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Abstract 
 

This paper describes a skeletonization process for 

grayscale or color images based on the diffusion of the 

color gradient vectors by using a simple iterative 

regularization scheme. We propose to diffuse the 

original color gradient vectors to obtain the skeleton 

of the main contrasted objects. Contrary to a distance 

transform or thinning based skeleton, the gradient 

vectors diffusion is a straightforward, simple and 

efficient approach to compute the skeleton, which does 

not require the localization of the contours curvatures 

or a distance map. In comparison to other approaches 

based on potential field functions, our method does not 

require the segmentation of the objects or the precise 

localization of the contours. Our approach is very 

simple to implement and can be applied to natural 

noisy color images of old documents.  

 

1. Introduction 
 

Skeletons are widely used in many computer vision 

applications and in particular in Document Image 

Analysis. They provide a simple and compact 

representation of shapes that preserves the topology of 

the objects. Images of documents are generally made of 

complex thin lines, which represent the ink of the 

drawings or printings. The skeletonization of 

documents images preserves the patterns and simplifies 

the extraction of features. Skeletonisation  is widely 

used in Optical Character Recognition, document 

images vectorization and coding. In computer vision, 

there are many skeletonization algorithms suited for 

binary images but there are a reduced number of 

methods, which use grayscale or color information. 

Recently, many digital Libraries provide numerous 

color images of old manuscripts, which cannot be 

skeletonized in binary. Moreover, these documents 

show many defects (ink fading, ink bleed trough, 

complex background due to the paper texture, lack of 

regularity of the lines…), which make difficult their 

skeletonization.  Our objective consist to develop a 

robust skeletonizition method, suited for old degraded 

documents images digitized directly in colors, which 

can tolerate the natural noise and the documents 

defects.  

 

2. Previous works 
 

The skeleton can be defined in several ways either 

by the centers of the maximal disks contained in the 

original object [1] or by the intuitive grassfire 

paradigm introduced by Blum [2]. Morphology 

introduced by Serra [1] provides a well-founded theory 

to define and compute skeletons of binary images and it 

was later extended to grayscale images [3].  

 

2.1. Skeleton of binary images 
 

There are mainly four different approaches to 

compute binary images’ skeletons of delimited objects 

by their area or contour :  
 

1) methods based on thinning or grassfire approach   

They are generally computed by iterative 

conditional thinning which iteratively deletes the non-

skeleton points [4]. Heuristics and complex criteria are 

often used to stop the process and preserve the skeleton 

continuity and width .      
 

2) The distance transform The distance transform is 

defined for each point of an object as the smallest 

distance from that point to the boundary of the object 

[5]. Skeletons and medial lines of objects can be 

computed by finding the local maxima of the distance 

map. The object can be entirely reconstructed by 

replacing each point of the skeleton by a discrete disc 

with a radius given by the distance transform.    
 

3) Geometric methods based on voronoi diagram.  

The skeleton is computed from the voronoi graph of 

a set of points located on the boundary of the object 

[6]. This approach is theoretically well defined in a 

continuous space and provides fully connected 

skeletons. The main drawbacks of this approach are the 



sampling of the boundaries which defines the quality of 

the Voronoi diagram and the pruning of branches by 

using complex post-processing stages.  
 

4) Methods based on Potential Field functions  

Skeletonization approaches based on potential fields 

for 2D and 3D objects identify skeleton by using a 

potential model instead of the distance transform. The 

pixels of the boundary are considered point charges 

generating the potential field inside the object using an 

electrostatic field function [7] or the Newton law [8]. 

But these approaches have some drawbacks such as the 

necessity to consider the distance to the border, or to 

verify the visibility of each point to the border or the 

localization of the curve curvatures.   
 

Generalized Potential field function has been used 

for 2D objects [9] and 3D objects [10]. For this 

approach, the potential at a point interior to the object 

is determined as a sum of potentials generated by the 

boundary of the object. This approach gives much 

smoother skeletons which are less sensitive to the 

noise. However, this approach requires the 

segmentation of the contour of the objects to 

skeletonize.  
 

In conclusion, most of the previous methods lead to 

difficult problems due to the nature of the discrete 

space. Most of previous methods are sensitive to noise 

and complex pruning operation must be applied to 

clean the spurious branches of the skeleton. 

Nevertheless, the approaches based on generalized 

potential fields are interesting for noisy images and 

could be extended to grayscale or color images.      

 

2.2. Skeleton of grayscale or color images  
 

There is limited number of papers about the 

skeletonization using directly grayscale information 

without image segmentation [11]. The recent trend is 

using potential fields approaches by analogy either with 

electromagnetism or Newton law. These approaches 

seek to diffuse potential fields using various diffusion 

equations in order to define an edge strength function 

(also called skeleton strength function or pseudo 

distance map) [12][14][15][16]. The skeleton is 

extracted by tracking the ridges of this edge strength 

map. An homothetic erosion of the grayscale image is 

also used to extract skeletons [13]. However, this 

approach is applicable on images characterized by 

objects brighter or darker than the background.  

