn individually, together on one image, or used as input to some higher level
understanding system.

The new system is capable of isolating symbols in any domain that can be described as
"touching or connected symbols in a line diagram". This definition includes touching

characters, logic circuit diagrams, and many other types of line diagrams. Experiments



were performed, and results were presented on a number of data sets that varied both in

the number of symbols, and the types of symbols present in the diagram.



Acknowledgements

Looking back over the years it took to create this work, it is impossible to compile a
complete list of the influence and encouragement 1 have received from my friends and
mentors. The words here can not express the gratitude I have for all of the support I have
received, and will always have in my heart.

First, T would like to acknowledge Dr. Maher Ahmed. Without his encouragement before
I even considered this path in life, and his wise counsel after, I would never had the
confidence or courage to do this.

There have been many other mentors at both WLU and UoG, whose support both got me
started, and kept me going. Dr. Kathleen Cameron from WLU has been particularly
supportive, and I thank her for keeping me excited about education. I¥. Wirth and Dr.

Grewal were the first to give me a sense of comfort and belonging, thanks for talking to
me on the level.

Trying to list all of my friends that gave me the push to keep going, is an undertaking I
will not attempt. The list would never be complete, and I dare not miss one because they
were all important. Instead, I will show my gratitued in life, and the lasting friendships
we all share. I would however like to thank Estelle Arthur in particular, for setting and
example of how to balance living and leaming, when one threatens to consume the other.

And lastly, I could not have survived in academia without the unquestionable love and

support from my parents. No matter how little I understood about where I was headed,
they were always behind me, offering more than I ever wanted to accept.

Notes to the Reader

The work in this thesis has spawned at least one research paper of the same title. The
paper was accepted to IEEE International Conference on Document Analysis and
Recognition (ICDAR'03). The research will be presented in Edinburgh, Scotland, August
3-6,2003.



Table of Contents

A BSIEACT . eeieiereeeeeieereceeneeserssteseseesesneeasnssvesnsasssesnnsenseeretnssresaesseebeasassernearasreestennens
T aDLE OF COMEIES. . ..vvviieiieiieee et ire st ee st eees s stsesseresesetessesssresesssesenssessnsnsrnnnsns
TADIE OF FAGUIES.c.vcuiiecieriecee et ree e cia st e e e e e san s e s e sre s asnssesseseesevss sarssansssansnennonsens
1. TOUTOQUCHOT. coeecveeeeircenerreceeeteetesevreetcreestesertbensaese s nssenss srsesssrensnonssansessnsmsnenassnesons
F O . (4T 5= T WO SOV
1.2. Problem Statement. . cuueieeceieeeeeeeeee e eer e e renseessresbes e s e rnsreaesreennenen
1.3. About thiS DOCUIIIENT....cveeereie i ceeeeene et eeneeeeresbecnsereertrsesteeneeenneans

2. Background Knowledge.......cocoooeviniriiiiceenceee et

2.2, GIAPNS. c.eccvieeeeie e ttreme st s e st e vt b e s eb et s nes e e e be e e e e e naesaneeeneenane

2.3. Searching in Large SPaces.........ccceveirerneveeninienecetrieestesesseeieeeese e enasaeeas
2.3.1. Evolutionary AlZorithims........cccceverrmeniveerivnvenirescrsscnerreseecensesesseans
2.3.2. Other Search Strategies......ccccrimiirmreererierteee oot ste oo seeane

3.1. Document RECOZNIION. ...v..civvveeveererrieneerererteenessseesasserereesseenssssessenssseserssssens
3.2. The Role of Segmentation in Recognition SyStems.......ccccoureuveurvvesrercrenenans
3.3. Factors to be Considered........ccoevumiecrienineeecinceiteece e
3.3.1. Segmenting Types of Information and Automatic Domain
TAentICatION. ....eoeiieeeece et e e
33.2. Online vs. Off-lIne ..ot
3.3.3. Straight Segmentation vs. Segmentation Recognition.............cvveverar.
3.3.4. The Ideal SYStOmM....coeeeirieeeereeeere et ettt
3.4. Techniques for Isolating SymboIS........cc.eevoermiririireeeecenee e
3.4.1. Character StrNEZS...cccceeeereerecrreerersirevenrsreesesseserssarsnesassesssassassssessesses
3.4.2. 1IN DIAGIAMS. ..1vereceeerertiveaceeeentet e seteesteneesesersesesas et esaeasesssesaesnne
3.5. Discussion of Previous Work........cccooveverrecernneenienreeec e
4, An Evolutionary ALGOTIRIM. ....cc.ouriiririaeincreeec ettt e
4.1, The NeW SYSTEIML..cccui ittt et enc et mr st esrens
4.2, IndIVIAUALS....cveeieeiieececee et e ettt a b e e nnen
4.3. Population Iitialization.......c..coc.veeveereerreeeece et e
G4, MULBLION. .c.evvrveueerieeeeeetesienrerienseesseeesresstesseessasesaentessassesssessessesmnesonesseeansanns
4.5, CLOSSOVET . c.eeicreeeerterenteietcesttereereesesresseseessssessstssasaesensesasessnesaneesssteesareesansaessines
4.6. Evaluation, Termination, and ASPITation.........ececvvvereeereecorncrirencsrnensessessseanas
4.6.1. EVAlUBLION.....ceeeririeceeeriet e s erereee s raesresc e e s aesesesa et s evessnassesnens
4.6.2. TerMURALION. .eovevrirerecrrenreeaeeresseseniesressesensessessereesassernesanesaesransavessassnesns
4.6.3. ASPITALION.c.ieceiir ittt ettt sttt ettt et sttt e er e s e
4.7, EvOIUtION SIAtEZIES. ..cueurueereerreeeriemieseesreneentreeseeseeeeseentanenenenenesnesaesssenennesnen
S RESUILS oottt et eer et eectaeee e a e s esn et e s e e s e st e en e aaeerbeasseenren
5.1, DAL SOUTCES. ..coeeeireiitiei ettt ettt et e bttt se e sbe et e e
5.2, INVESHIZALIONS. .cvverreirererereeeressasseseesesssarassessesaesessesteseassmeasansessssrssessensessasaans

e -
N OO O\ b e e g B

W W W LW KN NN DN ke o
2 HAE N OO OO WLBVOW WL



5.2.1. Performance on Varied Input.........cocoenmrininiiiinienes
5.2.1.1. Discussion of the Investigation.........ccccemerreeeerrcnenercnnniines

5.2.1.2. Discussion of the Analysis......cccocoereererenncnrccneceererereeeresieners

5.2.1.3. Results

of Performance on Varied Input.......ccoovvveiinninncnnns

5.2.2. Performance with Varied Parameters.......c.oocveeecvonrcrnencneccnnnciveenn
5.2.2.1. Discussion of the Investigation.........ccccovererneisinincsnnsisin s
5.2.2.2. Discussion of the AnalysiS.......cceerrerrirercreerncnescerinne e

5.2.2.3. Results

of Performance with Varied Parameters......ccoeveeveiueenene

5.3. Final ConclUSIONS. ...ieveveirrreeiareereeereseneeetsseseetnees st sneeesmemeassseensasennsssssrsntons
6. Comments and Futture WorK......oooeeercicrineree e

6.1, COMUTIENLS ...cuveeireecreieseerrerereeerereecriesrerseesseesrstessissrtetsssvasenssesssessansnsssnnsnnres

6.2. Contributions to Current Research......cococveervcemeiceivennen e

6.3. Suggestions for Future Work.........cccciciiiiinninceieceercen
Lterature RELEIENCES. .ccverivveruiirerresie et nersesremte et res s s rene e esieesae s ssa s bssasssreans
Appendix A: Useful Alorithimis........ocoeueveeeiiiniiieeee e
Appendix B: Experimental Results for Performance on Varied Input..........c.coovvvuecs
Appendix C: Experimental Results for Performance with Varied Parameters

(50 Epochs)..

Appendix D: Experimental Results for Performance with Varied Parameters

(100 Epochs)

78
78
81
83
97
97
99
100
108
112
112
113
114
115
118
122

205

254



Table of Figures

Figure 1. Clean isolated SymbolS.........cccoovuiiiminiiiniine s,
Figure 2. Touching character and digit Symbols........cocvrnrrinnnrce e
Figure 3. Connected line diagrams........cooecrerrccninicconinececec s
Figure 4. A thick line image is thirned into a single pixel width line image.
Figure 5. The thin line image has been graphed, with edges labelled A to K
Figure 6. The graph has been divided into two distinct partitions. There will a
partition for each individual in the population.
Figure 7. (a) A mutation operation moves an edge from one part to another,
possibly new one. (b) A crossover operation preserves matched symbols
in two different individuals.
Figure 8. (2) An sample input image from CEDAR. (b) A thinned version of (a).
(c) A graphed version of (b) using the traceGraph algotithm. (d) A
partition of the graph in (¢) with 3 parts.........ccvcvvcirccnceccien,
Figure 9. () Connected characters with 2 appropriate segmentation points
indicated. (b) Connected logic symbols with 6 segmentation points
IOAICALEA. ..ottt st e
Figure 10. (a) The hit and deflect strategy. (b) The drop fall strategy.........ccccvvevnnn.
Figure 11. (a) A mathematical equation in off-line form. (b) The on-line stroke
sequence that produced the formula in (a). (c) The regrouped

Figure 12. (a) The graph from figure 8(c). (b) A partition of the graph in (a) with 3

Figure 13. (a) An individual that requires repacking. (b) A repacked version of the
ndividual SHOWIL A1 (@)..ceeeeeeerri ettt

Figure 14. (a) Two thick touching characters, the line in the exact centre is twice as
thick as the others . (b) A thinned version of the characters, where they
NOW share a COMMON LNE.........eoiveererereereaerieceerereeee e s sesee et e reeseens

Figure 15. (a) An original circuit image. (b) A thinned and graphed version of (a)
with the eastern and western-most nodes marked, and all of the edges are
numbered. (¢) The results of BFS from both the east and west nodes.
Here the maximum depth from the east is 5 and from the west is

Figure 16. An initial hypothesis with 3 segments, (a), (b), and (c). Formed with
DAlance = 0.45. . ..ottt ettt
Figure 17. An initial hypothesis 2 segments, formed with balance = 0.55. (a) The
western-most segment. (b) the easter-most SEZMENL.....coveerereererrerecann.
Figure 18. (a) A thinned circuit image. (b) A segmentation hypothesis on the circuit
in (a) with the edge E; marked. (c) A new individual after mutation using
the edge selected in (D)oo
Figure 19. (a) An original connected string. (b) A thinned version of (a). (c) An
individual who has matched the character 'o". (d) A different individual
whom has matched the character 'e¢'. (e) A new individual resulting from
the crossover of the individuals in (c) and (d).....ovoeoeevoeecveveri e
Figure 20. A graph of a circuit image with the edges numbered.........ccoccvviiiinininae



Figure 21.

Figure 22.

Figure 23.

Figure 24.

Figure 25.

Figure 26.

Figure 27.

Figure 28.
Figure 29.
Figure 30.

Figure 31.
Figure 32.

Figure 33.
Figure 34.
Figure 35.

Figure 36.
Figure 37.

(a) An individual with 4 segiments, segment A is a matched symbol. (b)
The binary representation vector of the individual in (a), false values are

shown as blanks. (c) The binary evaluation vector of the individual in

(a), false values are shown as blanks..........cccovevevveeeneeniecnn s ecnsscsnenens

A sample of the data presented in Appendix B1. On the left is the input
image of touching characters. In the middle is a bar graph representing
the accuracy rating. On the right is a line graph representing the

Auration Of ACtIVE EVOIULION. .uveeiiecertrieeeeeeeeeeeereerteeeeressaeessesessessesaeeassesens

On the left is the input sample. In the centre is a line graph representing

the distribution of the epoch when the first symbol was found. On the
right is a line graph representing the distribution of the epoch of

[15 5031107214 [0 1 KRR OOV O SR

In this sample chart, initialization results from 22 of 29 input images are
summarized, as indicated in the top right comer. The xaxis represents
the number of edges in the input, so results from inputs of more edges
appear farther to the right. The y-axis is now the number of epochs
initialization took to find the first symbol..........coooevremrccicrerceenne
{(a) An original touching character sample. (b) A class 0 segmentation
result. () A class 2 segmentation reSult..........coeeivvieeveecencnreeen e,
(a) An original touching character sample. (b) A thinned version of the
characters in (a). (c) Only class 2 results were obtained for this input.

(d) The largest connected region. It is two edges, separated where the 'd’
and 'c' meet in (b). The large tail can not be removed to isolate the

CRATACEET 'C ettt ettt e s resenster e s e ventaareossvaseann

(2) An original touching character input string. (b) A thinned version of
the string in (a). (c) A class 0 result from segmentation. (d) A second

class 0 result from Segmentation............cceverrevererreeceseeeerreeer e seresesseenes

A circuit image input. All results were class 0. The duration
distribution was wide, but all trials terminated before 35 epochs...............
(2) A sample line diagram input. (b) All segmentation results were class

The distribution of the initialization is in the chart on the left, and the
distribution of termination is in the chart on the right........cooooeeecererireenenae
A circuit image that produced class 0 and class 1 resultS......ocvvveevevrrenne.
(2) An sample line diagram input. (b) A class 0 result from

segmentation. (c) A class 1 result from segmentation........c.coveerecvercrennes
The distribution of the initialization is in the chart on the left, and the
distribution of termination is in the chart on the right.......c.cocecovrveinerreenns
{(2) An sample line diagram with 5 symbols. (b) A class 0 result from

SEEIMETIEATION. .. e vvvvvesiererenecereeesasssesesresenseesaseesassssnssessesessasasesersessasessansssnenas

A few class 0 results, mostly class 2 results......cooceevereecerrnreeirereeeeerennnn
The initialization and termination distributions for a larger circuit image.
The total accuracy results for all experiments. The number of trials that
attain a given accuracy are 1000 times more than shown here. Clearly

Class 0 results are produced most Often......cocceervvcrrreecreereeeneecae s

71

80

81

33

85

86

86

87
87

88

89

91
91

92



Figure 38. The initialization results for the entire experiment, over all data sets.

There is a cardinality of each point that is greater than or equal to 1,

with a total of 126 points represented..........c.ooeeveerereinereoreeereere e, 93
Figure 39. The termination results for the entire experiment, over all data sets.

There is a cardinality of each point that is greater than or equal to I,

with a total of 126 points represented............ooveverreieceiienseecree e 94
Figure 40. The duration results for the entire experiment, over all data sets. There

is a cardinality of each point that is greater than or equal to 1, with a

total of 100 points 1epresented..... .o evvrrireriennmrirncreenerereeneeeneeeseeseacesenns 96
Figure 41. An 11 character input image. Smaller inputs were formed by taking

small sections of this string. It does not matter than the string is not a

word, only that the characters can be isolated and recognized.................. 99
Figure 42. The accuracy results for all input images, for the seeded initialization

and full parent selection configuration with a 50 epoch evolxtion himit.

(&) Population size of 5. (b) Population size of 10. (c) Population size of

15. (d) Population size 0f 20.......ccoivirnirircrcionrecer st s eresaneas 100
Figure 43. The accuracy results for all input images, for the seeded initialization

and random parent selection configuration with a 50 epoch evolution

limit. (a) Population size of 5. (b) Population size of 10. (c) Population

size of 15. (d) Population size 0f 20........ccveeervrveerivinciencec et 101
Figure 44. The accuracy results for all input images, for the random initialization

and full parent selection configuration with a 50 epoch evolution limit.

(a) Population size of 5. (b) Population size of 10. (c) Population size of

15. (d) Population $ize 0f 20.....cco.evveevereierecerceeeee e e e 101
Figure 45. The accuracy results for all input images, for the random initialization

and random parent selection configuration with a 50 epoch evolution

limit. (a) Population size of 5. (b) Population size of 10. (c) Population

size of 15. (d) Population size of 20.......ccccovrvievereecireeerecee e 102
Figure 46. The accuracy results for the 9 and 11 character inputs, for the seeded

initialization and full parent selection configuration with a 100 epoch

evolution limit. (a) Population size of 5. (b) Population size of 10. (c)

Population size of 15. (d) Population size 0f 20......c.ccoocevvenercrcrveenccnnnnn. 103
Figure 47. The accuracy results for the 9 and 11 character inputs, for the seeded

initialization and random parent selection configuration with a 100

epoch evolution limit. (a) Population size of 5. (b) Population size of

10. (c) Population size of 15. (d) Population size 0f 20....c..c..covrrecernennnn. 104
Figure 48. The accuracy results for the 9 and 11 character inputs, for the random

initialization and full parent selection configuration with a 100 epoch

evolution limit. (a) Population size of 5. (b) Population size of 10. {c)

Population size of 15. (d) Population size 0f 20......c.ccceervinnierueneenns 105
Figure 49. The accuracy results for the 9 and 11 character inputs, for the random

initialization and random parent selection configuration with a 100

epoch evolution limit. (a) Population size of 5. (b) Population size of

10. (c) Population size of 15. (d) Population size of 20........ccceceeeevnennnnn. 106



Chapter 1: Introduction

1.1 Motivation

In today's modern world computers has become more of a necessity than a tool. It is
becoming increasingly common to have a web-enabled computer in any home or office.
Until recently interaction with these increasingly common machines, was handled by a
select few that knew the computer's language, and could understand it's responses. A
new and welcome change in philosophy is taking place, where more and more people are
attempting to have computers understand the more natural communication between

humans.

Efforts are underway to mimic all lower and higher level functions that humans use to
communicate efficiently. The lowest level of information exchange is the actual
transmission of information in both audible and visual communication. Audible
communication consists of speech and is easily input using a microphone. Visual
communication is made up of gesturing, writing, and drawing. The higher level functions
necessary to use the information transmitted in this way are varied and difficult to define.
At one stage, this information must be analyzed and recognized, so that the ideas and
concepts it expresses can be identified. At another stage, the information can be stored
for later retrieval or otherwise used by in a useful way to aid with human understanding,

or accomplish goals of a computer agent.

One of the most abundant sources of information is printed documents and diagrams.

Volumes of literature have been produced for recreation, instruction, and countless other



reasons. The advantages of having a computer that could accurately and tirelessly sift
through this volume of data are boundless. It would be possible to digitize and search
historical documents, interpret a students hand-drawn class notes, or train intelligent

systems from existing literature.

