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Abstract 
 

The Tesseract OCR engine, as was the HP Research 
Prototype in the UNLV Fourth Annual Test of OCR 
Accuracy[1], is described in a comprehensive 
overview. Emphasis is placed on aspects that are novel 
or at least unusual in an OCR engine, including in 
particular the line finding, features/classification 
methods, and the adaptive classifier. 

  
 
1. Introduction – Motivation and History 
 

Tesseract is an open-source OCR engine that was 
developed at HP between 1984 and 1994. Like a super-
nova, it appeared from nowhere for the 1995 UNLV 
Annual Test of OCR Accuracy [1], shone brightly with 
its results, and then vanished back under the same 
cloak of secrecy under which it had been developed. 
Now for the first time, details of the architecture and 
algorithms can be revealed. 

Tesseract began as a PhD research project [2] in HP 
Labs, Bristol, and gained momentum as a possible 
software and/or hardware add-on for HP’s line of 
flatbed scanners. Motivation was provided by the fact 
that the commercial OCR engines of the day were in 
their infancy, and failed miserably on anything but the 
best quality print. 

After a joint project between HP Labs Bristol, and 
HP’s scanner division in Colorado, Tesseract had a 
significant lead in accuracy over the commercial 
engines, but did not become a product. The next stage 
of its development was back in HP Labs Bristol as an 
investigation of OCR for compression. Work 
concentrated more on improving rejection efficiency 
than on base-level accuracy. At the end of this project, 
at the end of 1994, development ceased entirely. The 
engine was sent to UNLV for the 1995 Annual Test of 
OCR Accuracy[1], where it proved its worth against 
the commercial engines of the time. In late 2005, HP 
released Tesseract for open source. It is now available 
at http://code.google.com/p/tesseract-ocr. 
 

2. Architecture 
 

Since HP had independently-developed page layout 
analysis technology that was used in products, (and 
therefore not released for open-source) Tesseract never 
needed its own page layout analysis. Tesseract 
therefore assumes that its input is a binary image with 
optional polygonal text regions defined. 

Processing follows a traditional step-by-step 
pipeline, but some of the stages were unusual in their 
day, and possibly remain so even now. The first step is 
a connected component analysis in which outlines of 
the components are stored. This was a computationally 
expensive design decision at the time, but had a 
significant advantage: by inspection of the nesting of 
outlines, and the number of child and grandchild 
outlines, it is simple to detect inverse text and 
recognize it as easily as black-on-white text. Tesseract 
was probably the first OCR engine able to handle 
white-on-black text so trivially. At this stage, outlines 
are gathered together, purely by nesting, into Blobs. 

Blobs are organized into text lines, and the lines and 
regions are analyzed for fixed pitch or proportional 
text. Text lines are broken into words differently 
according to the kind of character spacing. Fixed pitch 
text is chopped immediately by character cells. 
Proportional text is broken into words using definite 
spaces and fuzzy spaces. 

Recognition then proceeds as a two-pass process. In 
the first pass, an attempt is made to recognize each 
word in turn. Each word that is satisfactory is passed to 
an adaptive classifier as training data. The adaptive 
classifier then gets a chance to more accurately 
recognize text lower down the page. 

Since the adaptive classifier may have learned 
something useful too late to make a contribution near 
the top of the page, a second pass is run over the page, 
in which words that were not recognized well enough 
are recognized again. 

A final phase resolves fuzzy spaces, and checks 
alternative hypotheses for the x-height to locate small-
cap text. 



3. Line and Word Finding 
 
3.1. Line Finding 
 

The line finding algorithm is one of the few parts of 
Tesseract that has previously been published [3]. The 
line finding algorithm is designed so that a skewed 
page can be recognized without having to de-skew, 
thus saving loss of image quality. The key parts of the 
process are blob filtering and line construction. 

Assuming that page layout analysis has already 
provided text regions of a roughly uniform text size, a 
simple percentile height filter removes drop-caps and 
vertically touching characters. The median height 
approximates the text size in the region, so it is safe to 
filter out blobs that are smaller than some fraction of 
the median height, being most likely punctuation, 
diacritical marks and noise. 

