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Abstract

Combining classifier methods have shown their effective-
ness in a number of applications. Nonetheless, using simul-
taneously multiple classifiers may result in some cases in a
reduction of the overall performance, since the responses
provided by some of the experts may generate consensus
on a wrong decision even if other experts provided the cor-
rect one. To reduce these undesired effects, in a previous
study, we proposed a combining method based on the use
of a Bayesian Network. In this paper, we present an im-
provement of that method which allows to solve some of the
drawbacks exhibited by standard learning algorithms for
Bayesian Networks. The proposed method is based on an
Evolutionary Algorithm which uses a specifically devised
data structure to encode direct acyclic graphs. This data
structure allows to effectively implement crossover and mu-
tation operators. The experimental results, obtained by us-
ing three standard databases, confirmed the effectiveness of
the method.

1. Introduction

Methods for combining classification results provided by
different experts represent one of the most widely studied
topics in the fields of Machine Learning and Pattern Recog-
nition [5, 6, 7]. Such methods have shown their effective-
ness in a number of applications and many papers have
been published in the literature which demonstrate, either
theoretically or heuristically, the advantages of using many
classifiers rather than a single one [9]. Nonetheless, us-
ing simultaneously multiple classifiers may result in some
cases in a reduction of the overall performance. In fact,
assuming that all classifiers to be combined are equally reli-
able, independently from their specific performance, the re-
sponses provided by some of them may generate consensus
on a wrong decision, even if other classifiers in the com-
bining pool provided the correct class. This drawback can

be partially overcome by introducing some confidence or
performance measures to weight the results provided by the
classifiers, thus giving more importance in the combining
rule to the responses of top performing classifiers. In this
case, however, some of the advantages of classifiers combi-
nation may be lost because less performing classifiers may
correctly recognize those samples which have not been ad-
equately learned by the top one.

In a previous work [2], we have tried to overcome the
above problems by considering the whole set of responses
provided by the experts for an unknown sample, as repre-
sentative of the collective behaviour of the combining pool
when classifying that sample. In other words, we have re-
formulated the classifier combination problem as a pattern
recognition one, in which each pattern is represented by the
set of class labels provided by the experts. Thus, the role
of the combiner is that of estimating the conditional prob-
ability of each class, given the set of labels provided by
the experts for each sample of a training set. We adopted
a Bayesian Network (BN) to automatically infer the joint
probability distributions between the outputs of the classi-
fiers and the classes. This choice is motivated by the fact
that BN’s provide a natural and compact way to encode joint
probability distributions through graphical models, and al-
low to gain understanding about complex problem domain.

This paper represents a further development along this
direction, in that we learn the structure of the BN by means
of an Evolutionary algorithm, which benefits from a direct
encoding scheme of the BN structure, as well as from ge-
netic operators explicitly devised for it.

There are in the literature other few approaches for evo-
lutionary learning of the Bayesian Network structure [11]
but their main drawback is the use of data structures for
representing DAG’s in the form of adjacency matrix: this
data structure makes difficult to implement genetic opera-
tors and does not guarantee that the new generated individ-
uals are DAG’s. The effect is twofold: on one hand, it is
necessary to verify that new generated individuals satisfy
the properties of DAG and this is a time consuming task;



on the other hand, the individuals not representing DAG’s
must be deleted making less efficient the exploration of the
search space.

The remainder of the paper is organized as follows: Sec-
tion 2 illustrates the architecture of the combining method.
Section 3 discusses the evolutionary algorithm for evolving
DAG’s. Section 4 reports the experimental results and some
concluding remarks.

2. The architecture of the combiner

Consider the responsese1, . . . , eL provided by a set of
L classifiers (experts) for an input samplex in a N class
problem, and assume that such responses constitute the in-
put to the combiner, as shown in figure 1. The combiner
can be defined as a “higher level” classifier that works on a
L-dimensional discrete-values feature space.

It is assumed that the combiner uses a supervised learn-
ing strategy, where the learning procedure consists in the
observation of the set of responsese = {e1, . . . , eL} and
of the “true” class labelu of a samplex, for computing
p(u|e1, . . . , eL). Once this conditional probability has been
learned, the combiner provides the outputû for each un-
known input sample, as the most probable class given the
expert observations, by the following expression:

û = arg max
u∈C

p (u|e1, ..., eL) (1)

whereC is the set of classes. Considering the definition
of conditional probability and omitting the terms not de-
pending on the variableu to be maximized, Eq. (1) can be
rewritten as:

û = arg max
u∈C

p (u, e1, ..., eL). (2)

that involves only the joint probabilitiesp (u, e1, ..., eL).
Hence the combining problem represented in Eq. (1) is
equivalent to that of maximizing the joint probability in Eq.
(2): this problem may be effectively been solved by using
Bayesian Networks.