However this task involves more than it may seem. Children are not taught to read by
recognizing entire words, but by looking at each character in a word. Only when a child
learns the characters and the spelling of a few words can they be recognized. Similarly,
before a the meaning of a diagram can be understood, the individual symbols must be
examined. The problem of identifying isolated characters and symbols has been
addressed by many researchers [ 4, 27, 31, 40, 48]. One flaw of all of these systems is
that they assume that the input symbol is clean, isolated, and complete as in figure 1,

which rarely occurs when dealing with hand-writing and hand-drawn diagrams.

To satisfy this assumption it is necessary to develop a system that is capable of locating
and separating valid symbols from a connected string. Different systems have been
developed for handwriting [3, 8, 41, 42, 45, 51, 54,] and other line diagrams [ 11, 35, 47,
56, 58]. Every segmentation system however has been built using algorithms and
techniques that are highly specialized to the domain that the source images come from,
making it necessary to implement a different system for each type of diagram or

handwriting.



For a system that would be able to interpret both line images and script, it would be an
advantage to be able to handle all inputs in a common way. The system presented here
meets this demand for flexibility. It may be used to segment line diagrams and
handwriting, provided that there is a symbol recognition system implemented for each

domain.

1.2 Problem Statement

Good character and symbol recognition systems have been developed by [31] and others.
These recognition systems rely on the same assumption however, that the input symbol is
a single, clean image of a character as in figure 1. Although necessary for development

of the ideas, this assumption is impractical in the real world.

Figure 1. Clean isolated symbols.

The problem of separating unknown symbols takes many forms. The unknown symbols
could have a related meaning in any context imaginable. Most commonly these symbols
are adjacent characters in a hand written string as in figure 2, but could also be
components in a circuit diagram, or glyphs in a mural as in figure 3. There exist many

different types of segmentation problems, but they may easily be broken down into



domains based on possible layouts. For handwriting, all symbols are arranged
horizontally on some baseline. For line images, the problem is more complex since
symbols may be arranged both horizontally and vertically, and are not necessarily

separated by a fixed distance such as in digital circuit diagrams.

Figure 2. Touching character and digit symbols.

In reality, most handwriting runs together, contains broken characters, or is slurred by
other noise on the paper or lines. The effects of noise can be minimized though image
processing techniques [29, 53], but characters running together presents a paradox. The
paradox is that the individual symbols can not be recognized using [31] until they are
separated. However, until they are recognized there is no reliable information that would
help to perform the segmentation. Information that would help includes what the

symbols are, or even how many are adjacent.



Figure 3. Connected line diagrams.

A solution to the paradox of segmenting two or more adjacent characters will be
presented in the following thesis. In the following section, the problem is examined as

both a recognition problem, and also as an optimal searching problem.

1.3 About this Document

The remainder of this chapter will describe the nature of the segmentation problem as
seen by the author. This discussion will provide the reader with an introduction to the
strengths of the proposed system. The remainder of the thesis will be divided into five
chapters and two appendices. The next Chapter, number Two, will discuss the
background knowledge that is required to understand the operation of the proposed
system. Chapter Three will discuss previous approaches to the segmentation problem for
characters and line diagrams, although no previous work on a general system was found.
Chapter Four will introduce the reader to the proposed system in great detail. The results

of the numerous experiments performed will be discussed in Chapter Five. This goal of



this discussion is to show a few examples of segmentation in characters and line
diagrams, and then to summarize all of the results in a common way. The last Chapter,
number Six, will draw some conclusions about the performance of the algorithm as a

whole, and identify a few areas for further improvements.

Two appendices included at the end of this thesis. The first appendix will contain
pseudocode of some important algorithms. The pseudocode will help to clarify the
description of the key algorithms. The second appendix will contain a more detailed
summary of the experimental results. The form of this appendix will be discussed in

greater detail in Chapter Five.

1.4 Angles of Approach

Before attempting to find a solution for this problem, it is necessary to discuss it's nature
and the applicable techniques. The segmentation issue examined here can be viewed in a
number of different ways.

Segmentation as an Algorithmic Problem

A "good" algorithm to solve a problem is guaranteed to find a solution in polynomial
time, for every possible case. The nature of the problem excludes this approach, since the
variety of inputs will be nearly infinite. With current input methods, and the variety of
writing instruments it is impossible to identify or define all forms of handwriting and

diagrams.



Segmentation as an ( AI ) Recognition Problem

To classify something as a recognition problem, there would have to be a complex
relationship between a set of input states and the output. This relationship can either be
learned, or rule-based, and strives to identify a single possible solution or response for
any input case. It is quite common that the input domain is not completely deterministic,
but is well enough known that generalizations can be made so that inputs fall into a

smaller range of values or sets of data.

Many systems have been developed that strive to identify the core of each symbol and
work from there [11]. Other systems sometimes use grammars or symbol matching [8,
35] to determine where characters with a known beginning would have an end. In either
method, the same operations are repeated a number of times until the process terminates

or a result is found.

Methods that view segmentation as an artificial intelligence problem are often completely
dependant on the domain of symbols they are segmenting. A system that segments based
on handwriting primitives may not be adaptable to any other domain. Similarly they may
not present enough flexibility in their target domain, if the string being analyzed does not

conform to the primitives.

A system that segments based on artificial intelligence methods may also handle
exceptions very poorly. Before recognition occurs it is necessary to do both a separation

of complete characters, and a unification of broken characters. This coupled with the



reality that sometimes there are meaningless lines or information attached to a character
symbol can cause insurmountable obstacles if the special case is not previously

identified.

Segmentation as Optimal Searching

On the other hand, segmentation may be viewed as an optimal searching problem The
goal of an optimal search is to find a good solution in a reasonable amount of time. This
view has the advantage that it accepts the reality that some handwriting is gibberish, or

illegible to any reader.

A good optimizer will work along a variety of different paths in order to try different
solutions. It will not fail when an input belongs to a special case that was not predicted
or enumerated. Instead, it will make efforts to extract what information it can, using all
or part of any potential symbol, and employs some randomness that offsets the

unpredictability of human handwriting.

Viewing segmentation as an optimization problem also adds to the versatility of the
system. Optimization techniques generally employ an evaluation or fitness function to
compare candidate solutions. This evaluation can be adapted to control the segmentation
in a variety of ways. The evaluation is the only part of the segmentation system that
needs any knowledge of the target domain, so most of the impact of retargeting will be in

the evaluation. Also, the evaluation can be tuned to prefer certain symbols, or



arrangements of them so that higher level information can easily be used when available

to help with the segmentation.

1.5 The Proposed System

This thesis will develop and show the feasibility of a system that performs segmentations
on script and line diagrams. The developed system views the goal of separating unknown
symbols as one of optimal searching, attempting to identify regions of ink on the page
that represent symbols when they do not appear in clean isolated form. The scope of the
thesis starts in the area above noise removal and identifying the regions of ink, and ends

just below gaining any high level knowledge of the meaning of the symbols.

Input to the system will be a image of a connected string of characters, or connected
components in a line diagram that is free of noise from scanning, similar to Figure 2 and
Figure 3. The output will be a set of noise free images of valid symbols. When
necessary for higher level processing, the information on relative location of the symbols
is readily available, but otherwise no information from a higher level source is necessary,

thus no interpretation of the symbol meaning is done.

For verifying the output symbols, as well as aiding with evaluation, the OCR system in
[31] will be used to give an accept or reject rating to connected regions of the input
string. Input to the symbol verification will be limited to the equivalent of a function call
with an image of a potential symbol as a parameter, and a boolean return value describing

if the symbol is valid. Interaction will be limited to this so that the symbol verification



can be easily replaced if a better system is found, since symbol recognition is necessary
but beyond the scope of this work. The symbol verification system will require patterns
that represent valid symbols, and these are provided for the symbols that appear in the

input strings.

The proposed algorithm is based on a genetic algorithm framework, but for reasons
discussed in Chapter 2, the terminology of an 'evolutionary algorithm' is preferred. The
algorithm consists of four phases that will be discussed in detail in Chapter 4. A brief
summary is presented here as an overview to show the place of each operation in the

whole algorithm.

The first step is to skeletonize a thick input line image.

Figure 4. A thick line image has been thinned into a single pixel width line
image.

The second step is to represent the thin line image with a graph data structure.
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Figure 5. The thin line image has been graphed, with edges labelled A to K.

The third step partitions the graph into the individuals in the population. Some effort is
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made to ensure a diverse population.

A

Figure 6. The graph has been divided into two distinct partitions. There will a
partition for each individual in the population.

The fourth step involves two different evolution operators, mutation and crossover.
These operators will work together to evolve the individual solution hypotheses into
partitions that represent isolated symbols. Evaluation of the individuals and termination

of the algorithm are discussed in detail in Section 4.6.
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Figure 7. (a) A mutation operation moves an edge from one part to another, possibly new
one. (b) A crossover operation preserves matched symbols in two different individuals.

The final result, is a partition that represents all of the isolated symbols. It is possible,
and in many cases likely, that there will be parts in the partition that do not represent

symbols. the goal is to have all of the symbols isolated in one part, and the number of

unmatched parts does not matter.

Details and Data Sources

The proposed system has been implemented in Java, and experiments performed on jpeg
images. Since the proposed system relies on accurate symbol verification and this is not

a topic covered here, effort will be made to ensure the best performance of the system in
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[31]. For this reason, sources of experimental data have been strictly controlled, so that
standard symbols appear in various connected forms. Sources of data include:

= Manufactured images of thick touching characters.

=  Manufactured images of thinned overlapping characters.

»  Scanned images of circuit diagrams from [55] after manual noise removal. These
circuit diagrams were all of a common typeset, with equal symbol sizes, and
scanned at the same resolution.

It is generally not accepted to rely on manufactured data for such a system, but this was
done for two reasons:

» Improve performance. The system will fail if a symbol in the string cannot be
recognized in isolated form. Symbol recognition is beyond the scope of this
thesis, so failures of this must be kept minimal.

=  Lack of available data. No database of suitable information was encountered for
showing the feasibility of this system. The requirements as stated above were
closest met by the CEDAR database of handwritten zip codes. This database has
a large number of noisy images, and not all images contain connected strings of
characters. Due to the handwritten nature of the database, the recognition system
in [31] would have required a complete set of patterns for handwritten digits,
which was not available.

The impacts of using strictly controlled and manufactured must also be considered. The
only upgrade necessary to extend the capabilities from touching typed characters to

handwriting is a more complete symbol verification system. An attempt has been made
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to provide testing data with a variety both in the way the characters are touching, as well

as variety within the characters themselves.

The scanned diagrams provide the closest to real world data of all experiments. Reasons
for using typeset diagrams are similar to those suggested for touching typed characters.
That is, the only upgrade necessary to extend the capabilities is in the symbol
verification. If this were improved to recognize handwritten symbols of various sizes, the
system would be applicable to hand-drawn diagrams. Noise removal is beyond the scope
of this thesis so all operations were performed manually. Large areas of noise were
removed so that each image contained a single connected line image, with one or more
symbols and some attention was given to smooth the edges of lines. A simple threshold

was used to binarize the images into black ink and white background.
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Chapter 2: Background Knowledge

This chapter describes some of the background knowledge that is to understand the
system being presented. The discussions are intended to bring the novice reader into
basic technical knowledge of the graph structure and searching, as well as enlighten

everyone on how OCR, graphs, and searching strategies can be used for segmentation.

21 OCR

Optical Character Recognition, or OCR, refers to the act of identifying a given character
or symbol i an image. OCR systems have been developed that perform well [4, 27, 31,
40, 48] but operate under the same assumption that the symbol is clean and isolated.
Complete exploration of OCR research is beyond the scope of this thesis. It is sufficient
to define how the proposed system is related to the concept of OCR, and how the
proposed system can be used as an early phase in a complete document recognition

system.

It was briefly mentioned in the first chapter that an OCR system will be employed to
accept or reject valid symbols in the proposed system. Any good OCR system is usable,
provided that it can recognize symbols in a skeletonized form. The system in [31] is
sufficient and was implemented to function as an exterior module of the segmentation
system. It is also necessary to switch terminology, to use the term symbol verification as
opposed to OCR, since the segmentation system is not interested in the meaning of a

recognized symbol, only that one is confirmed as valid.
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The symbol verification system is exterior and independent of the symbol segmentation
system. This allows for flexibility of domains, so that a general system like [31], or a
specialized system can be used when desired. Any chosen system must allow for the
single interface between the symbol verification and segmentation. The verification

system must be able to examine an image, and either accept or reject it as a valid symbol.

The proposed segmentation system employs the framework of an evolutionary algorithm,
which will be discussed in greater detail in the following sections. As part of this
framework, the symbol verification is used in the evaluation of candidate solutions. A
candidate solution consists of a number of potential symbols, each of which must be
tested fo see if it is a valid symbol. By maintaining the separation between the symbol
verification and the symbol segmentation, it is possible to implement a system that is

both powerfiul, flexible, and easily adaptable to new techniques and technology.

2.2 Graphs

A graph, as it is used here, is a data structure that contains two types of elements, nodes
and edges. A node can be used to represent an object, point, state, or any thing else,
while an edge represents the relationship between two nodes. Nodes are said to have a
degree which corresponds to the number of adjacent edges. Graphs have been used in
many applications for storing large amounts of complex data, such as cities and roads on

amap or terminals and communications in a network.
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Figure § (a) Sample input image from CEDAR. (b) A thinned version of (a). (¢} A graphed version
of (b) using thetraceGraphalgorithm. (d) A partition of the graph in (c) with 3 parts.

A pattition of a graph is a division of the graph into a number of different sections or
parts. Each node must be assigned to at least one part and each part may contain any
number of nodes. The part contains any edges connecting two internal nodes and the

parts are separated by any edges that have one end in either part.

In this system, a graph is used as an efficient representation of the connected string mput.
An example of such a graph is shown in Figure 8(c) which is formed using the
traceGraph algorithm in Appendix A. Nodes in the graph represent the end points of
lines in the image, and exist at the location of any pixel that has more or less than two
neighbouring pixels. Thus nodes will exist at the end points and intersection of any
strokes in the image. The nodes contain attributes that record the position of the node in
the image. Nodes may be considered equivalent only if they are placed at the exact same
position. Nodes that are adjacent neighbours will be considered as separate, and joined

by an edge with a length of 0.

The edges represent the actual lines of the image. An edge connects two nodes, and
contains a chain code that records the steps used to trace the ink line between the nodes.

Edges may be considered equivalent if they represent the same line, thus an edge E from
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nl to n2 that heads due east, is equivalent to ~E from n2 to nl that heads due west.
However, edge El from nl to n2 is not equivalent to edge E2 from nl to n2 if they
contain different chain codes. The weight or area of an edge is defined here to be the

number of steps in the chain code for the edge.

Graphs can be represented in a number of different ways, such as a list of adjacent nodes,
or a list of edges and their end points. There are even more complex options involving
connection matrices or more complicated data structures. The internal representation
chosen for implementation may affect the performance of the algorithm, but it is
irrelevant for discussion of the theory. More will be discussed about the structure chosen

in Chapter 4.

Before it may be graphed, the image must first be reduced to a line image with a single
pixel width using an algorithm that produces results similar to [30]. Then the traceGraph
algorithm shown in Appendix A may be used to initialize the graph representation.
Figure 8 shows how this algoritm forms the graph from a particular input image. The
put image, Figure k8 (a) is thinned into Figure 8 (b). Nine nodes are quickly placed,
with six at degree one stroke endpoints, two at a degree three intersections, and one at a
degree four intersection. These nodes are then connected by eight edges, labelled A
though H in Figure 8 (c). Figure 8 (d) shows a simple pattition of the graph, with edges
A and E belonging to the first part, edges B, C, and F belonging to the second part, and

the remaining edges D, G, and H compose the third part. In this instance, each edge
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belongs to one, and only one part, however it is possible to have a single edge belong to

multiple parts, but each edge must be included in at least one part.

2.3 Searching in Large Spaces

Given a specific problem, and a list of possible solutions (or search space), it is possible
to find the best solution to the problem by examining the entire search space. There are a
number of problems that are relevant to some researchers in computer science that are
considered to be unsolvable by an algorithmic approach. These problems are intractable
because they are so complex, that even with the most powerful computers available the
entire search space can not be examined in a single lifetime. Even for problems with a
reasonable search space, it may be impractical to perform a complete search because of
limits placed on time and resources. The act of attempting to find the best solution, or a

reasonable one that satisfies some constraints is a broad and active research area [5, § 9,

22, 44].

As with most areas of research, it is very difficult to say that there is one best searching
strategy. Instead, an appropriate strategy must be chosen for the problem at hand. For
problems that can be considered "distributed" in nature, lke finding a fastest route
through a computer network, the most appropriate searching methods may be distributed
searching strategies that each examine a small region of the search space. Other
problems may be more easily solved using techniques like evolitionary algorithms, ant
colony optimization, and simulated annéaling that focus on mimicking natural behaviour

and have proved to be robust and easily understood.
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2.3.1 Evolutionary Algorithms

The term “evolutionary algorithm” will be used throughout the rest of this paper to
describe an algorithm that "evolves" a solution over time. The "evolution" of a solution
is a progression from some solution to a more suitable one that satisfies the constraints of
the problem. The proposed algoritim is based on what is commonly known as a
"genetic" algorithm, but the author prefers to avoid the use of the word "genetic" since it
provides too many allusions to the natural process. As the term is used here, an

evolutionary algorithm is a heavily modified version of a genetic algorithm.

Evolutionary algorithms are a recent approach to finding optimal or near optimal
solutions to some problems that have a very large search space [1, 23, 39]. Evolutionary
algorithms take advantage of a population of candidate solutions, and specialized
operators to tweak and combine these solutions. Over time the population evolves and
characteristics of the better solutions are shared amongst the others in the population,

forming new candidate solutions and hopefully an optimal one.