The filtered blobs are more likely to fit a model of 
non-overlapping, parallel, but sloping lines. Sorting 
and processing the blobs by x-coordinate makes it 
possible to assign blobs to a unique text line, while 
tracking the slope across the page, with greatly reduced 
danger of assigning to an incorrect text line in the 
presence of skew. Once the filtered blobs have been 
assigned to lines, a least median of squares fit [4] is 
used to estimate the baselines, and the filtered-out 
blobs are fitted back into the appropriate lines. 

The final step of the line creation process merges 
blobs that overlap by at least half horizontally, putting 
diacritical marks together with the correct base and 
correctly associating parts of some broken characters. 

 
3.2. Baseline Fitting 
 

Once the text lines have been found, the baselines 
are fitted more precisely using a quadratic spline. This 
was another first for an OCR system, and enabled 
Tesseract to handle pages with curved baselines [5], 
which are a common artifact in scanning, and not just 
at book bindings. 

The baselines are fitted by partitioning the blobs 
into groups with a reasonably continuous displacement 
for the original straight baseline. A quadratic spline is 
fitted to the most populous partition, (assumed to be 
the baseline) by a least squares fit. The quadratic spline 
has the advantage that this calculation is reasonably 
stable, but the disadvantage that discontinuities can 
arise when multiple spline segments are required. A 
more traditional cubic spline [6] might work better. 

 
Fig. 1. An example of a curved fitted baseline. 

Fig.1 shows an example of a line of text with a 
fitted baseline, descender line, meanline and ascender 
line. All these lines are “parallel” (the y separation is a 
constant over the entire length) and slightly curved. 
The ascender line is cyan (prints as light gray) and the 
black line above it is actually straight. Close inspection 
shows that the cyan/gray line is curved relative to the 
straight black line above it. 

 
3.3. Fixed Pitch Detection and Chopping 

 
Tesseract tests the text lines to determine whether 

they are fixed pitch. Where it finds fixed pitch text, 
Tesseract chops the words into characters using the 
pitch, and disables the chopper and associator on these 
words for the word recognition step. Fig. 2 shows a 
typical example of a fixed-pitch word. 

 
Fig. 2. A fixed-pitch chopped word. 

 
3.4. Proportional Word Finding 

 
Non-fixed-pitch or proportional text spacing is a 

highly non-trivial task. Fig. 3 illustrates some typical 
problems. The gap between the tens and units of 
‘11.9%’ is a similar size to the general space, and is 
certainly larger than the kerned space between ‘erated’ 
and ‘junk’. There is no horizontal gap at all between 
the bounding boxes of ‘of’ and ‘financial’. Tesseract 
solves most of these problems by measuring gaps in a 
limited vertical range between the baseline and mean 
line. Spaces that are close to the threshold at this stage 
are made fuzzy, so that a final decision can be made 
after word recognition. 

 

 
Fig. 3. Some difficult word spacing. 

 
4. Word Recognition 
 

Part of the recognition process for any character 
recognition engine is to identify how a word should be 
segmented into characters. The initial segmentation 
output from line finding is classified first. The rest of 
the word recognition step applies only to non-fixed-
pitch text.  

 



4.1 Chopping Joined Characters 
 
While the result from a word (see section 6) is 

unsatisfactory, Tesseract attempts to improve the result 
by chopping the blob with worst confidence from the 
character classifier. Candidate chop points are found 
from concave vertices of a polygonal approximation 
[2] of the outline, and may have either another concave 
vertex opposite, or a line segment. It may take up to 3 
pairs of chop points to successfully separate joined 
characters from the ASCII set. 

 
Fig. 4. Candidate chop points and chop. 

 
Fig. 4 shows a set of candidate chop points with 

arrows and the selected chop as a line across the 
outline where the ‘r’ touches the ‘m’. 

Chops are executed in priority order. Any chop that 
fails to improve the confidence of the result is undone, 
but not completely discarded so that the chop can be 
re-used later by the associator if needed. 

