
Iterated Document Content Classification

Chang An, Henry S. Baird and Pingping Xiu

Computer Science & Engineering Dept, Lehigh University
19 Memorial Drive West, Bethlehem, Pennsylvania 18017 USA

Email: cha305@lehigh.edu, baird@cse.lehigh.edu, pix206@lehigh.edu
URL: www.cse.lehigh.edu/˜baird

Abstract

We report an improved methodology for training classi-
fiers for document image content extraction, that is, the lo-
cation and segmentation of regions containing handwriting,
machine-printed text, photographs, blank space, etc. Our
previous methods classified each individual pixel separately
(rather than regions): this avoids the arbitrariness and re-
strictiveness that result from constraining region shapes (to,
e.g., rectangles). However, this policy also allows content
classes to vary frequently within small regions, often yield-
ing areas where several content classes are mixed together.
This does not reflect the way that real content is organized:
typically almost all small local regions are of uniform class.
This observation suggested a post-classification method-
ology which enforces local uniformity without imposing a
restricted class of region shapes. We choose features ex-
tracted from small local regions (e.g. 4-5 pixels radius)
with which we train classifiers that operate on the output
of previous classifiers, guided by ground truth. This pro-
vides a sequence of post-classifiers, each trained separately
on the results of the previous classifier. Experiments on a
highly diverse test set of 83 document images show that this
method reduces per-pixel classification errors by 23%, and
it dramatically increases the occurrence of large contigu-
ous regions of uniform class, thus providing highly usable
near-solid ‘masks’ with which to segment the images into
distinct classes. It continues to allow a wide range of com-
plex, non-rectilinear region shapes.
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1 Introduction

We have developed a family of algorithms for document im-
age content extraction, able to find regions containing machine-

printed text, handwriting, photographs, etc in images of documents
[2, 4, 3, 7]. The vast and rapidly growing scale of document im-
age collections has been compellingly documented[8]. Informa-
tion extraction[5] and retrieval[6] from document images is an in-
creasingly important R&D field at the interface between document
image analysis (DIA) and information retrieval (IR).

Our content extraction algorithms cope with a rich diver-
sity of document, image, and content types. To date, we have
achieved modest per-pixel classification accuracies (of, e.g., 60–
70%) which however support usefully high recall and precision
rates (of, e.g., 80–90%) for queries on collections of documents[1,
7]. Up until now, we have classified individual pixels, not regions,
in order to avoid the arbitrariness and restrictiveness of limited
families of region shapes, as illustrated in Figure 1.

The test image (a) is shown on the upper left (the original image
is full color, but is printed in this Proceedings as grey-level). The
results of classification are shown to the right (b)-(d), as classifica-
tion images where the content classes are shown in color: machine
print (MP) in dark blue (printed as dark grey), handwriting (HW)
in red (printed as medium grey), photographs (PH) in light blue-
green (printed as light grey), and blank (BL) in white (printed as
white). (In this Proceedings, the distinction between MP and HW
may be hard to see.) Notice, in the circular regions where PH pix-
els are located, some MP misclassifications are mixed in: this is
an example of a region of non-uniform classification which our
method will attempt to correct.

Both training and test datasets consist of pixels labeled with
their ground-truth class (one of MP, HW, PH, BL, etc). Each pixel
sample is represented by scalar features extracted by image pro-
cessing of a small region centered on that pixel; these features
are discussed in detail in[1]. We have been investigating a wide
range of automatically trainable classification technologies, in-
cluding brute-force 5-Nearest Neighbors (5NN), fast approximate
5NN using hashed k-d trees, classification and regression trees,
and locality-sensitive hashing[4, 3, 1]; here, we use approximate
5NN using hashed k-d trees.