Every evolutionary algorithm may be defined by a number of factors. The fundamental

aspects being:

= problem - The input and problem to solve. For instance, given a computer
network layout, with information on the time it takes to send packets between
each machine, one could be asked to find the shortest route through a particular
set of terminals. In this thesis the problem is to identify all of the symbols in a

connected string.
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= goals - The critetia that the algorithm aims to satisfy. For this thesis the
universal goal is to identify an unknown number of symbols in a connected string
or line image. Since the number of symbols is unknown, and the number of
assumptions regarding the layout of the input is kept to a minimum, it is
impossible to define a heuristic that can differentiate between a partition that
isolates all of the symbols, or only a subset of them. It is also possible to identify
two or more valid partitions from the same input, such as a cursive character 'w'
being segmented into the cursive characters ' and i.  Without high level
knowledge, the correct partition can not be selected from the set of valid ones.

When the problem and goals have been defined, the algorithm must be funed in a
number of ways. The most important considerations are the representation of the
individual (or solution to the problem) and the goals to which it aspires. The individuals
must have an internal structure that is organized in such a way that partial information
from two or more parents can be combined to form a new individual of the species. It is
also necessary to be able to evaluate the fitness of an individual relative to some goal or

ideal individual.

Some popular choices for the structure of individuals are a bit string, or a permutation of
integers. When considering a representation for candidate solutions to a particular
problem one must consider the following four factors [6, 7, 9]:

= All possible solutions can be represented. It would not be possible to find an
optimal solution to the problem if it were impossible to describe the solution with
the given representation.

« All solutions are represented equally. The algorithm should not have a natural

preference for solutions in a small region of the search space.
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= It should be easy to evaluate a solution. This will help with the practical
implementation, since conversion of the solution from one form to another can be
an expensive operation.

= It should possess locality, so that a small change in the individual will produce a
small change in the associated solution.

For example, in the "travelling sales-person problem”, the solution is conveniently
represented as a permutation that indicates the order which the nodes are visited ensuring
all orderings are possible and equally likely. Obviously, if an element of the permutation
were moved to a different location only two changes would occur in the path ensuring
locality. The first path change is that the elements preceeding and proceeding the nodes
original position would now be joined, as well as the elements preceeding and proceeding
it's new position would be disconnected, and joined to the newly inserted element. All

other portions of the path are left unchanged.

In general, an evolutionary algorihm will employ the following five processes or
operators throughout it's lifecycle.

®  jnitialization

= jmutation

¥ crossover

»  eyaluation

®  gspiration

Initialization consists of creating an initial population of individuals. In some cases these

individuals may be created at random, but it is quite common that the goals may be
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satisfied sooner, and with better quality individuals, if the population is initialized near
good solutions. Often times an algorithm that approximates a reasonable solution to the

problem is used to initialize individuals.

Moutation introduces new evolutionary material to the population by spontaneously
changing an individual. This operation may take place at random, or be directed [31] to
create a better individual only. Random mutations may sometimes create an individual
that is infeasible as a solution to the problem, or one that was worse than the original. In
some cases this is undesirable, in others it is necessary to be able to find new solutions.
For the system presented in this thesis, a hybrid mutation will be used. The hybrid
mutation randomly chooses a mutation from a reduced set of possible mutations. The
reduction of the number of mutations provides the directed mutation performance. A

more detailed discussion of this mutation will be provided in chapter 4.

Crossover is an operation that mimics procreation in living beings. Two (or more)
individuals are selected as parents, so that some material from one may be combined with
material from another to produce a new individual that shares characteristics of all of it's
parents. Crossover operators have been defined to work in many ways, from the "one
point crossover" [44] which exchanges sub-strings of the parents to the "uniform
crossover” which randomly takes material from either parent. The ideal crossower
operator depends on both the problem at hand, and the selected chromosone
representation. The crossover used in the proposed system preserves matched parts of the

partition, but otherwise behaves as a uniform crossover.
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Evaluation nvolves comparing the solution presented in an individual, to the ultimate
goals of evolution. The fitness of an individual is a measure of this comparison, and can
be used to determine which individuals are better candidate solutions, or even when the
goals of evolution are satisfied. The evaluation of an individual is meant to provide some
means of ranking them, and to quickly and easily determine the status in relation to the
goals. Most often, the evaluation will assign a single value representing a fitness, but the
system presented here uses a more complicated vector evaluation. More details of the

vector evaluations advantages and uses are presented in chapter 4.

Aspiration is a special case of mutation, that occurs when an individual is evaluated to be
close to a goal. If the individual examined differs from the goal in a known or
determinable way, then the individual may be mutated into the goal solution. This
mutation does not occur at random, and is directed to achieve a goal, not only towards it.

The ability of an individual to undergo an aspiration operation is usually noticed as a side
effect of evaluation and is not relied upon as a means to develop solutions. Instead,
aspiration should be considered an enhancement, since it only helps to improve

performance by not losing useful information when it is discovered by accident.

Evolution takes place in an evolutionary algorithm as the operators are allowed to
function on the population. There are a variety of evolutionary strategies, and parent
selection methods that differ only in details. In all cases, individuals in the population are

replaced by newer, better individuals, until some stopping condition is reached. The
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stopping condition can take any form such as a target fitness for an individual, slow or no
evolution over a number of epochs, or a set time limit. When evolution ends, the
population should all be good or reasonable solutions. This algorithm can be adapted for
optimization if the best individual encountered, or in the population is considered an

optimal solution.

Evolutionary algorithms as described here, also have the advantage that they are naturally
parallel [1, 23, 39, 48] and can be implemented in distributed machines. There are many
possible parallel implementations such as the island model, where small populations
evolve separately and share information over some interval of time. Another option is to
implement some expensive operations such as evaluation, mutation, or crossover on a
dedicated machine. All of these operators are independent of one another, meaning the

action of one will not affect any individuals other than the one or two involved.

2.3.2 Other Search Strategies

Random searching would be an appropriate technique for solving the graph pértiﬁoning
problem as it is presented here. Partitions of the graph could be generated at random and
examined in the method described in Section 4.6. This method can not be expected to
produce reasonable results however, because of the low likelihood of randomly picking

an appropriate partition out of the available search space.

Taboo search [18] is modelled after the human ability to remember where one is going

and where one has been. It is an improvement on random searching, where a candidate
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solution is tested and changed if not suitable. The changes made are chosen at random,
but controlled by a taboo list, so that the same change is not made and un-made resulting

in cycling about the solution space. This technique however requires an unclouded

understanding of what makes a solution, and how it can be changed. With consideration
to the proposed problem, taboo search is inappropriate because of the changing nature of
the input information. It is not expected that the input will be the same size, have the
same solution changes available. In addition, the goal system will be capable of working
in both text and line diagrams, which have some effect on the preferred solution changes

and the taboo list.

Some techniques are modelled after observations of other living creatures. Ant colony
optimization [37] relies on a population of "ants" to co-operate on finding an efficient
route between two points. The ants all set off on different paths with the same goals, and
a method of marking the world around them. The marking behaves like a pheromone that
the other ants can detect, that wears off over time. When pheromones are detected, the
ants have some preference for the path with the strongest scent, and will regularly choose
that one. As time progresses the shorter paths become more heavily laden with
pheromones, while the longer paths become unmarked and unused. Since it is primarily a
shortest path strategy, this technique is not applicable to the problem at hand. However,
this method may be appropriate if the ants could be placed at random and made to trace
symbols. In this way they would not be able to leave the symbol that they exist on, and

the groups of ants would have identified symbols. The ant-colony algorithm is only
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proposed, and not explored by the author due to the complexity of the ants tracing

symbols requirement.

Some optimization techniques, such as simulated annealing [49] are modelled after real
world physical processes. Simulated annealing attempts to emulate the behaviour of the
formation of a crystal lattice into the optimal structure. In simulated annealing, solution
elements are placed where they form a system with the lowest energy'. These elements
can then either be removed from their current place or sealed in by new elements. This
process continues, attempting to form a structure with the lowest energy. In terms of
optimization, energy is simply a heuristic that evaluates the placement of a solution
element. In terms of the problem presented here, a stroke that is near to, or connected to
a character would have a lower energy when joined than a stroke that is far away,
although there may be other factors to consider. Simulated annealing would be difficult
to implement as a segmentation optimization since the energy evaluation would be
uncertain when only partial characters have been found. No further consideration was
given to this technique by the author because of the perceived problems with energy

evaluation.

A few conclusions can be drawn about the search strategies discussed here:

=  Fach technique uses randommess in addition to searching short cuts or common
sense.

= Undirected random searches are not expected to perform well.

= Taboo Search, and Simulated Annealing maintain a single candidate solution and

use expensive operations to improve it.

! Energy is used as a heuristic evaluation.
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Evolutionary algorithms and ant colony optimization maintain multiple candidate
solutions that can share useful information. Operations for improvement are
usually less expensive since they are generally trial and error as opposed to

carefully selected.

2.3.3 Why Choose Evolutionary Algorithms?

Based on the discussions above and in chapter 1, evolutionary algorithms offer a few

advantages over other searching strategies:

Form of the solution and the ability to use partial solutions. In different instances
of the segmentation problem it may be easier to isolate the left-most, right-most,
or any symbol in the middle first. The crossover operator will naturally preserve
and collect the isolated symbols into more appropriate candidate solutions.

Population of individuals. As mentioned above, some individuals may isolate
different characters at the same time. It is also possible that some individual may
isolate a symbol that is only part of a larger symbol, such as the AND gate that
makes up the top of the character P Without high level knowledge, it is
impossible to determine which is the correct symbol if they are both encountered.
Maintaining a population of candidate solutions instead of a single one, allows for
some means to consider both options when ambiguity is encountered as well as
the ability to isolate distinct symbols simultaneously in different individuals.

Modularity for Retargetability. The primary goal of this thesis is to introduce a
flexible and retargetable approach to symbol segmentation. To achieve this, it
was necessary to efficiently use domain specific information like symbol
verification and established technologies when applicable. The independent
symbol verification system can be easily replaced without affecting the operation
of any aspect of the segmentation. If it was desired to implement some
specialization of the system in a particular domain, any operator could be replaced

with one that is directed by specific knowledge.

-28 -



« Modularity for Maintenance. The evolutionary algorithm framework provides an
efficient way to seclect, replace, or modify any operators or the knowledge
contained in them. Any other operation such as initialization, mutation, or
crossover can be modified with a minimum impact to the overall operation of the
algorithm.  Other techniques like Taboo Search, and Ant-hill optimization are
inherently monolithic where a small change in the algorithm constitutes a large
change in the operation of it.

= Parallel implementations. It is possible to implement most evolutionary
algorithms, including this one, on a distributed machine, or network of computers.
Small populations can be evolved under different constraints and share
information based on some distribution strategy, such as an "island model", or
whenever a new symbol is found. This option was not explored, because such a

distributed system was not available to the author.

The combination of all of these factors has lead to the selection of evolutionary

algorithms as the preferred approach.

2.4 Summary

The reader should now be familiar with the graph structure and OCR, as well as how
they are to be used in this thesis. It is also assumed that the reader is familiar with the
theory of an evolutionary algorithm, and the processes contained in one. More relevant
background knowledge will be discussed in Chapter 3 regarding previous approaches to
segmentation of both handwritten text and line images. These two chapters will provide
a sufficient body of knowledge for a thorough understanding of the system introduced in

chapter 4.
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Chapter 3: Literature Review

This chapter is intended to provide the reader with some knowledge of the requirements
of a document recognition system, as well as a background of previous segmentation
approaches.  Information will be presented in an ever narrowing view, beginning with
Section 3.1 which is an attempt to identify the niche that segmentation occupies in a
recognition system. When the role of segmentation has been clearly identified (Section
3.2), the major philosophies and boundaries between techniques will be defined (Section
3.3). Significant works are described for both character and line image segmentation in
Section 3.4, followed by a short discussion on the applicability of past work to the

development of a general approach.

3.1 Document Recognition.

The goal of any document analysis system is to interpret, understand, or catalogue the
information contained on a printed page. This must be done at a number of levels, and in
a bottom up approach. At the most basic, and deterministic level, a sentence can not be
understood until each word is correctly identified, and similarly a word can not be
identified until each letter in the word has been recognized'. This breakdown of the tasks
for document understanding defines a sort of ladder, where the steps are must be

accomplished in order for the goals to be realized.

Ttis possible to recognize entire words as one symbol, but this is inefficient due to the number of words in
a given language. Humans may do this quite regularly for short popular words such as "at" or "the" but it
becomes more difficult with longer words like "conversation” and "conversion”. Without considering the
spelling, these words are almost indistinguishable in the way they appear on paper. The same can be said
for keywords in a sentence, since changing the a single word, or the ordering of words in the sentence can
change the meaning significantly.
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At the bottom of the ladder is the digitization of the document image. This can be done
accurately and reliably in a number of ways. Digital scanners and cameras may be used
to collect off-line data representing the ink on the paper. Another choice is an electronic
tablet that a user may write on with a special stylus to produce on-line data representing
the ink as well as the ordering of all the strokes used. It is possible for most people to
have access to these technologies in their home or office, yet it is utilized more often for

pleasure than anything else.

For off-line systems, once an image of the document in question has been captured, the
image can easily be processed with standard techniques such as thresholding or gray-
scale segmentation [29]. This will produce a clean binary image, where the areas with
information or ink are easily located. Processing of this nature is not necessary for an on-
line document because the data tablet will introduce less noise and a sharp binary image,
unlike a scanner or camera. Knowing where the ink is on the page, is far from knowing

what information the document contains.

At this point, the information has been located, but not identified or understood.
Typically, an OCR (Optical Character Recognition) system” would be used to interpret
any areas of text, and a diagram interpreter used to process any non-text areas. This
branching naturally introduces specialization into the general document recognition
system. Any system must know before hand, what the document is expected to contain,

whether it is typed text, handwritten text, in a specific language, or line images from a

2 In this case, it is assumed the OCR system is capable of recognizing all text, not only clean isolated
characters. Segmentation is a necessary step in OCR when characters are not clean and isolated.
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specific domain. The system presented in chapter 4 provides a tool that can be used for
both text and line images, improving the generality of the system as a whole. More will

be discussed about recognition of text and diagrams in the following sections.

When each letter or symbol can be identified [2, 4, 27, 31, 40, 48, 50], the next step is to
understand the meaning behind the ink. This step depends on the desired output of the
system. In most cases, it is sufficient to store the information on the page directly to a
database in some searchable form such as ASCII text, or object-oriented models.
Converting digital information to a higher level, such as natural language interpretation,
is a vast and open research topic, and no discussion will be presented here. For more

information the reader is referred to [10].

3.2 The Role of Segmentation in Recognition Systems.

The term segmentation as applied to document recognition can describe operations at
three different levels.

= Segmenting foreground text from background noise in an image. This can
sometimes be done by thresholding, but often requires more sophisticated
algorithms. The authors in [29] use multiple resolutions to distinguish ink from
background marks and noise, and the method presented in [53] uses a thinning
algorithm to locate regions of white space surrounding blocks of text.

= Segmenting text from images, and locating areas of related information on a page.
Examples of where this would be necessary are bank statements, or directories of
information. In both cases information with related content is grouped together,
either in rows or columns. The system in [12] uses multi-resolution techniques to

segment blocks of text that represent entries in a table. A method is proposed in
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[58] to separate information that is useful at different levels in combined media
images, such as distinguishing between diagrams and text.

=  Segmenting information to help in understanding, such as segmenting characters
in a string or symbols in a diagram, which is the focus of the remainder of this

section.

In line images, such as script and some diagrams, a great deal of information is hidden
inside the shapes of the curves, and the pattern they form. It is useful to be able to

interpret the meaning of this information without first knowing what is expected to be in

the image.

Traditionally, recognition of text and diagrams is handled in fiundamentally different
ways. Text on a page conforms to strict rules dictating it's organization and the
placement of characters for a given language and alphabet. Segmentation of text may
sometimes involve adjusting the baseline the text was written on [26] or normalizing
other variables related to the information in the image. Diagrams on the other hand are
drawn with all sorts of different notations and styles. They 6llow loose rules dictating
layout, in such a way that they are most aesthetically pleasing, but the relative position of
symbols may also contain information [47]. The remainder of the chapter will be focused
on identifying the areas where we can unite approaches to the segmentation and

recognition of text and line images.

Although traditionally treated as separate problems, both areas of recognition can be
thought of as interpreting symbols that are connected. The properties of the connections

between symbols are only important for the high-level interpretation of the meaning of
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the document. Thus, the role of segmentation in any recognition system is to isolate the
symbols from one another and from noise in the image. This isolation may either be a
division of the ink pixels into symbol and non-symbol groups, or locating the position
and some information about the symbol that will help to identify it. To develop a general
system that can perform segmentations of both character strings and line diagrams, it is

necessary to examine both areas of research, and identify common useful approaches.

3.3 Factors to be Considered

Throughout the following case studies, systems will be described as either on-line or
offline, and either straight segmentation or segmentation recognition [46]. The meanings
of these and other terms are described below accompanied by a short discussion of their

potential implications.

3.3.1 Segmenting Types of Information and Automatic Domain Identification

Some research is going on in the area of automatically segmenting images into useful
areas. One application is separating text from the line images [58] so that they can be
processed by separate systems. Another is identifying what language or a region of text
belongs to [16].  Part of that work focuses on identifying whether a symbol is from an
Asian or Latin alphabet and the rest of the system determines which language (English,
French, Spanish, efc.) any Latin text is in. The system proposed in this thesis aims to
eliminate this consideration, since text of any language, and diagrams from any domain
will all be treated in exactly the same way, with the exception of a symbol classifier that

will recognize symbols from a given domain.
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3.3.2 Onrline vs. Off-line

Data suitable for recognition has been examined in both the onrline and off-line forms.
In on-line recognition, the writing is done on an electronic tablet that records both the xy
co-ordinates of the stroke, but also time information that indicates the stroke order. With
off-line recognition, the only information that is available is the xy co-ordinates of the
stroke, and any temporal order must be inferred by other means [27]. On-line recognition

is in general easier [27] if one assumes that a symbol is completely drawn before the next

one is begun.

Since off-line data is essentially a sub-set of the data available orrline, any solutions to
the problem in the off-line world are also applicable to the orrline one. This makes off-
line recognition much more useful, since there would be no advantage to using orrline
recognition for interpreting historical records and data when only an aged handwritten
document is available. Off-line text segmentation is far more useful because a good

system would allow automatic interpretation of all kinds of printed data.