The skeletons from grayscale images are interesting 

for many applications and are robust to image noise. 

But those authors are focused on the physics theory 

(Newton's law of universal gravitation or 

Electromagnetism laws) that defines the underlying 

mathematical model of vector diffusion. We propose to 

simply abandon the physics framework and to develop 

freely another simple skeletonization algorithm which 

uses directly the diffusion of the image gradients from 

grayscale or color images by a progressive 

regularization. 

 

3. Proposition 
 

Our objectives consist to find a sketonization 

approach suited for noisy images, which uses color or 

grayscale information. Our contribution can be 

classified into potential field approaches. We have 

fixed four objectives to reach :  

• To use of a simple diffusion framework (avoid 

heuristics, parameters, masks and selection of points) 

• To initialize the potential field with the gradients 

of the images without the selection of particular points 

of the object or its contour.  

• To be less sensitive to image noise in order to 

process natural digitized documents  

• To skeletonize directly grayscale or color images 

of large documents images with a reasonable 

computational cost.    
 

In order to achieve these goals, we need to make 

some assumptions. First of all, we assume that the 

contour of the objects to skeletonize has a higher 

gradient magnitude than in the background or the 

interior of the object. Secondly we assume that the 

gradients keep almost of the same magnitude along the 

contour of the same object. These assumptions are not 

restrictive for documents images.      

 

3.1. Diffusion of gradient vectors 
 

We propose to use the gradients of the entire image 

as the initialization of a potential field. In a second 

step, we diffuse the gradient vector field by using a 

regularization process which preserves the divergence 

of the gradient vector field around the skeleton of the 

objects. We notice that in most analytic formula of 

vector diffusion process, a regularization of the vector 

field is achieved. We find this regularization step in the 

isotropic or anisotropic vector diffusion or during the 

calculation of motion vectors for optical flow. We 

propose to apply directly the regularization of the 

gradient vector field as a diffusion process without 

using any analogy to physics laws. If we consider a 1D 

signal (fig. 1), its derivatives cross zero for local 

extrema, which correspond exactly to both the skeleton 

SQ(I) and its complementary SQ(I). Figure 1 also 

shows the diffusion of gradient information into flat 



zones where the gradient is null or low by using a 

simple regularization process (1). The gradient vector 

field will flow into flat zones and the opposite vectors 

indicate the location of the skeleton and its 

complementary.  The vector regularization (1) can be 

used to diffuse the gradient vectors into flat zones 

without computing distance map or singular points of 

the contours around high curvatures like for the 

Hamilton Jacobi skeletons [8] or potential fields 

approaches.   
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The regularization can be considered as an iterative 

smoothing of the gradient vectors using the 8-

connected neighbors N of each point p, with a uniform 

kernel.  

 

    
Figure 1  Gradient vectors diffusion by regularization.          

 

But the excessive regularization of the gradient 

vector field will progressively diverge. Points which 

are not the center of exact opposite gradients of the 

same magnitude will progressively translate and 

disappear. To keep the stability of the gradient field by 

vector regularization, we need either to reduce the 

number of iterations or to use a grassfire algorithm or a 

stop function to block the diffusion before reaching the 

loss of stability of the field. We choose to control 

precisely the regularization by stopping the flow (1) 

when the number of iteration n for non null gradient 

∇I
n≠0 reach a user defined limit σ. The number of 

iteration for null gradient around flat zones must be 

unlimited. If σ=1 we have a classical grassfire 

algorithm which provides a sharp skeleton with 

spurious branches. For a higher value of σ, we obtain a 

smooth skeleton, robust to noise and suited for real 

images (fig. 2). For images of documents, the lines are 

enough thin to allow a reduced number of iterations to 

fill flat zones. Hence, we can increase the smoothness 

parameter σ to process particular noisy images without 

reaching the loss of stability of the gradient field by 

using the regularization as vector diffusion. 

3.2 Skeleton from the diffused gradient vectors  
 

There are several approaches to extract the skeleton 

from a diffused gradient vector field. Originally, the 

skeleton is located along lines where the divergence of 

the potential field is null. We choose to compute the 

maximal angle difference of the orientation of two 

adjacent symmetric pair of gradient vectors in a 3X3 

neighborhood and we keep this value in a Skeleton 

Strength map SS (2). 
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where θ(h) and θ(k) are the gradient orientations of 

the symetric pair of adjacent gradient vectors in a 8-

connected neighborhood. If the Skeleton Strength 

reaches a maximal value of 180°, then the point belong 

to the skeleton of a line shape. If the skeleton strength 

decreases around 45° then the point belong either to the 

skeleton of a triangle shape or to spurious skeleton 

branches. Figure 2 gives the intermediate results of the 

skeletonization process, from the initial gradient 

orientation, their diffusion with different values of 

smoothness σ, the associated Strength Skeleton map. 
 