 
4.2. Associating Broken Characters 

 
When the potential chops have been exhausted, if 

the word is still not good enough, it is given to the 
associator. The associator makes an A* (best first) 
search of the segmentation graph of possible 
combinations of the maximally chopped blobs into 
candidate characters. It does this without actually 
building the segmentation graph, but instead maintains 
a hash table of visited states. The A* search proceeds 
by pulling candidate new states from a priority queue 
and evaluating them by classifying unclassified 
combinations of fragments. 

It may be argued that this fully-chop-then-associate 
approach is at best inefficient, at worst liable to miss 
important chops, and that may well be the case. The 
advantage is that the chop-then-associate scheme 
simplifies the data structures that would be required to 
maintain the full segmentation graph. 

 
Fig. 5. An easily recognized word. 

When the A* segmentation search was first 
implemented in about 1989, Tesseract’s accuracy on 
broken characters was well ahead of the commercial 
engines of the day. Fig. 5 is a typical example. An 
essential part of that success was the character 
classifier that could easily recognize broken characters. 
 
5. Static Character Classifier 
 
5.1. Features 
 

An early version of Tesseract used topological 
features developed from the work of Shillman et. al. 
[7-8] Though nicely independent of font and size, these 
features are not robust to the problems found in real-
life images, as Bokser [9] describes. An intermediate 
idea involved the use of segments of the polygonal 
approximation as features, but this approach is also not 
robust to damaged characters. For example, in Fig. 
6(a), the right side of the shaft is in two main pieces, 
but in Fig. 6(b) there is just a single piece. 

 
Fig. 6. (a) Pristine ‘h, (b) broken  ‘h’, (c) 

features matched to prototypes. 
 

The breakthrough solution is the idea that the 
features in the unknown need not be the same as the 
features in the training data. During training, the 
segments of a polygonal approximation [2] are used for 
features, but in recognition, features of a small, fixed 
length (in normalized units) are extracted from the 
outline and matched many-to-one against the clustered 
prototype features of the training data. In Fig. 6(c), the 
short, thick lines are the features extracted from the 
unknown, and the thin, longer lines are the clustered 
segments of the polygonal approximation that are used 
as prototypes. One prototype bridging the two pieces is 
completely unmatched. Three features on one side and 
two on the other are unmatched, but, apart from those, 
every prototype and every feature is well matched. 
This example shows that this process of small features 
matching large prototypes is easily able to cope with 
recognition of damaged images. Its main problem is 
that the computational cost of computing the distance 
between an unknown and a prototype is very high. 



The features extracted from the unknown are thus 3-
dimensional, (x, y position, angle), with typically 50-
100 features in a character, and the prototype features 
are 4-dimensional (x, y, position, angle, length), with 
typically 10-20 features in a prototype configuration. 

 
5.2. Classification 

 
Classification proceeds as a two-step process. In the 

first step, a class pruner creates a shortlist of character 
classes that the unknown might match. Each feature 
fetches, from a coarsely quantized 3-dimensional look-
up table, a bit-vector of classes that it might match, and 
the bit-vectors are summed over all the features. The 
classes with the highest counts (after correcting for 
expected number of features) become the short-list for 
the next step. 

Each feature of the unknown looks up a bit vector 
of prototypes of the given class that it might match, 
and then the actual similarity between them is 
computed. Each prototype character class is 
represented by a logical sum-of-product expression 
with each term called a configuration, so the distance 
calculation process keeps a record of the total 
similarity evidence of each feature in each 
configuration, as well as of each prototype. The best 
combined distance, which is calculated from the 
summed feature and prototype evidences, is the best 
over all the stored configurations of the class. 

 
5.3. Training Data 

 
Since the classifier is able to recognize damaged 

characters easily, the classifier was not trained on 
damaged characters. In fact, the classifier was trained 
on a mere 20 samples of 94 characters from 8 fonts in a 
single size, but with 4 attributes (normal, bold, italic, 
bold italic), making a total of 60160 training samples. 
This is a significant contrast to other published 
classifiers, such as the Calera classifier with more than 
a million samples [9], and Baird’s 100-font classifier 
[10] with 1175000 training samples.  
 