3.3.3 Straight Segmentation vs. Segmentation Recognition

There is another, more findamental choice that distinguishes segmentation techniques.
That is the difference between straight segmentation, and segmentatiorrrecognition. In
straight segmentation, a connected string is surveyed and broken into regions with no
knowledge of what the string contains, and there is minimal feedback and resegmentation

initiated by higher levels of the recognition. =~ With segmentation-recognition, the
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segmentation is often goal based, attempting to identify particular elements as a starting
point, and working from there.  Segmentation-recognition techniques normally have

either a character matching system built in, or a high level of communication with the

character matcher and document interpreter.

Straight segmentation is obviously much more general, since no high level knowledge is
required. To perform straight segmentation ideally, one would not even classify the
symbols before the action is complete. On the other hand, segmentation-recognition
techniques often use information on the meaning of some parts of the image to help with
the segmentation of others. This feedback can be anything from location of symbols and
primitives that make up dashed lines [58] to the complex symbols found and expected

size and position of the next one in mathematical formulae [17].

3.3.4 The Ideal System
Based on the above factors of consideration, the author proposes that the ideal system be:

= (Capable of segmenting symbols from symbols given a clean binary image.

= Capable of segmenting both text and diagrams so that there is no need for an
intermediate identification step, or the implementation of several different
approaches in a single system.

= Off-line so that it can handle paper based documents of a historical nature.

= As close to straight segmentation as possible, to maximize the available
generality. It is harder to define high level knowledge than low level knowledge,

so the less domain and context information employed, the better.

Such a system is proposed in this thesis and is intended for use as a pre-processing step

before high level recognition of a document.
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3.4 Techniques for Isolating Symbols.

From this point on, segmentation should be thought of as separating symbols, as opposed
to specifically separating characters or diagram elements. Literature will be presented
that focuses specifically on either domain, and it will be shown that some methods for

one are useful for the other.

3.4.1 Character Strings

No Segmentation

It is possible to perform some recognition without segmentation. The authors in [19, 20,
32, 33] claim to perform word recognition with their approach for reading ZIP Codes [19,
32], addresses [33], and words in a dictionary [20]. Entire blocks of text are first
described as primitives, whether connected or not. The primitives are then represented
by a vector. There is a similar vector for all valid words in a specific dictionary for the
domain, and the entry that is measured to be closest to the input is selected as the word.
One major drawback of this approach is that when it is applied to handwriting, different

writing styles may produce different vectors for the same word.

A similar approach was used in [15] for recognition of typed Arabic script. The Arabic
script is cursive in nature, and the typeset insures that all characters are well formed. The
system then finds arrangements of primitives that could represent characters, and

searches for calculates a probability that it represents each word in the dictionary. The
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word with the highest probability is selected as output, but no segmentation of the word is

ever presented.

The offline system in [34] extracts control points from unspecified featuwres in a
handwritten word. In a supervised training phase, each character in the alphabet is
mapped with the control point representation, and placed in a database. This step is
necessary to ensure that the isolated symbols will be recognized. In the process of
recognizing a word, control points are first extracted from the word based on features in
the line image. When the matching process begins, a probability matrix is constructed
that holds some matching measures between the control points in the word, and those
from the alphabet. The probability matrix allows the system to accurately identify
enough characters in a word, so that the entire word can be known with the help of a
dictionary.  As described here, the system has a built in character recognizer, which
would cause it to be classified as a segmentation-recognition system. This classification
is not accepted because high level information is not used to direct any segmentation, and
in fact no specific segmentation is ever performed. The pattem of control points is

merely matched to previously stored patierns in a database.

Cutting the String (Straight Segmentation)
By far the most popular method for segmenting text, this technique is also quite intuitive.
It can be summarized as the goal d finding a set of breaking points on a connected line

diagram or string see Figure 9.

-38 -



@ &y

Figure 9 (a) Connected characters with 2 appropriate segmentation points indicated. (b) Connected
logic symbols with 6 segmentation points indicated.

In terms of segmenting text, this normally involves finding a vertical line that separates
two characters, where a segmentation point would be the intersection of the imaginary
vertical line with any ink, Figure 9(a). For diagrams, one line will not be sufficient
Figure 9(b), so this is could be considered very similar to region-finding methods which
will be discussed later. The following systems can all be characterized as straight
segmentation, since they have a low degree of contextual feedback aiding with
segmentation. In some cases, the symbols are not even identified before they are

isolated. Also, no article presented as cutting the string has a specific discussion of

thinning or skeletonization, so it is assumed all techniques do not employ this phase.

Systems for segmenting text were presented in [3, 8, 21, 25, 41, 42, 45, 51, 52, 54, 57]
that all focus on the same goal of locating and optimizing a set of segmentation points
which surround valid characters. In all articles, some assumptions were made about
segmentation points and the connected handwritten strings, such as:

=  Segmentation points exist on horizontal lines, because text is a string of
horizontally arranged symbols.
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= Segmentation points are regularly spaced because all characters in an alphabet
have roughly the same width.

= There was not a significant amount of extra non-symbol ink in the image

= Any two adjacent characters were only joined by one segmentation point (which
is not always the case, however the harder doubly-connected case was never

specifically discussed)

An optimum set of segmentation points can not be detected directly. Instead it is
recommended to generate a set that represents an over-segmentation of the string. The
over-segmentation contains points that may possibly segment a character into one or
more regions. A final phase can then select the optimal sub-set from all possible points.
Potential segmentation points can be located in a number of intuitive ways including:

#  Directly from features in the image like contours [41, €, 52], ANNs [45] and
gray-scale information [61] or complex strategies like hit and deflect [57] and
drop fall [54]. These methods are straight forward and generally the easiest to
comprehend.

= Lexicon and grammar based approaches [8, 11, 35] that first @scribe the string
as a set of primitives, and use a mle based approach to locate the segmentation
points. This method is closely related to many popular character recognition
techniques.

= Mathematical morphology and multi-resolution techniques [36, 51] that use
compléx algorithms to enhance features in the image that correspond to
segmentation points. These techniques tend to search for features specific to the
writer, such as lighter lines where the writer may have intended to lift the pen
off the page.

Approaches that fall under the first bullet, using segmentation points located at features in

the string are originally reserved for typeset text but are now being adapted to
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handwriting.  There is a great deal of varability of the hand-drawn form, where
histograms and rigidly defined features may change between different writers. The off-

line system in [3] used this types of approach for segmenting handwritten zip codes. In

that system, the number of digits in the string was known, and the character set was
limited to only the digits zero through nine. Because of these restrictions, more specific
features, and a fixed number of segmentation points could be defined adding efficiency.
Segmentations are refined in a primitive way, where each sub string between each pair of
segmentation points is submitted to a classifier. If the comect number of digits can be

extracted the segmentation is correct, otherwise it fails.

In [41, 42] a special heuristic evaluation is used to determine the segmentation points on
the connected string. This heuristic examines the shape of the curve, histogram profiles,
neighbourhood, nearby segmentation points, and whether the current point is in a "hole"
as in the lower edge of characters like "c¢" and "a". The heuristic is designed to add extra
segmentation points, so that an optimal set can be extracted. The hypothesis is then
optimized by using a specially trained ANN to select an appropriate set of segmentation

points.

The offline system in [52] uses the contours of the lines, in conjunction with
observations of the Roman alphabet. The author notes that there are five different
formations for the left edge of a character in either lower or upper case. They are straight
left edge ("B"), slanted left edge ("A"), left concavity ("X"), left convex ("C"), and

protruding left horizontal stroke ("t"). Based on these classifications, all possible curved

-41 -



cut lines are identified to the left of a character. A dynamic algorithm is proposed, that
will compute a cost of any given segmentation. To compute this cost, first the centroid of

each potential character is found, and from that the minimum cost segmentation lines for

that character are found. The algorithm searches for a globally minimal cost of all

potential segmentations and returns that as the correct result.

The hit and deflect [57] Figure 10(a), and drop fall {54] Figure 10(b) approaches are quite
similar, They both operate off-line to separate numerals or characters in the Latin
alphabet. With hit and deflect, a "projectile” or vector is initialized at some point above
or below the connected string. The projectile is then "launched" towards the string, and
is deflected when it hits ink pixels at an obtuse angle. The "projectile” then continues to
deflect through the string, until it eventually is forced though to the other side. The path
it formed will cross the string at some potential segmentation point. Drop-fall techniques
operate in a more passive way. Similarly, the "projectile” or "drop" is initialized above or
below the string and allowed to fall (either up or down, depending on where it is
initialized) towards it. However, instead of deflecting when it encounters ink, the drop
rolls along the contour until it falls into a local minima, where it proceeds though the ink.
Performing this from different positions above and below the string will result in

different segmentation points being generated.
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Figure 10 (a) The hit and deflect strategy. (b) The drop fall strategy.

Lexicon based approaches first describe a connected string in terms of symbol primitives,
then group the primitives into valid characters as in [8, 20, 32, 33, 43 In [8] a
handwritten string is recorded on-line as parametric functions x(?) and y¢?). Inflections
and extrema in these functions are located and their surrounding primitives are identified.

A grammar is defined that helps in grouping the primitives into characters using a rule-
based approach. A similar system is describ¢d in [17] that decodes the primitives directly
to the valid characters, but further discussion of this technique is more appropriate as a

segmentation-recognition technique.

Mathematical morphology has also been employed as a tool for segmentation. The work
in [51] describes an off-line system for segmentation of cursive Arabic script which uses
an opening (removes pixels, opening small gaps) operation and other image additions and
subtractions to localize segmentation points.  This method depends heavily on the
features of the Arabic alphabet and the way characters appear when written by hand, such
as vertical strokes being thicker than horizontal ones. The opening operation is used to

remove all of the thinnest lines and dots. The remaining ink in the image represents
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singularities which occur at the thickest vertical lines in the image. These singularities
are then subtracted from the original image to locate regularities in the image, which

correspond to horizontal lines. The regularities are examined, and a number of rules are

applied to locate segmentation points on them.

3.4.2 Line Diagrams

Some effort has been made to address line diagram segmentation with similar techniques.
However, none of the assumptions made about segmentation points for text are valid
when discussing diagrams. In fact, the opposite of nearly every assumption is true:

= Segmentation points can be on any side of a symbol, and any symbol may be
joined to one, two, three, or more other symbols.

= Segmentation points are distributed in clusters around symbols, areas of the
comnected string may be devoid of symbols and segmentation points.

= A significant portion of the ink represents as non-symbol lines.

= Often there are two or more valid segmentation points between any two symbols,

since there is at least one at each end of a connecting line.

Since these assumptions are all nearly the opposite, the goal of the system becomes
somewhat different as well. In line diagrams, symbols are separated by lines, not points,
hence bullet four. In the case of line diagrams, it is easier to think of a segmentation

point as the point where symbol ink meets nonsymbol ink.

An example of how string cutting must be modified for diagrams is given in [59, 60] for

interpreting circuit and engineering diagrams where groups of lines, and not specific

points represent the segmentation. It must be noted that one additional assumption was
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made in these two systems, that symbols are all made up of closed loops, as in a logical
AND gate. The first step is to break the line diagram down into snall lines, where each
end is either an intersection with another line, or a free end surrounded by white-space.
Each line is then labelled as either a ps (probable symbol line) or pc (probable connection
line), and groups are formed from the ps lines, n hopes that they form some loops. If a
ps group is near forming a loop, a pc or ps line may be relabelled and the groups
reformed. When appropriate groups of ps lines are found, the shape they form is
submitted to a symbol classifier. The process of relabeling lines continues until all the ps
line groups are accepted as symbols. Any remaining unused lines are considered as

connections between the symbols and are decoded as such.

Region Finding (Straight Segmentation)

Region finding is very similar to the above straight segmentation. The above techniques
attempt to divide the ink on the page into small sections that represent symbols, and
region finding attempts to divide the page or image into smaller images that represent
symbols. Region finding involves placing a box onto the image in such a way that the
box outlines a symbol. This technique is very difficult when symbols overlap or invade

each others bounding boxes in other ways, which is often the case for handwritten text.

The work in [14] shows a system that could also be considered as a segmentation-
recognition technique, but uses very little feedback on what's already been identified. In
this system, a bounding box is initialized over an area of the string. An ANN (Artificial

Neural Network) is trained as a detector to verify whether the string inside the bounding
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box is or is not a character. A second ANN is trained as a locator, that will translate and
resize the bounding rectangle until it completely surrounds a known character.  This

system may be implemented to favour some symbols, and locate these first giving it some

segmentation-recognition behaviour.

Feedback Segmentation (Segmentation Recognition)

It is sometimes impossible to determine a proper segmentation without contextual
feedback on the image being segmented. This feedback could take many forms, ranging
from an expected number of symbols, to a specific symbol to look for. This classification
also describes the bulk of the line image segmentation techniques [17, 47, 56, 58], since
most take advantage of specific aspects of the image layout and context to help form

symbols.

An onrline system is presented in [24] for reading mathematical formulae. The stroke
input sequence is used to generate a symbol hypotheses net (SHN). As they are input,
each stroke is classified as either primitive, standard, or complex. The stroke sequence
Figure 11(b) is then processed so that they can be confidently grouped with three or less

temporally adjacent strokes to form a symbol, Figure 11(c).
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Figure 11 (a) A mathematical equation in off-line form. (b) The on-ine stroke sequence that
produced the formula in (a). (c) The regrouped SHN.

The stroke processing occurs at two levels. The first checks the validity of a symbol
formed by a combination of the classifications above. Some groups may be rejected if
the combination of classes within the group is not allowed. The second level of
processing compares each stroke to those near it in the sequence. The comparison
mvolves the distance between the strokes, the degree to which bounding boxes for the

strokes overlap, and the relationship between the end points of both strokes.

The results from both levels of stroke processing are used to group the strokes into
symbols. Some pre-recognition is used on strokes that meet special criteria so that some
simple symbols such as "dots" and "minus" do not get grouped where they do not belong.
This system is considered segmentation-recognition because it has the ability to go back

and reorganize the groupings at a later stage.
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A method for off-line reading of line diagrams like blueprints and bar-graphs that is
based on grammar recognition is presented in [56]. The system first converts the image
into a set of primitives associated with a position, and uses a specialized domain grammar
to collect the primitives into sets of related items. The grammar dictates what types of
primitives are supposed to belong to a particular group. For instance, if a group of
primitives is intended to represent the scale marks on a bar graph, which are all short
horizontal strokes, only strokes that are aligned vertically will be allowed into the group.

In this method, no dashes from a dotted line or areas of text will be grouped as a scale
mark, This system is retargetable by rewriting the domain grammar to allow and
disallow sets of symbol primitives. As part of the grouping process, equivalence
relations and other procedures are used to ensure the sets are maximal and as close to

complete as possible. An interesting aspect of this system is that primitives are allowed
to belong to multiple sets simultaneously allowing for situations such as in a blueprint

where walls are a single line, but the line belongs to rooms on both sides.

Cutting the string methods, as described above may also have some weak segmentation-
recognition behaviour. The system in [61] examines gray-level information, topographic
features, and projection profiles to form theories of segmentation points.  The
topography, such as peaks and valleys give important clues about segmentation, which
are either re-enforced or disregarded based on changing intensity levels. A graph search
is then employed to further refine the segmentation theory. Finally the theory is tested
with a recognition system. High level information is not used to define goals for

articular segmentation regions. However, the author's claim that it is a recognition
p 2m 21
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based segmentation method is justified because there is a stage where a tested theory can

be redefined based on which symbols were recognized.

The term segmentation would also apply to the process of separating line images and text
in the same image, such as labels on a map or drawing. This is the goal of the system
presented in [58] which uses a run-graph representation of the image. The run-graph is a
loose approximation of a thinned version of the image, and allows for easy identification
of connected components and some symbol primitives like dots and dashes. The easily
identified primitives can then be grouped into likely associations and removed from the
graph, and the process can repeat using various levels of complexity in the primitives and
groupings. In this way the symbols in the image are pulled away layer by layer of
ncreasingly complex sets. These sets could represent symbol domains, since characters
are complicated and would not appear in the same layer as a dashed or solid line that is
part of a diagram. Recognition of the symbols was not discussed, however this is
considered segmentation-recognition because of grouping of similarly complex symbols.
This is equivalent to searching for a particular set of symbols first, and the order chosen

may affect the final segmentation result.

3.5 Discussion of Previous Work

As discussed above, there have been a number of varied attempts to implement useful
segmentation. Some techniques [11, 17, 35, 52} claim to function with over 95%

accuracy in their intended domains. There is still some desire however to have a general
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systerm, since "swh research would eventually result in a recognition system that is
reconfigurable for various diagrammatic notations" [47]. As discussed in section 3.2,
research is being done to automatically determine text and diagram boundaries, but this
could be eliminated if the reconfigurable system could also operate as a text recognition

system.

Segmentation-free recognition is highly specialized for domains of text with a strict
vocabulary. One advantage is that the output word is more often correct since small
errors in one segmenting a single character will not result in an erroneous output. These
methods are expensive to run, since in general comparisons can be made with every entry
in the dictionary. This approach is not applicable to hand-drawn diagrams because of
their complexity and the fact it is unlikely that the same artist will produce identical

diagrams each time.

It has been shown that segmentation techniques for text and line diagrams are sometimes
related. In some ways, the separation of characters in a text string is a sub-problem of the
separation of symbols in a line diagram, where the layout of the symbols is one
dimensional and the non-symbol lines are not present. Straight segmentation techniques
such as the cutting the string methods dscussed are a useful starting point when looking
for generality.  Advanced techniques designed for modularity such as the heuristic
function for placing segmentation points {41, 42] and lexicon based approaches [8] have
potential to be retargetable, provided the héuristics and rules used for grouping were

further developed. The system in [52] is highly specialized for the Roman alphabet, and
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as a result is not directly applicable for other alphabets or domains. Writing style may
also have a great impact on the performance of this system since there are only a five

ways characters can be divided.

Straight region finding techniques are often bound to fail from the start. For handwritten
strings, in some cases it is impossible to draw vertical lines that separate characters, or a
rectangle that surrounds a single character that does not contain parts of another. Positive
recognition of such cases can not be done unless the intruding ink is removed. A system
that was a hybrid of a region finding and ink removing approaches would no longer be
considered region finding however, since the region inside the box has changed. In the
case of line diagrams, if symbols are not square in nature, the same difficulties will be

encountered.