2 Experimental Design

In the preliminary experiments reported here, we selected a
training set of thirty three images and a distinct test set of eighty



(a) test image (b) 1st stage classification (c) 2nd stage classification (d) 4th stage classification

(e) MP masked (f) PH masked (g) HW masked

Figure 1. A document image with a complex non-rectilinear page layout. Our policy of classifying
pixels has the advantage of adapting to arbitrary layouts with non-rectilenear region shapes (here,
regions with circular-arc boundaries). The original image (a) is in full color (printed in this Proceed-
ings as grey-level). In the results of classification (b)-(d), machine print (MP) is dark blue (printed
as dark grey), handwriting (HW) red (printed as medium grey), photographs (PH) light blue-green
(printed as light grey), and blank (BL) white (printed as white). (In this Proceedings, the distinction
between MP and HW may be hard to see.) The per-pixel classification error of the 1st-stage classifier
is 36.7%; the error of the 2nd-stage classifier is 31.2%; and the error of the 4th-stage classifier is
27.4%. The final MP, PH, and HW masks extract their content types well, as shown in (e)-(g), with the
exception a few small patches of HW misclassified as MP.



three images. Together the two sets contain MP, HW, PH, and
BL content. Each content type was zoned manually (using closely
cropped isothetic rectangles, overlapped where needed to fit non-
rectangular regions) and the zones were ground-truthed. The train-
ing data was decimated randomly by selecting only one out of ev-
ery 9000th training sample.

We evaluated performance in two ways: per-pixel accuracy,
and subjective segmentation quality.

Per-pixel accuracy: this is the fraction of all pixels in the docu-
ment image that are correctly classified: that is, whose class
label matches the class specified by the ground truth labels of
the zones. Unclassified pixels are counted as incorrect. This
is an objective and quantitative measure, but it is somewhat
arbitrary due to the variety of ways that content can be zoned.
Some content—notably handwriting—often cannot easily be
described precisely by overlapping rectangular zones. This
in some cases will lead to a per-pixel accuracy score being
worse than an image may subjectively appear to be.

Subjective segmentation quality. This is a subjective assess-
ment of the quality—expressed as ‘good’, ‘fair’, and
‘poor’—of the classification as a guide for geometric seg-
mentation of the page area into regions of different content
classes. Eventually, automatic methods will be needed to
convert a pixel-based classification into one of many pos-
sible region-based segmentations: this measure attempts to
predict how well that could be done.

3 Design of Post-Classifiers

The goal of post-classification is to enforce local uniformity
without imposing arbitrary region shapes. We designed of a train-
able post-classifier that operates on the output of the previous clas-
sifier, guided by ground truth.

We define the post-classification problem as follows:

Given: the per-pixel classification results for a docu-
ment image and ground-truth.
find: a post-classifier that reassigns classes to favor lo-
cal uniformity.

Note that the post-classifier also yields a per-pixel classifica-
tion result for the document image. This inspired us to try it-
erated classification: a sequence of post-classifiers, each trained
separately on the training-data results of the previous classifier,
guided, as always, by ground truth. We will call the initial stage
classifier the first stage classifier, the immediately following post-
classifier is the called the second stage classifier, followed by the
third stage classifier, etc. Our strategy has been to extract features
from small local regions, so that no single classification stage af-
fects a large area. It’s worth emphasizing that we train each of the
post-classifiers separately on the results from the training set of the
previous stage. This strategy appears to prevent the local regions
which are dominated by erroneous classes from expanding, while
allowing those dominated by correct class to expand slowly.1

1Before we discovered this, we trained the second stage classifier on the
first stage classification results of training set, and used these training sam-
ples for all following stages of classification. This allowed local regions

For the classification technology, we use approximate 5NN us-
ing hashed k-d trees.[3] The features for the post-classifiers are
discussed in Section 4.

4 Feature Extraction

Each pixel (the ”target pixel”) sample is represented by scalar
features extracted by image processing of a small region centered
on that pixel[1]. After much experimentation we came to rely on
these seventy-seven features.

Pixel Class: This feature is the content type value assigned by
the earlier-stage classifer to the pixel.

Pixel Content Type: A group of four features, one for each
content type (variations on Pixel Class features). E.g., if the clas-
sifier labeled the target pixel MP, then this MP feature is set to a
non-zero value (186, determined by experiment); otherwise it is
set to zero.

Box Class: Four features, one for each content type: the total
number of pixels of that content type within a circle of radius 5
centered on the target pixel.

Box Class Euclidean Distance Sum: Four features, one for
each content type: each is the sum of all distances from the target
pixel to pixels of the content type within a circle of radius 6.