 

 

  

  

             
Figure 2 From left to right and from top to bottom : 

original image, initial gradient orientation θ(∇I
n=0

), 

diffusion with σ=1 θ(∇I
n=8

), stable field θ(∇I
n=43

), 

Strength Skeleton (SS), superposition on the original 

image, stable field with σ=40 θ(∇I
n=82

), superposition 

on the image, skeleleton for degraded objects (σ=40), 

color legend for gradient orientation.  
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With a large value of smoothness σ, the skeleton 

remains stable to the degradations of the contours. As 

we do not use the segmentation of the objects from the 

background, the differentiation between the SQ and the 

complementary SQ  (skeleton of the background) must 

use the convergence or the divergence of the gradient 

field. As the gradient flows from dark areas toward 

brighter part of the image, SQ corresponds to a 

divergent gradient field and SQ  to a convergent 

gradient field (Fig 3). 

 

   
Figure 3 SQ : Convergent field   SQ: divergent field 

 

3.3. Extension to grayscale and color images 
 

We use all the gradients of the image even for pixels 

from flat areas where the gradient orientation is not 

well defined. We have noticed that gradient vectors 

which are individually not correctly oriented around 

flat zones are statistically “on average” almost well 

oriented. Our key idea is that the apparent disorder of 

the gradient orientation around flat zones can be 

reoriented by the regularization of the gradient vector 

field  by using (1). Fig. 4 shows the gradients field 

from a noisy color image and the field obtained after 

100 iterations of the regularization. By using the 

regularization as a diffusion process, the gradient 

vectors having higher magnitude will reorient correctly 

the gradients of nearly flat zones. 
 

  
Figure 4 Initial color gradients and their regularization  
 

We now explain how to compute a color gradient 

magnitude and orientation. Let a color image be a 

mapping  I defined by : 
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Color Gradient ∇I can be represented by the 

Jacobian matrix J of 3x2 elements. The problem 

consists to approximate the direction θ(∇I) and the 

magnitude |||∇I |||. Di Zenzo computes the magnitude 

and orientation of color gradient vectors with an eigen 

decomposition of the 2x2 matrix calculated from the 

inner product of the Jacobian matrix 
t
J J [17]. For the 

skeletonization, we introduce another color gradient 

approximation (3) based on the maximum value. Our 

objective is to represent the gradient vectors by the 

same expression ∇I=
t
(Ix,Iy) for color, grayscale or 

binary images. We define the components Ix, Iy of the 

color gradient vector∇I by taking the maximum 

absolute value of partial derivatives for each  channel 

(3),  but the sign of the derivatives is preserved in Ix, Iy 

(see Cmax function). The direction is given by (4) and 

gradient magnitude by (5).     
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Our color gradient approximation is easier to 

implement, faster to compute for large images. The 

sensitivity to the smallest variation for all channels and 

directions is appropriate for documents images with 

large flat zones. Figure 5 describes the final 

skeletonization algorithm.    

Let ∇I0 the original gradient vector using (3)  n=0 

For each point p of the image do B(p)=0  

repeat 

       Stability =0 

       For each point p of the image do 

     If  (B(p) <σ) or (||∇I||=0) then  

             ∇M=0   // regularize & diffuse by using (1) 

   For each neighbors h of p / d8(h,p)=1 do 

                     ∇M=∇M+∇I0 (h)         

        ∇M=∇M /8 

          if (∇M≠0) then 

  Stability+=|∇I1 (p)- ∇M| 

  ∇I1 (p)= ∇M 

  B(p)++;    

      For each point p do ∇I0 (p) = ∇I1 (p) 

       n++ 

Until  (n==nitermax) or (stability==0) 

For each point p do Compute θ (p)  by using (4) 

For each point p do Compute SS (p) by using (2) 

Figure 5 Algorithm of the skeletonisation scheme. 



4. Results 
 

We apply our skeletonization on several documents 

images with σ=40 on average. Our approach provides 

smooth skeletons suited to noisy images and object 

defects (fig. 6). The proposed method does not require 

the object segmentation and need a reduced number of 

iterations. The smooth skeleton probably does not 

respect all the desirable properties (homotopy, full 

connected, invariance to isometric transformation, 

thinness, centered and exact location) but it can be 

useful for feature extraction or vectorization.  
 

 

 

  

 
Figure 6 Results on grayscale or color images. 

  

5. Conclusion 
 

We have presented a simple skeletonization 

approach, which uses the gradient vector regularization 

to simultaneously diffuse gradient information into flat 

areas and smooth the gradient vector disorder due to 

the image noise. The diffusion process is simple and 

requires no computation of any distance map. After 

several iterations of the regularization step, the gradient 

vectors flow toward the image skeletons. This simple 

method can be applied directly to grayscale or color 

natural images of documents. It requires just a 

parameter σ which controls the smoothness of the 

skeleton. We are going to establish the link between 

our approach and methods based on potential fields, 

which require the computation of a distance map or the 

segmentation of the contour of the objects to 

skeletonize.      
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