Segmentation-recognition techniques [17] also claim good results, but are mostly for
diagrams. However, they depend a great deal on the domain in which they are operating,
and often take a long time and intensive development of rule systems. They will function
extremely poorly if at all, when applied to other problems, because of the high level
knowledge they use to direct segmentation. Since these techniques are primarily for
diagrams, and the segmentation of text problem can be described as a sub-set of this, it
would be useful to derive a general system from some of the strengths and abilities of

these approaches.
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Chapter 4: An Evolutionary Algorithm

4.1 The new system.

The system presented here is suitable for finding one or more valid segmentations of a
connected string of characters or symbols. It must be possible to represent each symbol
as a binary line image. Some suitable symbols include the Latin, Arabic, or Chinese
alphabet, digits, digital and analogue circuit symbols, and elements on a map. Such
symbols are easily recognizable by many symbol recognition methods including [31].
This system will take the form of an evolutionary algorithm as described in Chapter 2.
With regards to the other segmentation systems presented in Chapter 3, this one is a close
relative of the straight-segmentation cutting the string approach. Some segmentation-
recognition behaviour is also employed, however no high level knowledge is used to

direct segmentation, only an accept or reject rating on potential symbols.

The remainder of this chapter will be divided into six Sections describing the elements of

the algorithm:
1. Individuals (Section 4.2)
2. Population Initialization (Section 4.3)
3. Mutation (Section 4.4)
4. Crossover (Section 4.5)
5. Evaluation, Termination and Aspiration (Section 4.6)
6. Evolution Strategies (Section 4.7)

When the algorithm is started, a population of individuals are created from the image of
an input string. The details of this creation are controlled by the population initialization
phase. Each individual is then evaluated, and if the termination criteria is satisfied, the

algorithm is stopped and results retumned. It is expected that the first evaluation wil
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show that no useful symbols have been isolated, at which point the evolution strategy is
employed to evolve the population. When no valid symbols have been found, mutation is
the only option to change the features of the population. When two individuals have been
evaluated and found to have distinct symbols isolated, crossover may be applied to create
a new individual with two symbols isolated. This process will continue as directed by the
evolution strategy untl the termination criteria has been satisfied, and the algorithm
stops. At any point in the evolution of a population, it is possible for the evaluatior to
accidentally stumble upon a new symbol that the individual has not isolated. To speed up
the evolution, this accidental find is not forgotten, but instead it is made a part of the
individual through aspiration.  This aspiration sometimes allows the evolutionary
algorithm to make large jumps towards a solution in the search space, that would have

otherwise taken many epochs to evolve.

4.2 Individuals

One of the most important parts of an evolutionary algorithm is the form the individuals
will take. Any suitable representation will have to meet the following criteria that were
briefly described in Chapter 2:

1. The representation should be capable of representing all possible solution
hypotheses, both feasible and infeasible. In the segmentation problem we should not
rule out any possible symbols before they have the chance to be isolated, therefore all

solutions are feasible.

2. The representation should be unbiased in the sense that all possible solutions are

equally represented. This means that the representation should not have a higher
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probability of representing one specific solution than it does at representing any other

specific solution.

3. The representation should be easily exchangeable between the chromosone form and
a form suitable for evaluation. It should not be an expensive operation to look at the

hypothesis that the chromosone represents.

4. The representation should possess locality, so that a small difference between

chromosomes reflects a small difference in the underlying solution hypotheses.

One representation that satisfies all of these criteria is a partition of an abstract graph
(Figure 12). As shown in Section 2.2, a line image can be easily converted to and from a
graph. The partition of the graph that will be used here is a grouping of the edges, so
that each edge must belong to at least one group, and potentially more than one. 1t is
necessary to allow the edges to belong to multiple parts to satisfy criteria 1 above, since

in some cases two adjacent symbols may share one or more edges.

sm_ o g

H

Figure 12 (a) The graph from Figure 8(¢). (b) A partition of the graph in (a) with 3 parts.

In general, symbols will exist as single connected regions. This implies that any part that
is not connected will be rejected as a symbol. Therefore any individual that contains a

part that is not connected must be repacked see (Figure 13 (a)) so that all parts are single
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components (Figure 13(b)). Repacking an individual consists of locating any
unconnected parts and removing one of the regions. This region will then be added to
the partition as a new part, and is treated the same as any other potential symbol.

S

AE BHHD FHGHH B+C  FiGaH D

{a) o)

Figure 13 (a) An individual that requires repacking. (b) A repacked version of the individual
shown in (a).

Information Loss:

Some information will be lost when converting the mput image into a graph and then
into individuals. A necessary step in the graphing procedure is the thresholding and
thinning of the input image into a binary line image. The thresholding will remove all
colour information, and the thinning may remove some fine details, including relative

line thickness.

®)

Figure 14. (a) Two thick teuching characters, the line in the exact centre is twice as thick as
the others. (b) A thinned version of the characters, where they now share a common line.

The graph representation still contains enough information to interpret the meanings of

most symbols, but many times two thick lines that are touching or overlapping will be
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thinned into the same line as shown in Figure 14, or extra pixels may be left where they
are not needed. The algorithm presented here is designed to overcome this loss of

information, provided the symbol verification system can recognize the symbols

thinned form.

4.3 Population Initialization

The goal of the initialization is to create individuals that may evolve into feasible, high
quality solutions to a problem. Therefore, to properly design an initialization routine we

should look ahead at the behaviour of the operators, and also at any properties of the

input that may be helpful.

The mutation operator described in Section 4.4 is very good at shrinking large
components. For this reason, it is ideal to have a complete symbol plus a few extra edges
in one part of an individual. More accurately, it would be ideal to have each symbol
appear at least once, with a few extra edges in part in at least one individual. This ideal
case however can never be guaranteed since no knowledge of the image or it's source

domain can be assumed before segmentation begins.

The initializeIndividual algorithm in Appendix A, is also designed to work on both
character strings and flow diagrams. Characters are generally complex symbols arranged
horizontally, while flow diagrams are generally simple symbols arranged horizontally
and vertically. The biggest commonality between the two domains is the horizontal

arrangement of symbols. For this reason, it was decided the initialization should try to
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break the string horizontally first, while letting the other operators handle any problems

this introduces.

It is also important to have diversity in any population. To ensure diversity, it must be
guaranteed that there will be a number of unique individuals. With the application of an
algorthm for initialization, this guarantee becomes more difficult to uphold, and the
algorithm must be strictly controlled. In this case, the algorithm is given a balance
parameter (p) that will be explained soon, and uses Equation (1), where popSize is the
number of individuals in the population, and indNum i3 the current individual (between 1

and popSize) that is being initialized.

p = indNum !/ popSize e

The first step in the initialization algorithm is to identify the eastern (We.y) and westem-
most (Nwesy) degree one nodes, see Figure 15. In a typical character string these will
usually be at either end, as parts of different symbols. In some cases, the connected
string may not contain any degree one nodes, so the eastern or western-most node will be
used instead. In the case where only one degree one node exists, this represents both the

eastern and western-most nodes.
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Figure 15 (2) An original circuit image. (b) A thinned and graphed version of (a) with the
eastern and western-most nodes marked, and all of the edges are numbered. (¢) The results of
BFS from both the east and west nodes. Here the maximum depth from the east is 5 and from
the west is 7.

After the nodes are identified, a breadth first search is performed on the graph, starting
from Neast. The depth of each edge encountered is recorded as a list of integers (Deast),

that is as long as the number of edges in the original graph (G). The same is performed to
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find Dyes starting from Nyey. The maximum depth in D, is recorded as d.u, and the
maximum depth i Dyes 1S dwesr. If the edges are numbered, the results can be stored in a

vector as shown in Figure 15 (c).

The parameter p was used to calculate the cut off depth d.,, for one segment in the

individual.
dcut = p dwest (2)
dcut = (1 - p)deast (3)

If the parameter was below one half, then the west segment would form first using
Equation (2), if it was above one half, the east individual would form first using Equation
(3). In either case, all edges found with a depth less than or equal to d.., were added
directly to the appropriate segment. The other edges are assigned based on their position
in the search order, with edges being assigned to the part that they are closer to, and a

third made up out of the any edges equally close to either end.
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Figure 16 An initial hypothesis with 3 segments, (a), (b), and (¢). Formed with balance = 0.45.

The individual in Figure 16 was formed using a balance parameter of p = 0.45. Thus
Equation (1) is employed to produce a cut-off of dcut=|_0.45x7_]=3ﬁrom the western-
most node. The segment shown in Figure 16(a) forms first, representing the western
portion, followed by the segment shown in Figure 16(c) which represents the eastern
portion. The segment shown in Figure 16(b) contains a single edge between two nodes

that are neighbouring pixels.

Similarly the individual shown in Figure 17 was formed using a balance parameter of p =

0.55. This individual forms from the eastem side with a cut-off depth of
dey= [_(1 -—0.55)X5J= 2 from the eastern-most nodes. The segment in Figure 17(b) forms

first, and includes the eastern-most node. The remainder of the graph is connected, and

thus is collected into a single segment or part.
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Figure 17 An initial hypothesis 2 segments, formed with balance = 0.55. (a) The western-most
segment. (b) the eastern-most segment.

Since the p is a fractional number, and the depth of each edge must be an integer, it is
possible that different balance parameters can produce identical individuals. The number
of identical individuals will vary depending on the function that controls the value of p.
Equation (1) produces a range of p values who's consecutive differences (pg; are shown

by Equation (4).

Das =1/ popSize 4)

Therefore, to ensure that all individuals generated from the same end are unique, we

require that for individuals # and 7+i the minimum difference in d,,; values is 1, as shown

m Equation (5).
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dcut(t + 1) - dcut (t) =1 (5)

Substituting Equation 4.2.1(2):

(P+ Pup)lyeq = P, =1 (6)
Therefore:

Py =1 )
Rearranging the terms we get:

Py =1 d ey ®)

Now if we return to Equation (5) and substitute Equation (3) instead, we get:

(1 - (p +pdif))deast - (1 -—p)deast =1 (9)
Which reduces to:
pdlf = l/deast (10)
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Comparing Equations (4) and (7) reveals that to maintain unique individuals from the

west we need:

popSize=d,, (1

And similarly comparing Equations (4) and (10):

popSize =d,,, (12)

This seems like quite a valuable result, but in reality is more like a guideline for choosing
parameters than a strict rule. Since there is no way to predict the layout of the graph, or
to ensure that there is no short path between the eastern and western-most nodes, there is
no valuable relationship between deast (Or diest) and the number of edges in the graph (E).

It can mwt even be assumed that deasr is equal t0 dwes. Also, in this scheme the formation
flips from one end to the other at the half way point which introduces more chance for

identical individuals to be formed in different ways.

A population requires some diversity, but evolution will still happen if there are some
identical individuals. Therefore the only assistance Equations (11) and (12) can give us
is to help predict the degree to which individuals will be unique. If popSize is greater
than both de,r and dies, from Equation (4) we would expect pgir to be small, resulting in

many unique individuals. Conversely, if popSize was smaller than both dessr and dyes
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then there is a low chance that identical individuals will be produced. However, diversity

will be lost and evolution made difficult if popSize is too small.

4.4 Mutation

In this evoltionary algorithm mutation is the primary operator, and can be performed on
a single individual at any time. The mutation discussed here exists in two levels, however
the second is only appropriate for cases when an individual has isolated one or more
symbols. An algorithm called mutation that performs this operation is described in

Appendix A.

The first level of mutation is rather simple, and aims to reduce the size of a connected
part of a single segment in a single individual. The individual to be mutated (Tnd) is
generally chosen at random, but this decision is not part of the operator. The first step in
a mutation is to choose a segment at random (g that is not already matched. This
segment is then surveyed to identify the set D; of nodes with degree one. If Dy is non-
empty then an edge (E,) is chosen at random that joins a node from D; to the remainder of
Sstrink- If Dy is empty then E, is chosen from Sgurine with no constraints. The edge E, is
then removed from the segment Sy and added t0 Sgron, an unmatched segment that is
not Ssurmr and has the highest index. This movement of an edge from one part to another

is shown in Figure 18.

If E, is adjacent to a node in Dj, the segment Sy, will still be a single connected

component. Conversely, if D; was empty, then it is possible that Sy, has been broken
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into two components. In both cases there is no guarantee that Syoy Will remain as a
single component. Since we are only interested in symbols that are a single connected

component (Section 1.2) it is necessary to repack the individual Ind so that all segments

are single, connected sub-graphs. This repacking must be done after every mutation

L selecied edge

®

©

Figure 18 (a) A thinned circuit image. (b) A segmentation hypethesis on the circuit in (a)
with the edge E, marked. (c) A new individual after mutation using the edge selected in (b).
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since there is no guarantee that the edge Sgrow Will be connected.

The simple mutation described above is suitable in all applications of this evolutionary

algorithm. There are no restrictions placed on the choice of segments or edges involved,
except those described above. This operator also uses no information from the evaluation
of Ind or any other individual in the population. This operator works blindly to shrink
segments down until a symbol is found somewhere within, and thus performs better when
a single symbol is contained in a segment. However there is no way to determine or
control the number of symbols contained in any single segment in an individual, so a

modification is described below to improve performance in some cases.

The enhancement to the simple mutation, dubbed as "second level mutation”, operates on
the assumption that symbols belonging to a specific domain occupy the same area, or
more specifically are made up of the same number of pixels. Since this assumption is not
completely accurate, a parameter (P is defined to act as an uncertainty in size, that is
restricted to the range between zero and one and is determined experimentally. Using
this parameter, Equation (13) describes equality of area between two symbols with areas

a; and a,.

a, =0, @~ (Dypse " 03) < <Ay (D5 * ;) (13)

A second level mutation may only be applied to individuals that already have at least one

segment matched. In this case the average area of all matched symbols (@marcheq) 18
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calculated. At this point, one of two branches is chosen at random. The first branch
employs a shrinking mutation similar to the one described above, provided that Ssarint has

an area (@swink) and (14) is true.

ashrink > amatched - (amatched * pclose) (14)

The second branch of the second level mutation combines two adjacent segments into a
single larger one. This branch behaves similar to a small crossover operator, since
suitable parents must be selected before a child segment may be created. Suitable parents

(p1 and p3) are chosen so that (14), (15), and (16) are all true.

.pl haS area < amatched + (amatched * pclase) (14)
D2 h(lS area < amatchea' + (amatched * pclase) (15)
p U p, has one component (16)

The segments p; and p2 are then removed from Ind and the new segment, p,U p,is
added. There new segment is expected to have a greater area then aqcnes but there is no
guarantee. In either case, whether it is smaller or larger then the average symbol,

mutations will still continue as normal on this segment.
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4.5 Crossover

In this system the crossover is an operator that is used to share information between
individuals in the population, and is described in Appendix A, as the crossover algorithm.
A crossover may only be applied to two individuals (Tnd; and Ind,) that are compatible.
Equations (17), (18), and (19) define compatibility given that A is the set of all edges

from Ind; that belong to any matched segment. Similarly M is established from all edges

matched in Ind;.

M, #0 amn
M,#0 (18)
M, UM, -M NM,#0 (19)

The action of the crossover operator is simple compared to the mutation operator. The
goal of a crossover, as described above, is to share information. To do this, a new
individual is created (Ind.yy), initially with no segments. All matched segments from

Ind; and Ind, are copied directly into Indcpg.

After the matched segments are copied directly, a list of the unassigned edges is made
(Munassigneq). Each edge in this list is then assigned to a new segment (Sunassigned) M Indcniia,
see Figure 19. Since there is no guarantee that afl of the edges in Sunassignes Will form a

single connected component, the new individual, /ndrita must then be repacked.
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Figure 19 (2) An original connected string. (b) A thinned version of (2). (¢) An individual who
has matched the character 'o’. (d) A different individual whom has matched the character 'e'. (¢)
A new individual resulting from the crossover of the individuals in (¢) and (d).

The new individual Indepgs now has been completely formed.  This individual is
guaranteed to have more edges included in matched symbols since the parents would not
be compatible if this were not true. It is possible however, that the one of the new
symbols is merely a sub graph of the other. In this case, the symbols are left alone, since
it is possible to gain multiple valid segmentations from the same connected string, and

there is no way to accurately determine which is the more correct symbol.

4.6 Evaluation, Termination, and Aspiration

4.6.1 Evaluation

In most evolutionary algorithms an individual will be given a one dimensional evaluation
or rating. This is appropriate when individuals aspire towards a single identifiable goal,
and can be ranked based on their distance fom it. The segmentation problem examined

here is much more complex, and it is difficult to say that any one individual is absolutely
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better than another one. This is because different individuals may isolate different

symbols first, and this can not be accurately represented with a simple ranking.

Figure 20. A graph of a circuit image with the edges numbered.
In this evolutionary algorithm, a binary vector ranking is used. First, the edges in the
graph are numbered (Figure 20) and the vector is created with a bit for each of the edges
in the graphed representation of the comnected string. In an individual that has no
symbols matched, this binary vector contains a false in all bits. When an individual
succeeds in isolating a symbol, the bits associated with each edge involved in that symbol
becomes true. In his way, all edges used in at least one symbol are given a true value in

the binary vector.
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Figure 21 () An individual with 4 segments, segment A is 2 matched symbol. (b) The

binary representation vector of the individual in (a), false values are shown as blanks. (c)
The binary evaluation vector of the individual in (a), false values are shown as blanks.

This binary vector can then be used to quickly identify all individuals with at least one

symbol matched and give some information about that matching.

can also be used to quickly test for compatibility

The evaluation vector

as required for the crossover operator.

The vectors from the two potential parents are mput to an inclusive OR function, and a
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resultant vector produced. If the resultant vector contains more true bits than either
parent individually, an offspring produced by crossover should contain either larger, or

more numerous symbols than the parents.

4.6.2 Termination

An evolutionary algorithm may terminate for any number of reasons. A popular default
termination condition is a maximum number of evolutionary epochs or running time.
This will ensure that the algorithm will always finish, regardless of the solutions found.
It would be preferable to have the algorithm terminate when every symbol n the string
has been found, but this is difficult to detect in such a general system. If the number of
symbols were known, as in a postal code or telephone number, the number of symbols
would be quite useful. In this system however, no knowledge of the input is assumed,
except that the symbols can be recognized It is also impossible fo determine what

portion of the edges, or connected string area will be used in the final solution.