Neighbor Box Class: Sixteen features, four for each content
type (variations on Box Class features): each is extracted from
the circular regions tangential to the center circle in horizontal and
vertical directions.

Box Edge Detection: Thirty-two features, eight for each con-
tent type: the total number of pixels of that content type within half
of a circle of radius 5 cut in four directions: horizontal, vertical,
and the two diagonals.

Encoded Box Edge Detection: Sixteen features (variations on
Box Edge Detection features): the difference between two halves
of a circle of radius 5.

5 Experimental Results

Our results are illustrated in Figures 1 and 5. Each figure con-
tains seven images of three types: (a) the original image; three
classification images from stages one (b), two (c) , and four (d);
and three mask images for MP (e), PH (f), and HW (f) content
classes. In the mask images—say, for example, the MP (machine-
print) mask image, only the regions that are classified as machine-
print are extracted and displayed using their original color pixel
values (printed grey); the pixels of other classes are shown as light
grey.

Figure 1 shows results on a color image of a newpaper page
containing non-rectilinear handwriting regions. The first stage
classifier locates handwriting fairly precisely, but mixes with it
many machine-print misclassifications. The post-classifiers sig-
nificantly enhanced the uniformity of those handwriting regions,
after which we could read most of the handwriting extracted by
the handwriting mask image. The light blue (printed light grey)

that are dominated by one content class to expand, whether the dominant
class is correct or incorrect.



BL HW MP PH Type1
BL 0.194 0.061 0.073 0.039 0.173
HW 0.003 0.029 0.006 0.0005 0.009
MP 0.003 0.069 0.202 0.008 0.080
PH 0.002 0.055 0.038 0.208 0.095

Type2 0.008 0.185 0.117 0.047 0.357

Content True Classifier Accuracy
BL 36.7 20.46 94.62
HW 3.842 21.39 13.61
MP 28.37 31.98 63.38
PH 30.71 25.57 81.31

Figure 2. Stage one classifier results on the page shown in Figure 1. The table on the left is the confu-
sion matrix: the rows label ground truth content types; the columns label the content types assigned
by the classifier; the 16 entries in the 4 × 4 top-left subarray sum to 1.0; the Type1 column contains
error rates for each true class (that is, the frequency with which that true class is misclassified); the
Type2 row gives error rates for each class resulting from classification (that is, the frequency with
which that class decision is incorrect); and the bottom right entry gives the overall error rate: 35.7%.
Derived from this is the table on the right giving the page inventory—that is, for each Content class:
the True fraction of its pixels classified as that class; the Classifier-reported fraction of that class; and
the per-pixel Accuracy of the classifier on that class. Note that although the per-pixel accuracies on
MP and PH are below 85%, the classifier-reported fraction is very close to the true fraction for both
of them. In this way, we have often seen, that retrieval based on inventory scores is superior to
per-pixel classification accuracy.

BL HW MP PH Type1
BL 0.185 0.054 0.076 0.057 0.187
HW 0.0002 0.037 0.0003 0.000 0.0005
MP 0.002 0.030 0.241 0.007 0.038
PH 0.003 0.007 0.031 0.262 0.041

Type2 0.005 0.091 0.107 0.064 0.267

Content True Classifier Accuracy
BL 37.21 19.58 94.73
HW 3.782 12.81 29.08
MP 27.97 34.87 69.24
PH 30.33 32.74 80.02

Figure 3. Stage four post-classifier results on the page shown in Figure 1, including a confusion
matrix and inventory as described in Figure 2 above. The per-pixel error rate has fallen from 35.7%
to 26.7%.

BL HW MP PH Type1
BL 0.171 0.027 0.023 0.005 0.056
HW 0.030 0.024 0.017 0.002 0.050
MP 0.058 0.037 0.343 0.037 0.132
PH 0.022 0.006 0.041 0.152 0.070

Type2 0.110 0.071 0.082 0.045 0.308

BL HW MP PH Type1
BL 0.178 0.022 0.022 0.004 0.050
HW 0.015 0.050 0.008 0.001 0.024
MP 0.022 0.035 0.383 0.033 0.091
PH 0.013 0.007 0.034 0.170 0.054

Type2 0.051 0.065 0.064 0.040 0.219

Figure 4. Confusion matrices for stage one and stage four post-classifiers over the entire test set.
Post-processing reduces the per-pixel error rate from 30.8% to 21.9%.



texture in the background is uniform from the start and does not
worsen under post-classification.