In the next subsections we will introduce some basic
concepts and some mathematical properties of Bayesian
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Figure 1. The architecture of our combiner.

Networks, as well as the basic concepts relative to Bayesian
Network learning. A more detailed description of the
Bayesian Networks theory can be found in [4].

2.1. Bayesian Networks Properties

A BN allows the representation of a joint probability law
through the structure of a Direct Acyclic Graph (DAG). The
nodes of the graph are the variables, while the arcs are their
statistical dependencies. An arrow from the generic nodei

to nodej has the meaning thatj is conditionally dependent
on i, and we can refer toi as the parent ofj. For each
node, a conditional probability quantifies the effect that the
parents have on that node.

Considering that a DAG describes the statistical depen-
dencies among variables, the conditional probability distri-
bution of a random variableei, given all the other, can be
simplified as follows:

p( ei | paei
, ndei

) = p( ei | paei
) (3)

wherepaei
indicates the set of nodes which are parents of

nodeei, andndei
indicates all the remaining nodes. Eq (3),

known as causal Markov property, allows the description of
the joint probability of a set of variables{u, e1, . . . , eL} as:

p (u, e1, . . . , eL) = p (u | pau )
∏

ei∈L

p ( ei | paei
) (4)

In case of a node having no parents, the conditional prob-
ability coincides with the a priori probability of that node.
It is worth noticing that the nodeu may be parent of one
or more nodes of the DAG. Therefore, it may be useful to
divide theL nodes of the DAG in two groups: the first one
Lu contains the nodes having the nodeu among their par-
ents, and the second oneLu the remaining nodes. With this
assumption, the Eq. (4) can be rewritten as:

p (u, e1, . . . , eL) =

= p(u| pau)
∏

ei∈Lu

p(ei| paei
)

∏

ei∈Lu

p(ei| paei
) (5)

Indicating witheu the subset of the variables ine which
are directly connected to the nodeu, we can make explicit
the following terms in Eq. (5):

P (u, eu) = p (u | pau )
∏

ei∈Lu

p ( ei | paei
) (6)

and
Q(e) =

∏

ei∈Lu

p ( ei | paei
). (7)

Finally, Eq. (6) and Eq. (7) allow to generalize Eq. (2)
as follows:

û = arg max
u∈C

p(u, e1, . . . , eL) =



= arg max
u∈C

P (u, eu) Q(e) =

= arg max
u∈C

P (u, eu) (8)

Eq. (8) shows that the termQ(e) can be discarded since it
is constant in the variableu to be maximized. Thus, this
approach detects the experts that do not add information to
the choice of̂u, or, in other words, selects a reduced set of
relevant expertseu whose outputs are actually used by the
combiner to provide the final output.

2.2. Learning Bayesian Network

BN estimates the joint probability distribution by a su-
pervised procedure that allows to learn, from the training
samples, both the network structure and the parameters of
such a probability distribution.

Let us denote withSh the structure of the DAG, withΘS

the set of parameters describing the conditional probability
distributions of the variablesei and withD the training set
of samples. In our study, each sample ofD, corresponding
to a patternx to be classified, is made of both the ordered
list of labels provided by the classifiers for that pattern, and
the “true” label ofx.

Learning structure and parameters from data means find-
ing the values forΘS andSh that best fit the training setD,
i.e. that maximize the probabilityp(Sh,ΘS |D):

arg max
Sh, ΘS

p(Sh,ΘS |D) (9)

Using the Bayes’ rule,p(Sh,ΘS |D) can be written as:

p(Sh,ΘS |D) = p(ΘS |D,Sh) p(Sh|D) (10)

and therefore Eq. (9) becomes:

arg max
Sh, ΘS

p(ΘS |D,Sh) p(Sh|D) (11)

The termp(ΘS |D,Sh) allows to estimate the conditional
probability among variables, while the termp(Sh|D) is
aimed at capturing the relationship among the variables and
hence the structure of the dependencies in the DAG.

Under the assumptions made in [4], once a DAG struc-
tureSh has been fixed,p(ΘS |D,Sh) can be directly com-
puted from the training data. As a consequence, the only
term that matter in Eq. (11) isp(Sh|D). This term can be
written as:

p(Sh|D) =
p(D|Sh)p(Sh)

p(D)
(12)

Under the assumption that every structureSh is equally
likely (i.e. p(Sh) is a constant) and considering that we
are interested in evaluating howp(Sh|D) varies depending

on the values ofSh, the only term to be considered is the
likelihoodp(D|Sh). Such term can be written as it follows:

p(D|Sh) = Score(Sh) =

L∏

i=0

localscore(i) (13)

wherelocalscore(i) is a function defined in [4], which de-
scribes the local behavior of each variableei. It is worth
noticing that any change inSh requires that only the local
scores of the nodes affected by the change need to be com-
puted for estimatingScore(Sh).