There are any number of possible termination criteria that could be defined. Tt is intuitive
to think there is some relationship between the number of edges and the number of
symbols, but this is not the case. In some instances symbols can be made up of as few as
one or two edges, and in other cases they can be very complicated and made up of many
lines. Such variance may appear in a single image, based on the amount of noise or the

domain of the symbols present.
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If the symbols are generally connected by extra lines, a termination condition similar to
the second level mutation can be defined. The non-matched segments are merged into
maximal comnected segments, and the areas of the matched symbols and the largest non-
matched segment are be compared. If the non-matched area is smaller than the symbols,
it is unlikely a new symbol will be found, and the algorithm can terminate. This
termination criteria is not absolutely reliable however, since there is no distinction made
between cases with touching symbols, and cases were symbols are joined by extra lines.
Symbols that are touching will tend to cause the maximal non-matched segments to be

fragmented whenever a shared edge connects two portions of an unmatched symbol.

4.6.3 Aspiration

When performing the evaluation new edge groups are formed temporarily. These groups
represent the largest, non-matched connected regions. The possible termination criteria
described above examines the relative areas of these sub-graphs, but no consideration is
given to the symbols these regions may potentially form.  When performing the
evaluation and checking the termination condition, the new potential symbols are
submitted to the symbol verification system. If a positive result is ever obtained,
indicating the maximal connected region represents a symbol, the individual being
examined undergoes an aspiration mutation, storing a segment representing the newly

found symbol.

This aspiration mutation is more likely to take place in domains where the symbols are

close or touching like character and digit strings. In line diagrams, the symbols are
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generally accompanied by extra line segments that can not be classified as part of any

symbol and the positive result will never be returmed.

4.7 Evolution Strategies

There are a number of population replacement strategies that are possible for
evolutionary algorithms. The choice between these has a greater impact when a choice is
necessary to maintain a strict population size. In the system presented here, individuals
are evolved primarily through mutation which requires only a simple strategy, the

mutated individual will replace the original.

When crossover is applied to create a single individual from two parents, it becomes
necessary to eliminate one individual from the population. Since crossover maintains all
useful information from both parents, nothing will be lost if either parent is eliminated. It
is expected that both parents will become obsolete once they undergo a crossover, since
there is now an individual in the population that has identified the same segment as them,
plus additional segments. In fact, if individuals are allowed to identify the same
segments as each other, crossover will happen a few times without any mutations to
spread the new symbols throughout the population. In this way, any individual that has
identified a symbol independently, with only mutations on it's original form, will be

given all of the symbols that the rest of the population has found.

It is always desirable to avoid premature convergence, or to limit the number of

individuals that identify a particular symbol. As described above, with no restrictions,
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any individual that identifies a single symbol, will quickly be evolved to identify the
same symbols as the rest of the population. This will cause the evolution to converge on

a set of symbok, that may or may not be the correct one. In many cases, one symbol may

appear as a part of another, such as a the digit '1' inside the character 't. The convergence
described above may force all individuals to locate only the '1' and none will ever locate
the 't. This is a very expensive operation to implement, since it would require comparing

all of the matched symbols from each individual to count the number of repetitions.
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Chapter 5: Results

5.1 Data Sources

The current system differs from previous research in the number of functional domains.
Previous systems focused on small, well defined sets of data input such as muailing
addresses in the US postal service, or logic dagrams consisting of certain gates. In such
systems, large databases of available input can be collected, such as the CEDAR postal
database. In general development of these systems was focused equally on segmentation

of touching symbols and recognition of isolated ones.

In the current system, it is assumed that the symbol verification system is complete, and
capable of recognizing any isolated symbol in appropriate domains. In reality, the system
employed relies on a set of pattern vectors to identify symbols, with more patterns, more
symbols can be recognized. To ensure maximum performance of the segmentation
system, the recognition system must make as few inappropriate rejections as possible
since such a rejection would cause the segmentation to fail in that case. For this reason, "
data sets are limited to standard symbols, such as characters from a font, or graphic
symbols from a typeset, that are arranged and connected in various ways. Segmentation
focuses on breaking the connections, and it is of little consequence what the symbols are

or represent.

Data from public sources such as the CEDAR database contain too many variations of

symbols, which would require time and effort to ensure the symbol verification system
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could recognize all symbols it will encounter. Test data will be collected manually into
two distinct sets:

= Thick, touching characters. Due to the connected characters, thinning will
produce minor variations of the skeleton patterns. Samples include two, three,
and four touching characters from the 72 point Bradley Hand ITC font generated
using techniques described in [57]. See figure 20, figure 21, and figure 22.
= Scanned logic circuit images from [55]. These circuit diagrams are all of a
common typeset, with various numbers of gates and layouts. Effort was made to
include all logic symbols including AND, NAND, OR, NOR, XOR, NOT, and
various negative input gates. Isolated symbols are considered to be any of the
gates listed above, but no specific pattemns of negative input gates were included.
See Figure 32 and Figure 34.
The data sets chosen are designed to show the feasibility of the system, and provide

performance analysis that is useful to examine the scalability of the proposed system.

5.2 Investigations

There were two separate investigations of the performance of the algorithm. In Section
5.2.1 the parameters of the algorithm are kept comstant, and a number of frials are
performed on a wide variety of input images. There were 198 touching character and
circuit diagram images. Initialization was always done using the inifializelndividual
algorithm in Appendix A, and Crossover was performed on every pair of compatible
parents. The population size was kept constant at 10 individuals, and evolution was
terminated after 50 epochs for all trials. Results for this investigation are contained in

Appendix C1, Appendix C2, and Appendix C3.
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In Section 5.2.2, the parameters and other variations to the algorithm are tested. There
are fewer input images, all of which are small sections of the largest image. Trials were
run on all images varying a number of parameters. For all images, all combinations of
the following were performed, with the evolution terminated at 50 epochs:

=  Seeded initialization using initializeIndividual and random nnlJahzanorL

»  Performing every possible crossover and randomly selecting individuals for

compatibility tests.

= Population sizes of 5, 10, 15, and 20.
An additional investigation was performed on a small subset of the images contained in
Appendix C, with all of the same variations mentioned above, and the evolution
terminated at 100 epochs. Data was also collected on the time in seconds required to
perform the segmentation for all investigations in Section 522. Results for this

investigation are contained in Appendix D1, Appendix d2, and Appendix D3.

5.2.1 Performance on varied input.

5.2.1.1 Discussion of the Investigation

The proposed system is an based on an evolutionary algoritim, and therefore is not
guaranteed to produce the same results every time. The algorithm is also meant to be
used in a variety of domains, without the need for change. To investigate the algorithms
performance in the general case, segmentation will be performed on a large number of
varied input images. The algoritm were run 100 times on each of the 198 touching
character and circuit diagram images contained in Appendix B. The following four

factors are considered in this investigation.
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=  Accuracy and consistency, relating to how close and how often the solution is to
the ideal segmentation. Accuracy is related in classes described below:

o Class 0: All symbols correctly identified in all locations.

o Class 1: All locations of symbols identified, but one or more symbols may
be incomplete, such as OR being identified instead of XOR.

o Class 2: One symbol location missing.

o Class 3: Between two, and half the total number of symbol locations
missing.

o Class 4: More than half of the symbol locations missing.

o Class 5: No symbols isolated.

= Initialization, relating to how long the algorithm has to work before the first
symbol is found. Initialization takes the form of a distribution over the epoch
when the first symbol was found.

»  Termination, relating to how and when the algorithm terminates. There are two
possibilities, either termination criteria is bad and the algorthm will n to an
epoch limit in which case it is forced to stop, or the termination criteria is good
and the algorithm will stop naturally with some confidence that it has a correct
segmentation.  Termination takes a similar form to initialization, a distribution
over the epoch when the algorithm stopped. If the algorithm times out in all cases
there will be a sharp spike over the maximum epoch allowed.

s Duration of evolution, which is the time between initialization and termination. It
is important to examine duration on a case by case basis to draw some
conclusions that are independent of the performance of the initialization.
Duration is a distribution similar to termination and initialization.

It is very difficult to compare results obtained from such varied input. To compensate for
this, accuracy is not considered as an absolute value, such as the mumber of symbols

fornd. Instead, the accuracy is rated as a relative value, in one of the five six classes

described above.
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All of the data collected in this investigation is contained in Appendix Bl for the
accuracy and duration of evolution data, and Appendix B2 for the epoch of initialization
and epoch of termination data. It was necessary to split the data into to appendices to
present the graphs in a large enough format. The splitting of appendices is organized so
that graphs of related data can be easily compared, with the trade off being that all data

for one input image is separated.

An exampk of the data that is presented in Appendix Bl is shown in Figure 22 and

Appendix B2 is shown in Figure 23.

z 5 4 B
s

Figure 22. A sample of the data presented in Appendix Bl. On the left is the input image of
touching characters. In the middle is a bar graph representing the accuracy rating. On the
right is a line graph representing the duration of active evolution.

In the sample shown in Figure 22, the proposed system was executed 100 times on the
input shown, and performed very well in all trals. The majority of class 0 results
indicate that it was usually successful at locating all correct symbols 92 times out of 100.

There are a few class 2 results indicating that occasionally it missed a symbol.
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Figure 23. On the left is the input sample. In the centre is a line graph representing the
distribution of the epoch when the first symbol was found. On the right is a line graph
representing the distribution of the epoch of termination.

Examination of Figure 23 shows the initialization algorithm performed exceptionally,
usually locating a symbol in the first 2 epochs. There were no instances of termination
after epoch ten, indicating the algorithm never reached the epoch limit. Therefore, the
class 2 results occurred when the termination criteria was satisfied prematurely. Figure
22 shows the duration of useful evolution, between the time when the first symbol was
found and when the termination criteria was satisfied. This chart shows a sharp, narrow
spike around 3 epochs, indicating that the algorithm quickly and consistently located the

remaining symbols until termination.

5.2.1.2 Discussion of the Analysis

The metrics described above will be applied to the results produced from a number of
trials on a single input. This is not sufficient to show the feasibility of the system since
results must be compared from all data sets, however, it is difficult to identify simple
ways that segmentation of a pair of touching characters can be related to segmentation of

a logic circuit with four gates. The problem lies in the number of domains of the input,
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and the fact they do not share many common features, but the graph representation of the

inputs provides some help.

The major factors affecting how well the system will perform are the complexity of the
layout of the symbols, the number of symbols present, and the complexity of those
symbols. It is impossible to evaluate the layout (or segmentation would be unnecessary),
or the number of symbols before segmentation is done. One metric that provides some
insight into the overall complexity of the input is the number of edges the graph
representation contains, since instinctually it would be harder to identify the appropriate
partition in a larger graph. For this reason, the number of edges in the graph is used as a
ranking heuristic to appropriately ignore the domain of the input and compare all data

sets.

To summarize all of the inputs into a single chart for comparison, a characteristic point is
determined for each some of the distributions described above. For good results, where
class 0 and class 1 results were produced, the 'x' co-ordinate of the characteristic point
represents the epoch associated with the mean epoch of the distribution, and the 'y' co-
ordinate is the number of edges in the input. Points extracted from all inputs can then be
placed on a single set of axes, and useful conclusions drawn from this graph. A sample

for demonstration purposes only is shown in Figure 24.
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Figure 24. In this sample chart, initialization results from 22 of 29 input images are
summarized, as indicated in the top right cerner. The xaxis represents the number of
edges in the input, so results from inputs of more edges appear farther to the right.
The y-axis is now the number of epochs initialization took to find the first symbol.

5.2.1.3 Discussion of the Final Results on Varied Input

A few samples of the final results are explored here, and the remainder are presented in
Appendix B. It will be left to the reader to examine the results in appendix A in greater
detail. The following examples are meant to illustrate some of the most interesting

behaviour of the proposed system, and are not representative of the results as a whole.

Analysis of Single Inputs
The experiments performed on touching character data were interesting in a number of
ways. First of all, there were very few patterns stored for the characters, with one pattern

each except for 'd' and 'f' which had two variations each. As we saw in figure 22, the
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touching character pattern ‘oag' produced very good results. The majority of trials

produced class 0 (Figure 25(b)), or perfect results with a few class 2 (Figure 25(c)) results

as well.

@ L)) ()

Figure 25. (a) An original touching character sample. (b) A class 0 segmentation result. (¢) A
class 2 segmentation result.

In at least one case only class 2 results were obtained, a symbol could not be identified.
The symbol could not be found in isolated form because there were no partitions of the
graph that could be reduced to only the symbol lines. There was a single edge that
represented a significant amount of two symbols, namely 'c' and 'f, as shown in figure 26

@.

(@) (b} {e) Ay

Figure 26. (a) An original touching character sample. (b) A thinned version of the characters in
(a). (c) Only class 2 results were obtained for this input. (d) The largest connected region. Itis
two edges, separated where the 'd’ and 'c’ meet in (b). The large tail can not be removed te
isolate the character '¢'.
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It was noted earlier that there are two patterns for both of 'd' and 'f. Accepting variations
on a symbol is the responsibility of the symbol verification system, and can serve to help

improve both the accuracy and speed of segmentation. In Figure 27 we see an input

string of the characters 'ddf, and two different class O results (Figure 27 (c) and figure 27
(d)) produced by segmentation. It is easy to see the two different patterns for 'd' in Figure
27 (d), as well as the two different patterns for 'f in Figures 27 (c) and (d). The full
pattern for 'd, with a tail, was never found for the first 'd' because in the thinned image,

Figure 27 (b), this tail forms a dramatic hook at the end. This pattem is varies too much

from what a 'd' should look like and was rejected by the symbol verification.

Figure 27. (a) An original touching character input string. (b) A thinned version of the string in
(2). (c) A class 0 result from segmentation. (d) A second class 0 result from segmentation.

First we should examine the overall success of the proposed system. This can be done by

combining all of the accuracy results into a single accuracy bar graph, as shown below.
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Figure 28. A circuit image input. All results were class 0. The duration distribution was
wide, but all trials terminated before 35 epochs.

Throughout chapter 4 we used a simple circuit diagram, shown again in Figure 28, as a
demonstration for initialization, mutation, and crossover. All trals on this input

produced perfect class 0 results, similar to figure 29(b).

fay {b}

Figure 29. (a) A sample line diagram input. (b) All segmentation results were class 0.

We will also take this chance to discuss the performance of experiments on this image as
shown in Figure 29. From Figure 28 we can confirm all results were class 0, which is

ideal for this system.
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Figure 30. The distribution of the initialization is in the chart on the left, and the
distribution of termination is in the chart on the right.

In Figure 30 we can see that the initialization algorithm was always successful at
isolating the first symbol within ten epochs, most often before five. This is a very good
result, because it shows that few mutations were needed to isolate a symbol. The
termination results in Figure 30 produce a wider distribution with a maximum near
fifieen epochs. The termination criteria was always satisfied before the epoch limit
indicating mutation and crossover were always successful at finding the remaining
symbols.  Figure 28 shows that the duration of useful evolution follows a similar
distribution to the termination, but has a maximum near ten epochs. This shows that

most often the first and third symbols were found ten epochs apart.
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Figure 31. A circuit image that produced class § and class 1 resuits.
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Another interesting circuit diagram is shown below in Figure 31. In this diagram, there
were three symbols as well, and both class 0 (Figure 32(b)) and class 1 (Figure 32(c))

results were found.

& LM )3

©

Figure 32. (2) An sample line diagram input. (b) A class 0 result from segmentation. (¢) A
class 1 result from segmentation.

Here we can see that the gates are more complicated, with up to three negation bubbles
each. This increases the complexity of the gates, and makes segmentation harder, but it is
still possible. The symbol verification is trained to recognized the OR gate in original
form, as well as the form seen here, with three negation bubbles on the inputs. It was
also trained to recognize both the NAND gates, as well as the base AND patterns. It will

be interesting to examine the performance of the algorithm on this input, as shown in

figure 26.
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We can see in Figure 31 that the results were mostly confined to class 0 and class 1
results. There were also a few class 2 results when a single gate was not isolated, and
even fewer class 4 results when two gates were missed. Since the majority of results are
class 0 and class 1, the performance is still considered acceptable on this input. In Figure
26 (c) we can see the initialization performed well, with a narrow distribution contained
before the ten epoch mark. The termination distribution shown in figure 26 (d) has a
sharp spike after the 50 epoch limit. This indicates the termination criteria was never
satisfied, and thus the algorithm always ran as long as was allowed. This is undesirable
since a great deal of time is wasted searching for symbols when no more are present, and
we can see in figure 25(a) that theré is a large connected, non-symbol region on the left of

the NAND gates. This region causes the termination criteria to fail.
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Figure 33. The distribution of the initialization is in the chart on the left, and the distribution
of termination is in the chart on the right.

The final sample line diagram we will discuss in detail is one that contains five symbols,
as shown in Figure 34. In all the previous discussions, the input samples contained three

symbols, but the only reason for this is that they were interesting discussions.
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Figure 34. (a) An sample line diagram with 5 symbeols. (b) A class 0 result from segmentation.

Between performing experiments on diagrams with three symbols, and diagrams with
five symbols, there were no changes made to the proposed system. The initialization
routine, population size of ten, and epoch Limit of fifty, were all left constant. The results
shown in Figure 35 show mostly class 2 results when one symbol was missed, some class
3 results when two or three symbols were missed, and few class 4 results when only one
symbol was found. This does not indicate a fatal problem however, since some class 0
results were obtained. When we look closely at the initialization distribution shown in

Figure 36 we can see that the distribution spreads as far as twenty epochs. This means
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that in some cases almost half of the time was spent looking 6r the first symbol, so it is
not surprising that not all were found. Figure 36 shows that the termination criteria was
never satisfied, even when class 0 results were obtained, because of the long non-symbol
lines. The presence of some class O results in conjunction with the failure of termination
leads the author to suggest that fifly epochs is not enough time to reliably find all
symbols in this case, and that the results would be improved if the limit was increased to

a higher number.

m3thean jo;

Figure 36. The initialization and termination distributions for a larger circuit image.

Now that we have discussed a few results from both touching character input, and line
diagrams, we can discuss the results of all experiments as a whole. Due to the different
nature of all the input images, with variations in number and types of symbols, the data
shown in each performance analysis is summarized and plotted on the following charts.

Only class 0 and class 1 results are considered for the later sections of this group analysis,
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since the goal is to show how the system performs when results are obtainable. The trials
that are not considered produced class 2, class 3, class 4, and class 5 or no results and can

be ignored until the specific faults (unrecognizable symbols, epoch limit too short, efc.)

can be identified and corrected.