6. Linguistic Analysis 
 

Tesseract contains relatively little linguistic 
analysis. Whenever the word recognition module is 
considering a new segmentation, the linguistic module 
(mis-named the permuter) chooses the best available 
word string in each of the following categories: Top 
frequent word, Top dictionary word, Top numeric 
word, Top UPPER case word, Top lower case word 
(with optional initial upper), Top classifier choice 
word. The final decision for a given segmentation is 

simply the word with the lowest total distance rating, 
where each of the above categories is multiplied by a 
different constant. 

Words from different segmentations may have 
different numbers of characters in them. It is hard to 
compare these words directly, even where a classifier 
claims to be producing probabilities, which Tesseract 
does not. This problem is solved in Tesseract by 
generating two numbers for each character 
classification. The first, called the confidence, is minus 
the normalized distance from the prototype. This 
enables it to be a “confidence” in the sense that greater 
numbers are better, but still a distance, as, the farther 
from zero, the greater the distance. The second output, 
called the rating, multiplies the normalized distance 
from the prototype by the total outline length in the 
unknown character. Ratings for characters within a 
word can be summed meaningfully, since the total 
outline length for all characters within a word is always 
the same.  
 
7. Adaptive Classifier 
 

It has been suggested [11] and demonstrated [12] 
that OCR engines can benefit from the use of an 
adaptive classifier. Since the static classifier has to be 
good at generalizing to any kind of font, its ability to 
discriminate between different characters or between 
characters and non-characters is weakened. A more 
font-sensitive adaptive classifier that is trained by the 
output of the static classifier is therefore commonly 
[13] used to obtain greater discrimination within each 
document, where the number of fonts is limited. 

Tesseract does not employ a template classifier, but 
uses the same features and classifier as the static 
classifier. The only significant difference between the 
static classifier and the adaptive classifier, apart from 
the training data, is that the adaptive classifier uses 
isotropic baseline/x-height normalization, whereas the 
static classifier normalizes characters by the centroid 
(first moments) for position and second moments for 
anisotropic size normalization. 

The baseline/x-height normalization makes it easier 
to distinguish upper and lower case characters as well 
as improving immunity to noise specks. The main 
benefit of character moment normalization is removal 
of font aspect ratio and some degree of font stroke 
width. It also makes recognition of sub and 
superscripts simpler, but requires an additional 
classifier feature to distinguish some upper and lower 
case characters. Fig. 7 shows an example of 3 letters in 
baseline/x-height normalized form and moment 
normalized form. 



 
Fig. 7. Baseline and moment normalized 

letters. 
 
8. Results 
 

Tesseract was included in the 4th UNLV annual test 
[1] of OCR accuracy, as “HP Labs OCR,” but the code 
has changed a lot since then, including conversion to 
Unicode and retraining. Table 1 compares results from 
a recent version of Tesseract (shown as 2.0) with the 
original 1995 results (shown as HP). All four 300 DPI 
binary test sets that were used in the 1995 test are 
shown, along with the number of errors (Errs), the 
percent error rate (%Err) and the percent change 
relative to the 1995 results (%Chg) for both character 
errors and non-stopword errors. [1] More up-to-date 
results are at http://code.google.com/p/tesseract-ocr. 

 
Table 1. Results of Current and old Tesseract. 
  Character Word 
Ver Set Errs %Err %Chg Errs %Err %Chg 
HP bus 5959 1.86  1293 4.27
2.0 bus 6449 2.02 8.22 1295 4.28 0.15
HP doe 36349 2.48  7042 5.13
2.0 doe 29921 2.04 -17.68 6791 4.95 -3.56
HP mag 15043 2.26  3379 5.01
2.0 mag 14814 2.22 -1.52 3133 4.64 -7.28
HP news 6432 1.31  1502 3.06
2.0 news 7935 1.61 23.36 1284 2.62 -14.51
2.0 total 59119  -7.31 12503 -5.39

 
9. Conclusion and Further Work 
 

After lying dormant for more than 10 years, 
Tesseract is now behind the leading commercial 
engines in terms of its accuracy. Its key strength is 
probably its unusual choice of features. Its key 
weakness is probably its use of a polygonal 
approximation as input to the classifier instead of the 
raw outlines. 

With internationalization done, accuracy could 
probably be improved significantly with the judicious 
addition of a Hidden-Markov-Model-based character 
n-gram model, and possibly an improved chopper. 
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