Summarizing, the learning of a Bayesian Network can
be performed by finding the DAG structureSh, which max-
imizes the functionScore(Sh). To solve this problem,
we have defined an evolutionary algorithm which encodes
a DAG structure in each individual and uses the function
Score(Sh) as fitness function. In the next Section, a de-
tailed description of the proposed evolutionary algorithm
will be provided.

3. Evolutionary Bayesian Network Learning

Evolutionary Algorithms are probabilistic search tech-
niques inspired by the principle of Natural Evolution well
suited for problems where the solution space is very large,
multidimensional, complex and discontinuous [3]. They
work on a population of individuals, each encoding a pos-
sible solutions of the problem at hand. The algorithm starts
by randomly generating a population of a certain number of
individuals. Then the goodness of each individual as solu-
tion for the considered problem is measured by means of a
fitness function. After this evaluation process, a new popu-
lation is generated by choosing in the current population the
individuals to be modified by suitable operators. This pro-
cess is iterated until a termination criterion is not fulfilled.

In our case each individual encodes a DAG structure. Be-
fore describing the proposed encoding method, let us briefly
recall some basic concepts about DAG’s. In the DAG ter-
minology asourceis a node with no incoming arcs while a
sink is a node with no outgoing arcs. A DAG must have at
least one source and at least one sink. In a DAG structure
nodes are partially ordered: a nodei comes before a node
j if it exists a directed path fromi to j. This order relation
implies a topological sort, i.e. an ordering of the nodes such
that each node comes before all nodes having it as parent.
The data structure that we have devised for encoding DAG
structures, calledmultilist (ML), consists of two basic lists.
The first one, calledmain list, contains all the nodes of the
DAG ordered according to the partial ordering previously
defined. This implies thatsourcenodes occupy the first po-
sitions, whilesinknode, the last positions. Moreover, nodes
having both incoming and outgoing arcs are inserted in the
main listafter their parents. To each node of themain list is



associated a second list calledsublist, representing the out-
going connections among that node and the other nodes in
the DAG. More specifically, ifsi is thesublistassociated to
thei− th element of themain list, then it contains informa-
tion about the outgoing arcs possibly connecting thei − th

element and the other elements following it in themain list,
ordered according to the position of such elements. Since
an arc may be present or not, each element of asublistcon-
tains a binary information: 1 if the arc exists, 0 otherwise
(see figure 2). Note that the length of thesublistsdecreases
as the position of the element in the main list increases: as-
suming that there areN nodes in the DAG, the first sublist
contains(N−1) elements, the second one(N−2) elements
and so on. In fact, the informations about the arcs connect-
ing a node and the previous ones in the main list are already
expressed in the previous sublists. As a consequence, the
sublist of the last element in themain list is void. Thus a
ML has a triangular shape: the base of the triangle is the
main list and containsN elements, while the height is rep-
resented by the first sublist containing(N − 1) elements. It
is worth noting that ML have been defined in such a way
that they can only represent DAG. This data structure also
allows an easy implementation of the genetic operators: we
have defined two basic operators, called crossover and mu-
tation. The crossover operator swaps parts of two ML’s. In
this way, it is possible to generate new solutions by com-
bining parts of previously generated ones. The mutation
operator, instead, can modify a single graph in two differ-
ent ways: (i) swapping two elements of the main list; (ii)
adding and/or deleting one or more arcs.

3.1 Crossover Operator

The crossover is applied to two ML’s,ML1 andML2,
called in the followingparents, respectively encoding the
DAGs S1 andS2, and generates two new ML’s,ML

′

1 and
ML

′

2, calledoffspring, respectively encoding the DAG’sS
′

1

andS
′

2.
The operator is obtained by combining two basic opera-

tions that can be applied to a ML. The former, calledt-cut,
splits a generic ML of lengthN in two ML’s, the first one
consisting of the firstt nodes and the second one of the re-
mainingN − t nodes. The latter operation, calledmerge,
given two ML’s ML1 andML2, respectively encoding the
DAG’s S1 andS2, yields a new ML of length(N1 + N2),
which encodes a DAG including both the nodes ofS1 and
S2.