Analysis of All Inputs
First, we can look at the accuracy of segmentation over all images. The chart shown in

Figure 37 are shrunk by a factor of 1000 for display purposes.

Figure 37. The total accuracy results for all experiments. The number of trials that attain a
given accuracy are 1000 times more than shown here. Clearly Class 0 results are produced
most often.

In the majority of cases, class 0 or perfect results are obtained. The majority of the
failure a@ses were class 2 results, where a single symbol location was missed. The class 2

results could be reduced in number by improving. the symbol verification system to

-92 .



identify more variants of symbols, or by allowing the algorithm to run for longer epochs.

In a few cases, the termination criteria was always satisfied prematurely.

Next, we should examine the performance of the initialization on successful cases. We

will only look at cases where class 0 and class 1 results were obtained in the following

charts.
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Figure 38. The initialization results for the entire experiment, over all data sets. Thereisa
cardi nality of each point that is greater than or equal te 1, with a total of 126 points
represented.

The chart in figure 38 shows the initialization performed well in nearly all cases. There

few points that are very high, indicating that the first symbol was not found until after
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epoch 45 at the latest, which is near the 50 epoch limit for the experiment. This could
cause results for a single input to appear poor, if the duration for that particular input was

longer than five epochs. There are also a few points where on the 0 epoch line, showing

that in some cases, mutation is not necessary to isolate a symbol. It is interesting to note
that the cases where initialization took the longest time to find the first symbol occur
when the graph is smaller, and has less edges. This indicates that the initialization is

impacted less by graph size, and more by layout.

Next, it is important to examine the performance of the termination criteria.
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Figure 39. The termination results for the entire experiment, over all data sets.
There is a cardinality of each point that is greater than or equal to 1, with a total of
126 points represented.
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From the chart in Figure 39, it is clear that the characteristic points can be clustered into
two clusters, separated by a horizontal line. The upper cluster, representing all inputs
where the termination criteria was never satisfied, and evolution proceeded umtil the
epoch limit was reached, is the row of points above 50 on the y-axis. These points
generally correspond to inputs where class O or class 1 results were not obtained. In these
cases, termination was not satisfied because there was a large, connected, non-symbol
region in the input (this occurs frequently in circuit images). In these cases the algorithm
continues to assume it can find another symbol in that region when none exists. The
termination criteria requires more refinement. The remainder of the points shown on the
chart indicate that the termination criteria performed well, stopping the algorithm at an
appropriate time. This chart also shows that larger graphs will seldom terminate in only a

few epochs, indicating that the epoch limit should be longer for large graphs.

An interesting result is that at least seven points in both figure 30 and figure 31 exist on
the zero epoch line. These points represent the cases when the initialization algorithm
isolated symbols to a point where the termination criteria was satisfied. In these cases, it
was unnecessary to evolve the population since the optimal individual was found without

mtation or Crossover.

The combination of the initialization and termination results show that the proposed
system is in fact feasible, and that it can solve the problem as described in the previous
chapters. To analyze the performance of the system, and it's scalability from smaller to

larger inputs, the duration of evolution must be examined. This analysis will compare the
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performance of the mutation and crossover operators, while eliminating the performance
of the initialization algorithm. The duration used here represents the time, or work done

between the epoch when the first symbol was found, and the epoch the algorithm

terminated.
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Figure 40. The duration results for the entire experiment, over all data sets. Thereis a
cardinality of each point that is greater than or equal to 1, with a total of 100 points
represented.

The points in Figure 40, like the termination chart in Figure 39, show that larger graphs
take longer to evolve. There are a great number of points on the 0 and 1 epoch lines,
showing a number of cases where isolation of the first symbol and the last symbol
occurred within one epoch of each other. In these cases, it is likely different individuals

isolated different symbols, and the information was shared with a crossover.
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This is a good result when combined with the initialization result, that the first symbol is
generally found within the first 10 epochs. Thus, if we can expect to find a symbol in 10
epochs, and we expect the duration to last at most 25 epochs, we can expect a good

solution in at most 35 epochs of evolution.

5.2.2 Performance with Varied Parameters

5.2.2.1 Discussion of the Investigation

This investigation compares the performance of the algorithm on a small set of input
images, with 64 different parameter configurations.  There were two choices for
initialization, either using the initializelndividual algorithm in Appendix A, or a random
initialization algorithm. There were two choices for the parent selection strategy, either
the full parent selection described in Chapter 4, or a random selection of two parents from
the set that had a symbol matched  Every combination of initialization and parent
selection strategy was tested with population sizes of 5, 10, 15, and 20 individuals, and

evolution was terminated after 50 epochs.

The goal of this investigation was to leam about how the various strategies and
population sizes affect the evolution, as well as to see how the algorithm performs on a
range of input sizes. The set of input images for this investigation was formed in a
different manner from the investigation above. Each input image is a small section of the
long character string shown in Figure 41, with lengths of 3, 5, 7, 9, and 11 daracters.

This was done to show the scalability of the algorithm, and to provide some escalation of
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the input size, while not changing the nature of the input in any significant way. To show
how the algorithm performs differently on various sizes of input, data was collected as
described in Section 5.2.1, and also time in seconds to perform the segmentation. All of
the experiments were run on a computer that was only used for collecting data. This
ensured that the real time evaluations were not skewed by the peak usage and idle time on
the machine. The computer used was a laptop with an AMD Duron 900MHz processor,
256 MB of RAM, and a 10 GB hard disk. The operating system was Windows XP, and
effort was made to ensure no automatic updating, virus scanning, or other maintenance

was performed for the duration of the experiments.

The accuracy and duration of evolution (in epochs) data is contained in Appendix Cl.
The epoch of initialization, and epoch of termination data is contained in Appendix C2,
and the new time in seconds data is contained m Appendix C3. Some specific results will

be discussed below.

The largest two images, of 9 and 11 characters were selected for an additional related
investigation. Segmentation was performed on both of these images, for all
configurations, with an evolution terminated after 100 epochs, instead of 50. This
investigation was intended to see how the low epoch limit affects the final results. The
results for the additional investigation are contained in Appendix D1, Appendix D2, and

Appendix D3.
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5.2.2.2 Discussion of the Analysis
There was a large amount of data collected in this investigation, that is very difficult to
draw conclusions about. The analysis will be performed by investigating a number of
simple questions, and drawing conclusions from those questions. The specific
mvestigations will be:

a) Which configuration provides the best results?

b) How does population size affect the final result?

¢) How does the time increase as the input size increases?

d) How does the epoch limit affect the final result?

A change was made in the way the accuracy results were classified for this experiment.
Since the inputs are strongly related, an absolute scale was chosen, with classes ranging
from 0 to 11 to represent the number of symbols isolated in the final result. In this way, a

faiture is the same for all input sizes, but a perfect result is different for each one.

Figure 41. An 11 character input image. Smaller inputs were formed by taking small
sections of this string. It does not matter than the string is not a word, enly that the
characters can be isolated and recognized.
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5.2.2.3 Results on Varied Configurations.

To investigate the question posed above as point a) "Which configuration provides the
best results?", we can look at the accuracy for every configuration. Figure 42 shows the
accuracy for the 4 population sizes, with the seeded initialization, and full parent
selection. Figure 43 is similar to Figure 42, but for the seeded initialization and random

parent selection configuration.  Figures 44 contains the results for the random

Figure 42. The accuracy results for all input images, for the seeded initialization and full parent
selection configuration with a 50 epoch evolution limit. (2) Population size of 5. (b) Population

size of 10. (c) Population size of 15. (d) Pepulation size of 26.
initialization full parent selection configuration, and Figure 45 contains the results for the

random initialization and random parent selection configuration. These four diagrams

will be compared to determine which configuration proved to be the best.
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Figure 43. The accuracy resalts for all input images, for the seeded initialization and random
parent selection configuration with a 50 epoch evolution limit. (a) Population size of 5. (b)
Population size of 10. (c) Population size of 15. (d) Population size of 20.

S

Figure 44. The accuracy results for all input images, for the randem initialization and full parent
selection configuration with a 50 epoch evelution limit. (a) Population size of 5. (b} Population
size of 10. (c) Population size of 15. (d) Population size of 20.
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Figure 45. The accuracy results for all input images, for the random initialization and random
parent selection configuratien with a 50 epoch evolution limit. (a) Population size of 5. (b)

Population size of 10. (c) Population size of 15. (d) Population size of 20.

To compare the results in Figures 42, 43, 44, and 45, one must compare Figure 42(a) to
Figures 43(a), 44(a), and 45(a). The same must be done for Figures 42(b), 43(b), 44(b),
and 45(b), and so on for (c) and (d). It is clear by this comparison that the charts in
Figure 42 and Figure 43 are similar, as are the charts in Figure 44 and Figure 45. The
similarities are between charts with identical initialization routines, which is an
interesting result. Since charts that share initialization routines are more closely related
than charts that share parent selection strategies, we can conclude that the initialization
routine has a greater impact on the final result.  All observations made here, are
supported by the similar data presented in Figures 46, 47, 48, and 49 that represent the

same experiments with a 100 epoch time limit.
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Figure 46. The accuracy results for the 9 and 11 character inputs, for the seeded initialization and
full parent selection configuration with a 100 epoch evolution limit. (a} Population size of 5. (b)
Population size of 10. (c) Population size of 15. (d) Population size of 20.

One further, unexpected conclusion is that for the experiments performed, the random
initialization produced better results, since there are more, higher class accuracy results
shown in Figures 44 and 45, than there are in Figures 42 and 43. Figure 44 presents
slightly better results than Figure 45 in all charts (a), (b), (c) and (d), so the conclusion is
that the random initialization with a full parent selection configuration performed the

best.
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Figure 47. The accuracy results for the 9 and 11 character inputs, for the seeded initialization and
random parent selection configuration with a 100 epoch evolution limit. (a) Population size of 5.
(b) Population size of 10. (c) Population size of 15. (d) Population size of 20.

To investigate guestion (b) from Section 5.2.2.2, "How does population size affect the
final result?”" we can use Figures 42, 43, 44, and 45 in a different manner than above. To

investigate this, we must compare Figure 42(a) to Figure 42(b), 42(c) and 42(d). The
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Figure 48. The accuracy results for the 9 and 11 character inputs, for the random initialization
and full parent selection configuration with a 160 epoch evolution limit. (a) Population size of 5.
(b) Population size of 10. (c) Population size of 15. (d) Population size of 20.

same goes for Figures 43, 44, and 45. All Figures 42, 43, 44, and 45 show the same trend
with respect to population size. In all Figures, the most class O results are produced in the
smallest population size of 5 individuals. Also, in all Figures, the most, higher class
results appear in chart (d), with the largest population size of 20 mdividuals. A very
interesting trend in all Figures is that chart (b), presenting results from a population size
of 10, shows better performance than chart (c) that presents results from a population size
of 15. The conclusion of this investigation then, is that the largest population size of 20
produced the best results. The second best results were produced by a population size of

10, followed by population sizes of 15 and 5 respectively.
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Figure 49. The accuracy results for the 9 and 11 character inpats, for the random initialization
and random parent selection configuration with a 100 epoch evolution limit. (a) Population size
of 5. (b) Population size of 10. (c) Population size of 15. (d) Population size of 20.

To investigate the third question above, (c) " How does the time increase as the input size
increases?" we have to look at the results presented in Appendix C3 Figures 160 to 239,
as well as Appendix D3 Figures 64 to 95. These figures represent the time in seconds
that the algorithm was run for. In Appendix C3 evolution was terminated after 50
epochs, and in Appendix D3 evolution was terminated after 100 epochs. There are a
great number of charts to compare in these two Appendices, but a few trends stand out

when they are examined closely.

The first trend that is observable is that the larger inputs take longer to evolve. There is
no solid relationship between the change in imput size (measured in characters), and the

change in evolution time, although it appears to be polynomial or exponential in nature.
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There is a greater increase in time from 9 characters to 11, than there is from 3 characters
to 5. This is expected however, since the algorithms for graphing and mutation would
take longer for larger inputs. As the input size increases, the number of possible parts in
the partition increase exponentially for each edge that is added to the graph. This implies
that there would be an exponential increase in the number of symbol verification tests.
The increase in time however is not as steep as the exponential increase in the number of

possible parts, indicating the algorithm compensates by using directed evolution.

The second trend is that the distributions tend to grow wider as the population size
increases. In the majority of all cases, evolution was terminated at the epoch limit of
either 50 or 100 epochs, producing relatively narrow peaks in these charts. The same
trend is observed in the accuracy data, that the larger inputs produce wider distributions
of results. The correlation between these two charts suggests that the time required for
evolution and the accuracy are related, which would be expected. When the algorithm
can quickly find a good solution, or make a good start evolution will proceed faster.
When poor results are obtained, the algorithm has spent a good deal of time searching

through possible, but not correct solutions.

A third trend observed from comparing results from Appendix C3 and Appendix D3 is
that when the epoch limit is doubled, the evolution time is roughly doubled In most
cases, the distributions appear similar but a bit wider in Appendix D3. This suggests that

the time to complete one epoch of evolution is constant for a given input.
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The fourth and final investigation was (d) "How does the epoch limit affect the final
result?”, and this can be done by comparing Figure 42 to Figure 46, Figure 43 to Figure
47, Figure 44 to Figure 48, and Figure 45 to Figure 49. This comparison is a bit skewed
however, since Figures 42, 43, 44, and 45 contain results for 5 input images and Figures
46, 47, 48, and 49 only contain results for 2 input images. Despite the difference in the

number of results shown, the trend is still quite obvious.

The data collected with a 100 epoch limit shows that many more symbols were isolated
when the ime was increased. Figures 48 and 49 show that as many as 9 symbols were
isolated in a few trials, where the maximum number of symbols found in any trial with
the 50 epoch limit was 7. This trend suggests that more the results would appear to be
better for all of the experiments if the epoch limit was increased from the start, but this
offers a serious trade-off As was observed earlier, the time to complete one epoch of
evolution is roughly constant, suggesting that doubling the allowed number of epochs
would double the experimental time. The choice to keep a lower epoch limit allowed

many more trials to be run on limited computing resources.

5.3 Final Conclusions

There are many different approaches to testing a new algorithm in any particular domain,
with the most popular being to compare results of other related research. This was not
possible however, since there was no other research encountered that attempted to
perform segmentation in the general case. Instead, the results of almost 250 000 trials on

over 200 different inputs are presented, and a series of observations are made. There
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were a number of different investigations proposed, which attempt to test all of the

features of the algorithm.

In the first investigation, the goal was to see that the algorithm performed well in the
general case. To show this 198 different touching character, and simple circuit diagram
images were selected, with 100 trials performed on each. The configuration of the
algorithm remained constant throughout all trials, and good results were obtained. A few
cases were identified that caused insurmountable obstacles with this segmentation
method, such as broken symbols, or when a symbol can not be defined as a partition of

the graph.

It was also discussed that it is possible to produce more than one partition of the graph
where symbols are isolated. This can cause problems when one valid symbol is a part of
another valid symbol. It would be necessary to use high level reasoning to determine

which is the appropriate segmentation.

In the second major investigation, the performance of the algorithm was examined on a
smaller set of imput images, when the configurations of the algorithm were allowed to
change. There were a total of 16 configurations tested that varied in initialization
strategy, parent selection strategy, and population size. It was discovered that random
initialization with the full parent selection strategy produced the best results in these
experiments. This was a surprising result, since other algorithms based on evolution find

better results with a seeded population.
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There was also an additional piece of data collected for this investigation that was the
evolution time in seconds. This data, although skewed by the computer that was used to

perform experiments, lends some insight into the scalability of the algorithm. Based on

this data, it was concluded that the time required for segmentation increases in a non-
linear fashion as the number of input symbols increases. It is very difficult to determine a
relationship between time, problem size, and the number of symbols, because when a
new symbol is added, the number of edges added to the graph is not constant. The
specific symbol, and the way in which it is connected both influence the number of edges

in the new graph.

Another set of data was collected by running the algorithm, in all configurations, on small
subset of the data used for scalability testing. For this additional experiment, the epoch
limit was doubled, and it was observed that the time required for evolution roughly
doubled as well. From this it was concluded that the time for a single epoch is constant.
It was also observed that the longer munning trials found more symbols per trial than the
shorter ones. This was not surprising, but represents a trade-off when performing
experiments, that either the number of trials, or the maximum number of epochs must be

limited so that data can be collected in a imited time.

This algorithm was found to be good in the general case, and could perform segmentation
with no knowledge of what symbols it expected to find The only domain specific
component is accessed through a strict interface, and may be replaced for new domains,

or as new technology permits. The algorithm does not scale well for larger inputs
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however, since the increase in running time is not linear to the increase in input size.
This is a limiting factor of the usefulness, but does not indicate the algorithm is useless.

There are many domains of segmentation that contain small or limited size inputs where

this would be useful. Two examples include handwritten postal code processing, and
autornatic  recognition of hand drawn engineering assignments for junior University
students. It should be noted however that, at he time the experiments were performed
the computer used for timing was slow by industry standards. There are computers
available with nearly two times the processing speed, and much faster RAM. The

hardware used has a great effect on the time required for nimning the algorithm.
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Chapter 6: Comments and Future Work.

6.1 Comments

The proposed system has been shown to be feasible as an approach to a general problem.
It successfully isolates symbols in a mumber of symbol domains, provided the domain can
be defined as "touching or commnected symbols in a line diagram". This definition
includes touching characters, logic circuit diagrams, and many other types of line
diagrams. The remainder of this section is a list of remarks that apply only to a specific
area of the proposed system, and serve to break down the types of problems the system

encountered.

The following remarks were observed from the experimental results presented in this

chapter, and Appendix B, Appendix C, and Appendix D..

Initialization

1. The initializelndividual algorithm prefers left to right arrangements of symbols, and
thus performs very well for touching characters, but tends to repeatedly miss symbols

in numerous trials. Random initialization was more sucessfil according to the data in
Appendix B and Appendix C.

2. In some cases, the initialization found character symbols, and occasionally it found
the optimal partition. (Appendix B, Figure 211, Figure 224..).