Figure 5 shows results on a color image of a magazine page
with a block of handwriting on a yellow ruled background. The it-
erated post-classifiers cleans much of the sparse light blue texture
in the background, without causing the thicker light blue texture
to expand, in fact some of it shrinks, which is good. Note that it
cleans most of the red texture, both sparse and thick ones, in both
the machine print and photo regions. Meanwhile, the curvelinear
boundaries of those large regions are accurately detected, as well
as the blank regions between paragraphs. The post-classifiers also
eliminate most of the erroneous handwriting areas in the yellow
ruled background while enhancing the handwriting regions by re-
moving the machine-print texture within them. The mask images
are highly promising in representing handwriting, machine-print
and photo layers: so we rate the subjective segmentation accuracy
as good.

Classification results on the page shown in Figure 1 are sum-
marized in Figure 2 (for the first classifier stage) and 3 (for the
fourth stage): the error rate drops from 35.7% to 26.7%. Note the
excellent preservation of inventory scores.

The confusion matrices for stage one and four, over the entire
test set, is shown in Figure 4. The stage one classifer was, gener-
ally, best at recognizing MP and PH, has some difficulty with BL,
and has even more trouble with HW, misclassifying 43% of HW
pixels as BL.

Figure 6 gives the total error rate in a function of stages of clas-
sification. The post-classifiers reduces the error rate by 22.6%. We
hypothesize that accuracy will in many cases continue to improve,
although perhaps slowly, with more iterations.

6 Instability and Solutions

In one experiment, we ran ten post-classifier stages on a small
data set and noticed an instability. For the first eight stages, the
total error rate decreased monotonically; then at the ninth stage,
errors increased by 26.7% over the eighth stage. Large solid re-
gions of hand-writting were suddenly misclassified as machine-
print. The cause appears to be as follows. As post-classification
proceeds, local regions become increasingly uniform, whether cor-
rectly or incorrectly. It happened that, at the eighth stage, in one
training image, a thin “gutter” region separating MP blocks, which
was in fact BL, but was, for convenience, manually ground-truthed
MP, was classified HW by the eighth classifier. Thus the incor-
rectly classified samples from these gutters fall at exactly the same
point in feature space as correctly classified MP. This led the NN
classifer to mistake large areas of MP for HW. The essential prob-
lem is that even small incorrectly classified regions, once they are
purified above a certain threshold, can compete with large cor-
rectly classified regions.

We have found two engineering tricks to reduce the incidence
of this instability. The first is to drop a training image out of the
training set whenever its classifiaction error rate rises. The second
is to increase the radius of the features. We do not yet have a
full enough understanding of this problme to propose guaranteed
solutions.

7 Discussion and Future Work

We are pleased to see that the total error rate drops by more than
22% even on a large and diverse test set; we expect there is room
for further improvement. We plan to experiment with features over
a range of scales both smaller and larger than the ones we report
here. It is also clear that iterated post-classification frequently en-
hances the uniformity of regions and yeilds highly useful “masks”
for extracting content without imposing an arbitrary and restrictive
class of region shapes on the data.

Further improvements may also be achievable by increasing the
number of iterations of post-classification.
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(a) test image (b) 1st stage classification

(c) 2nd stage classification (d) 4th stage classification

(e) MP masked (f) PH masked

(g) HW masked

Figure 5. A color image containing rectilinear machine-print regions and non-rectilinear hand-writing
annotations. The error of the 1st-stage classifier is 37%; the error of the 2nd-stage classifier is 36.4%;
and the error of the 4th-stage classifier is 34.2%. The MP mask extracts almost all of the MP except
for a little near the (unclassifiable) page boundary. Almost all of the HW is extracted correctly, except
for patches where MP crowds it. We rank the subjective segmentation accuracy as fair.



Figure 6. Total error rate averaged over the larger test set, in a function of the stages of classification.
After four stages of classification, the error rate has fallen from 0.39 to 0.30, a drop of 23%.