3.2 Mutation Operator

Two mutation operators have been defined. The first one
modifies themain list, while the second one affectssublists
elements. In the following these mutations will be called
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Figure 2. Two DAG’s (left) and their encoding
multilists (right).

respectivelym ands mutation.
Them–mutation performs a permutation on the elements

of the main list, as it randomly picks two elements on the
main list and swaps their position. The effect is that of
changing the dependencies among the variables. We can
say that this operator makes a sort of macro-mutation, as
it can modify the dependencies among more than two vari-
ables. If we consider the DAG in figure 2(b), for instance,
the swap of the second and fifth node in the multilist also
modifies the dependencies among the nodes 2, 4, 3. Given
a multilist, this operator is applied to itsmain listaccording
to a probability valuepm.

The s–mutation actually gives place to a sort of micro-
mutation, because it does not modify the structure of the
ML, but only the values of thesublistselements. Such an
operation is applied with probabilityps. For each element
of the sublists,ps represents the probability of flipping its
value from 0 to 1, or viceversa. Thus the effect of this oper-
ator is that of adding or deleting arcs in the DAG.

4. Experimental Results and Discussion

The proposed method has been tested on three standard
databases, namely the NIST, and the Multiple Feature (MF)
and the IMAGE database from the UCI Machine Learning
Repository, respectively. The first two databases contains
handwritten digits, while the third one images with different
textures.

In each experiment we split the samples of each class
in three sets: TR1 used for training each single classifier,
TR2 for training the Combiner, and TS as test set for per-
formance evaluation. The three sets have been extracted in



such a way to be statistically independent.
As with respect to the classifiers, we have used two dif-

ferent schemes: a Back-Propagation neural network (BP)
[10] and a Learning Vector Quantization neural network
(LVQ) [8]. During a training phase, each classifier was sep-
arately trained on TR1. For each database, the pool of ex-
perts has been obtained by generating an ensemble of BP
nets and an ensemble of LVQ nets.

In the first experiment, we have extracted 3000 samples
of each class, and they have been divided into three sets
equally numerous to form TR1, TR2 and TS. The samples
belonging to each data set have been described by means
of two different feature sets, namely the Central Geomet-
rical Moments (CGM) of the binary images up to the 7-th
order, and the mean of the pixels belonging to the8 × 8
disjoint windows that can be extracted from the binary im-
age (MBI). Thus, each sample is described by means of 33
real variables in the first case, and by means of at most 64
real values in the second one. As with regards to the classi-
fiers, twelve experts have been obtained by using with each
feature sets, three randomly initialized nets for each classi-
fication scheme, i.e. 3 BP experts using MBI, 3 LVQ using
MBI, 3 BP using CGM, and 3 LVQ using CGM.

In the second experiment, the 2000 available samples
have been randomly divided into three sets, with TR1 con-
taining 700 samples, and TR2 and TS including 650 sam-
ples each. The pool of experts has been obtained by com-
bining each classification scheme with the six feature sets
included in the MF Database, totaling twelve experts.

In the last experiment, TR1 was made of 210 samples,
30 per each of the 7 classes, and both TR2 and TS contain
1050 elements, 150 samples per class. The pool of experts
has been obtained by combining two ensembles of BP and
LVQ nets, each containing 10 different experts obtained by
randomly initializing the nets.

Table 1 shows the classification results. The first two
columns report, respectively, the results of the worst and the
best single expert of the pool, the third column reports the
results of the Bayesian Combiner (BN) implemented by us-

Table 1. Comparison of Classification Results

Worst Best BN EvoBN
Expert Expert Combiner Combiner

NIST 88.26% 96.70% 98.65 % 98.76 %
(88.09%) (96.68%) (98.70%) (98.86%)

MF 69.67% 96.89% 99.10% 99.28%
(64.86)% (96.29%) (100%) (100%)

IMAGE 82.38% 91.00% 91.90% 92.30%
(83.14%) (91.00%) (92.80%) (92.84%)

ing the k2 algorithm [1] to learn the DAG structure. Eventu-
ally, the forth column shows the results of our Evolutionary
Bayesian Combiner (EvoBN).

The data reported in the Table show that EvoBN im-
proves the performance with respect to BN on all the
databases. In particular, it accounts for a reduction of
the errors that ranges from 5% to 20%, depending on the
database. Even if the results of our combiner constitute a
slight improvements with respect to the results of BN, we
believe that they are very promising because they confirmed
that our evolutionary learning algorithms was able to both
explore a very complex search space formed by all possible
DAG structures, and to find effective solutions. Finally, it
is worth noticing that we have reported in Table 1 only the
best results obtained by both EvoBN and BN, even if we
have experimentally found that BN exhibits a higher vari-
ability in the results obtained in different runs with differ-
ent random ordering of the variables. EvoBN, on the con-
trary, provides much more stable results, showing that it less
prone to be trapped in local minima of the search space.
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