Termination

3. The termination criteria worked well for characters, but occasionally caused
premature termination (Appendix B Figure 7, Figure 20...).
4. The termination criteria worked well for logic diagrams, but encountered difficulty

when there was a large, connected, non-symbol region present. Results were
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produced with perfect accuracy that always terminated at the epoch limit (Appendix
B, Figure 179 and Figure 381, ...)

Evolution

5. Inmost cases, evolution is successful and productive.

6. The crossover operator is successful at accelerating evolution by collecting different
symbols into a single individual.

7. The time required to perform segmentation increases with the input size, as the
graphing and searching algoirthms require more time.

Overall

8. The success of the segmentation is controlled by the accuracy of the symbol
verification. Failure to recognize a symbol will make it impossible to produce class 0
results.

9. Class 0 and class 1 results are indistinguishable without high level knowledge, both

are considered optimal.

10. The algorithm is successful at producing both class 0 and class 1 results. This is a

valuable feature since a high level process can choose which is most appropriate.

6.2 Contributions to Current Research

The system presented here makes a number of contributions to the area of document

analysis and recognition. The most significant are outlined below:

1. The problems of segmenting touching characters, and segmenting line diagrams have

been unified into a single problem of segmenting connected symbols. This allows
for a more general approach, and more versatile document recognition system. No
previous work was encountered that approached both problem domains.

The domain of segmentation is now controlled only by a symbol verification system.
This allows for previous, highly specialized recognition work of many researchers to

be incorporated into one common system. Previous research had a great dependency
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between the way characters were to be recognized, and how they were isolated,

leading to monolithic or domain specific techniques.

6.3 Suggestions for Future Work

It is common for a project of this scope to be left with many areas for improvement.

Below is a list of the author's suggestions to enhance, accelerate, and improve

segmentations using the proposed system.

A e

. The evolutionary algorithm used employs many modular components, each of which

may be enhanced for the general segmentation problem, or possibly specialized for
any domain.

The current initialization algorithm attempts to separate two symbols arranged east to
west on the image. This could be modified in any number of ways.

Mutations could intelligently move edges from one part to another.

Parallel implementation would increase the speed.

Symbol verification could be improved for handwritten script and diagrams.

Information on what symbols have been isolated could be used to help form symbols
of a common domain, or high level information could be used to direct mutations to
form special shapes or common features in symbols. v

The interface between symbol verification and the evolutionary algorithm can be
better defined, so that the slow operations of drawing and tracing the line images are
eliminated.
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Appendix A: Useful Algorithms.

Algorithm 1: initializeGraph
Algoirthm 2: initialzelndividual
Algorithm 3: mutation
Algoirthm 4: crossover

Algorithm 1 initializeGraph is used to create a graph from a single pixel width line
image.

initializeGraph()
G is empty graph
1 is thinned input image

for x is 0 fo L.width
for y is O to l.height
if 1.pixel(x,y) equals ink then
¢ is number of neighbours of l.pixel(x,y)
if ¢ not equal 2 then
G.addNode (x,y}
end if ¢ not equal 2
end if 1.pixel(x,y) is ink
end for x
end fory

for nis 0 to G.numNodes()
N1 is G.node(n}
for d is direction N, NE, E, SE, S, SW, W, NW
if an L.pixel(N1.x(), N1.y()) has neighbour in direction d
En is new edge from N1 to N2 in direction d
~En is equivalent to En, but is from N2 to N1
if G does not contain En and G does not contain ~En then
G.addEdge (En)
end if G does not contain En and G does not contain ~En
end if Lpixel(N1.x(), N1.y()) has neighbour in direction d
end for d
end for n

retumn G
end initializeGraph

Algorithm 2 initializelndividual is used to create a unique individual given a balance
parameter p. p is a number between 0 and 1.

initializelndividual (double p)
Neast is null
Nwest is null

Neast becomes eastern node with degree = 1
Nwest becomes western node with degree = 1

if Neast equals null or Nwest equals nuli
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Neast becomes eastern node
Nwest becomes western node

end if Neast equals null or Nwest equals null

Deast is depthsFromBFS(Neast)
Dwest is depthsFromBFS(Nwest)

Seast is new segment
Swest is new segment
Sextra is new segment
ind is new Individual made up of Seast, Swest, and Sextra

fp<05
deast is maximum in Deast
dcut is p * deast
for iis O to decut
if edge e has depth i in Deast then
Seast.add (e)

end for i
endifp<05
else
dwest is maximum in Dwest
deut is (1-p) * dwest
foriis O to dcut
if edge e has depth i in Dwest then
Swest.add (e)
end fori
end else

for e is all edges in G
if e is not assigned to Seast ,Swest, or Sextra then

if depth of e in Deast < depth of e in Dwest then
Seast.add (e)

end if depth of e in Deast < depth of e in Dwest

else if depth of e in Deast > depth of e in Dwest then
Swest.add ()

end else if depth of e in Deast > depth of e in Dwest

else
Sextra.add (e}
end else
end if e is not assigned
end for e
return Ind

end initializeindividual

Algorithm 3 mutation is used to mutate a single individual Ind into something new.

mutation (Ind)
if Ind has 0 segments matched
Sshrink is randomiy selected, unmatched segment in ind
Sgrow is highest index unmatched segment in Ind and is not Sshrink

D1 is set of degree one nodes in Sshrink
if D1 is empty
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Er is random edge in Sshrink
end if D1 is empty

else
N is random node in D1
Er is edge connecting N to the rest Sshrink
end else
end if Ind has 0 segments matched
else
amatched is average symbol area of all matched symbols in Ind
path is random from {0, 1}
if pathis O
Segs is set of all unmatched segments in Ind that satisfies
Sshrink is random from Segs
Sgrow is highest index unmatched segment in Ind and is not Sshrink
D1 is set of degree one nodes in Sshrink
if D1 is empty
Er is random edge in Sshrink
end if D1 is empty
else
N is random node in D1
Er is edge connecting N to the rest Sshrink
end else
end if path is O
else if path is 1
find segments p1 and p2 such that p1 has area
amatched + (amatched * .pclose) ’
p2 has area <amatched + (amatched * pclose) ’
and p,Up, has one component
Ind.removeSegment (p1)
Ind.removeSegment (p2)
Ind.addSegment ( p, U p, )
end else if path is 1
end else
return Ind

end mutation

Algorithm 4 crossover is used to share matched segments between individuals Ind1 and
Ind2.

crossover (Ind1, ind2)
G is original graph
Indchild is empty individual

for S is each segment in Ind1
if S is a symbol then
ind.addSegment (S)
end if S is a symbol
end for S

for S is each segment in ind2

if S is a symbol then
indchild.addSegment (S)

end if S is a symbol

- 120 -



end for S

Sunassigned is new segment
for E is each edge in G
if E does not belong to a segment in Indchild
Sunassigned.addEdge (E)

end if E does not belong to a segment
end for E

if Sunassigned is not empty
Indchild.addSegment (Sunassigned)
end if Sunassignedis not empty

return Indchild
end crossover
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Appendix B:
This appendix contains the results for the experiments on various input images, from

various domains. The Appendix is separated into two sections:
= The first seciton presents the accuracy and duration of active evolution.
= The second section presents the epoch of first symbol found, and the epoch of

termination data.

The separation is necessary to present the charts clearly on standard size paper.
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Appendix C:
This appendix contains the results for the experiments with various algoirthm
configurations, on a strict set of input images. For all experiments, evolution was

terminated after 50 epochs. The Appendix is separated into three sections:

s The first seciton presents the accuracy and duration of active evolution.

= The second section presents the epoch of first symbol found, and the epoch of
termination data.

= The third section presents the duration of time in seconds for which the algoirhtm

was run.

The separation is necessary to present the charts clearly on standard size paper.
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Configuration: Seeded initialization, full parent search, 50 epoch limit, 5 individuals.
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Configuration: Random initialization, full parent search, 50 epoch limit, 5 individuals.
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Configuration: Random initialization, random parent search, 50 epoch limit, 5 individuals.
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Configuration: Seeded initialization, full parent search, 50 epoch limit, 10 individuals.
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Configuration: Random initialization, random parent search, 50 epoch limit, 10 individuals.
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Configuration: Seeded initialization, full parent search, 50 epoch limit, 15 individuals.
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Configuration: Seeded initialization, random parent search, 50 epoch limit, 15 individuals.
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Configuration: Random initialization, full parent search, 50 epoch limit, 15 individuals.
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Configuration: Random initialization, full parent search, 50 epoch limit, 20 individuals.
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Configuration: Random initialization, random parent search, 50 epoch limit, 20 individuals.
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Configuration: Seeded initialization, full parent search, 50 epoch limit, 5 individuals.
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Configuration: Seeded initialization, random parent search, 50 epoch limit, 5 individuals.
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Configuration: Random initialization, full parent search, 50 epoch limit, 5 individuals.
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Configuration: Random initialization, random parent search, 50 epoch limit, 5 individuals.
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Configuration: Seeded initialization, random parent search, 50 epoch limit, 10 individuals.
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Configuration: Random initialization, full parent search, 50 epoch limit, 10 individuals.
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Configuration: Random initialization, random parent search, 50 epoch limit, 10 individuals.
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Configuration: Seeded initialization, full parent search, 50 epoch limit, 15 individuals.
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Configuration: Seeded initialization, random parent search, 50 epoch limit, 15 individuals.
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Configuration: Random initialization, full parent search, 50 epoch limit, 15 individuals.
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Configuration: Random initialization, random parent search, 50 epoch limit, 15 individuals.
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Configuration: Seeded initialization, full parent search, 50 epoch limit, 20 individuals.
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Configuration: Seeded initialization, random parent search, 50 epoch limit, 20 individuals.
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Configuration: Random mitialization, full parent search, 50 epoch limit, 20 individuals.
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Configuration: Random initialization, random parent search, 50 epoch limit, 12 individuals.
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Configuration: Seeded initialization, full parent search, 50 epoch limit, 5 individuals.

Inputimege Rl Tine Distrbution of Active Evolution
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Configuration: Seeded initialization, random parent search, 50 epoch limit, 5 individuals.
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Configuration: Random initialization, full parent search, 50 epoch limit, 5 individuals.
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Configuration: Random initialization, random parent search, 50 epoch limit, 5 individuals.
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Configuration: Seeded initialization, full parent search, 50 epoch limit, 10 individuals.
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Configuration: Seeded initialization, random parent search, 50 epoch limit, 10 individuals.

input image Freal Time Distbuticn of Active Bvolution
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Configuration: Random initialization, full parent search, 50 epoch limit, 10 individuals.
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Configuration: Random initialization, random parent search, 50 epoch limit, 10 individuals.
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Configuration: Seeded inittalization, full parent search, 50 epoch limit, 15 individuals.
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Configuration: Seeded initialization, random parent search, 50 epoch limit, 15 individuals.
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Configuration: Random initialization, full parent search, 50 epoch limit, 15 individuals.

et imaga Fieal Time Distribution of Actve Evalution
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Configuration: Random initialization, random parent search, 50 epoch limit, 15 individuals.

Ingutimage Real Time Disteibiatinn, of Acke Evolution
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Configuration: Seeded initialization, filll parent search, 50 epoch limit, 20 individuals,

Input image Roal Tirme Disteibution of Active Euohition
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Configuration: Seeded initialization, random parent search, 50 epoch limit, 20 individuals.
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Configuration: Random initialization, full parent search, 50 epoch limit, 20 individuals.

Input image Real Time Distibution of Active Evalution
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Configuration: Random initialization, random parent search, 50 epoch limit, 20 individuals.
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Appendix D:
This appendix contains the results for the experiments with various algoirthm
configurations, on a strict set of input images. For all experiments, evolution was

terminated after 100 epochs. The Appendix is separated into three sections:

= The first seciton presents the accuracy and duration of active evolution.
= The second section presents the epoch of first symbol found, and the epoch of
termination data.

= The third section presents the duration of time in seconds for which the algoithtm

was nm.

The separation is necessary to present the charts clearly on standard size paper.
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Configuration: Seeded initialization, full parent search, 100 epoch limit, 5 individuals.

Wt image. Aecuracy Rating Disbution of Active Evoldion
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Configuration: Seeded initialization, random parent search, 100 epoch limit, 5 individuals.
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Configuration: Random initialization, full parent search, 100 epoch limit, 5 individuals.

W image Acetacy Reting Distrbiion of Astive Evelficn
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+ Configuration: Seeded initialization, full parent search, 100 epoch limit, 5 individuals.

ioput image. <Aecracy Rating Distribwition of Aetive Eveltion
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Configuration: Seeded initialization, full parent search, 100 epoch limit, 10 individuals.
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Configuration: Seeded initialization, random parent search, 100 epoch limit, 10 individuals.

fput image -Aerwecy Rating Distibution of Aclive Evalution

w8.pg
b 10
£¥hipg 5
1t
o
g owm W i

-260 -



Configuration: Random initialization, full parent search, 100 epoch limit, 10 individuals.
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Configuration: Random initialization, random parent search, 100 epoch limit, 10 individuals.

Input image -Acturacy Rating. Digtribution of Aniive Svciution
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Configuration: Seeded initialization, full parent search, 100 epoch limit, 15 individuals.
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Configuration: Seeded initialization, random parent search, 100 epoch limit, 15 individuals.
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Configuration: Random initialization, full parent search, 100 epoch limit, 15 individuals.
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Configuration: Random initialization, random parent search, 100 epoch limit, 15 individuals.

I limage

eftrgei

cfipg
fig 2

B

-
coss 10 00

befeaduefen

o ,jpg

- 266 -

- Aesirany Raling Digtriation of Active Bvlation
A
R A o



Configuration: Seeded initialization, full parent search, 100 epoch limit, 20 individuals.
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Configuration: Seeded initialization, random parent search, 100 epoch limit, 20 individuals.
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Configuration: Random initialization, full parent search, 100 epoch limit, 20 individuals.

gtk invage Aceuracy Bating stritustion of Active Evoltion
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Configuration: Random initialization, random parent search, 100 epoch limit, 20 individuals.

It imaga. Hcgursy Raling Dierbufiol of Active Ewaletion
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Configuration: Seeded initialization, full parent search, 100 epoch limit, 5 individuals.

input image Distretion of Fiest Symbol Found Disiroution of Terminaton
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Configuration: Seeded initialization, random parent search, 100 epoch limit, 5 individuals.

(ppet niags Digtribution of First Symbiof Found Distribiion of Termination
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Configuration: Random initialization, full parent search, 100 epoch limit, 5 individuals.

gt image Distbuion of First Synibel Found Distribution of Tarmination
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Configuration: Random initialization, random parent search, 100 epoch limit, 5 individuals.
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Configuration: Seeded initialization, full parent search, 100 epoch limit, 10 individuals.
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Configuration: Seeded initialization, random parent search, 100 epoch limit, 10 individuals.
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Configuration: Random imtialization, full parent search, 100 epoch limit, 10 individuals.

gt imaie Distibuon of Fiest Syinbiel Found Distrbution of Termination
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Configuration: Random initialization, random parent search, 100 epoch limit, 10 individuals.
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Configuration: Seeded nitialization, full parent search, 100 epoch limit, 15 individuals.

Irput image Distbution of First Symbol Found Distrbisin of Termination
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Configuration: Seeded initialization, random parent search, 100 epoch limit, 15 individuals.
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Configuration: Random intialization, full parent search, 100 epoch limit, 15 individuals.

gt Image Disribution of First Symiol Found Disnibutivn of Termination
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Configuration: Random initialization, random parent search, 100 epoch limit, 15 individuals.
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Configuration: Seeded initialization, full parent search, 100 epoch limit, 20 individuals.
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Configuration: Seeded initialization, random parent search, 100 epoch limit, 20 individuals.
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Configuration: Random initialization, full parent search, 100 epoch limit, 20 individuals.

irput image Dispribution of First Symbal Faund  Deibistion of Termination
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Configuration: Random initialization, random parent search, 100 epoch limit, 20 individuals.

putiinage Distrioution of First Symb! Faung Distribigion of Termination

efeogieefe

8 jog
%‘ ﬁz\ . i I

-286 -



Configuration: Seeded initialization, full parent search, 100 epoch limit, 5 individuals.

Input Imsge: “Best Thns Distribution of Soive Bvolution
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Configuration: Seeded initialization, random parent search, 100 epoch limit, 5 individuals.

ingut image Real Tirie Distibwion of Active Evoluion
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Configuration: Random initialization, full parent search, 100 epoch limit, 5 individuals.

Irput fmage. Real Tiine Distibation of Actve Evoluion.
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Configuration: Random initialization, random parent search, 100 epoch limit, 5 individuals.

irgpat Iiagie Real Time Distribution of Artive Evolution
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Henshysis of Numeross Trials on Bach input Image

Inguet Image Rsal Tims Distibation of Active Exolition
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Configuration: Seeded initialization, full parent search, 100 epoch limit, 10 individuals.

Iripust g Real Tinis Digtebition of Actve Beohufion
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Configuration: Seeded initialization, random parent search, 100 epoch limit, 10 individuals.

Input Image Steal Tilme Distrbution of Active Evolution
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Configuration: Random initialization, full parent search, 100 epoch limit, 10 individuals.

Irput tiale Real Tine Db bidion of Acive Evoiuion
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Configuration: Seeded initialization, full parent search, 100 epoch limit, 15 individuals.

Ingist image Feal Time Distibation of Actve Evclution
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Configuration: Seeded mitialization, random parent search, 100 epoch limit, 15 individuals.

it Image Real Time Distibution of Activs Bvohution

3
|
s
. A o O oy
o f* e 12 (O (R S g
a8 : -
2
o
2 i o N -y &
& s i o L e

- 296 -



Configuration: Random initialization, full parent search, 100 epoch limit, 15 individuals.
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Configuration: Random initialization, random parent search, 100 epoch limit, 15 individuals.

Ingu frrizgs- Foal Tine Distdbuiton of Aclive Bvelution.
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Configuration: Seeded initialization, full parent search, 100 epoch limit, 20 individuals.
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Configuration: Seeded initialization, random parent search, 100 epoch limit, 20 individuals.

Ingut image Rual Tane Distribution of Ackvs Evolution
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Configuration: Random initialization, full parent search, 100 epoch limit, 20 individuals.

iipit image Resl Tims Disteibution of Active Bvohiion
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Configuration: Random initialization, random parent search, 100 epoch limit, 20 individuals.

Input image Reeal Time Distrbution of Active Evalution
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