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Abstract 
 The problem of offline handwritten Chinese 
character recognition has been extensively studied by 
many researchers and very high recognition rates 
have been reported.  In this paper, we propose to 
further boost the recognition rate by incorporating a 
distortion model that artificially generates a huge 
number of virtual training samples from existing ones.  
We achieve a record high recognition rate of 99.46% 
on the ETL-9B database.  Traditionally, when the 
dimension of the feature vector is high and the number 
of training samples is not sufficient, the remedies are 
to (i) regularize the class covariance matrices in the 
discriminant functions, (ii) employ Fisher's dimension 
reduction technique to reduce the feature dimension, 
and (iii) generate a huge number of virtual training 
samples from existing ones.  The second contribution 
of this paper is the investigation of the relative 
effectiveness of these three methods for boosting the 
recognition rate. 
 
 
1. Introduction 
 The problem of offline handwritten Chinese 
character recognition has been extensively studied by 
a lot of researchers, and very high recognition rates 
have been reported [1-20].  One difficulty often 
encountered is the lack of sufficient samples for 
training up the classifier.  In most of the proposed 
systems, feature vectors of a few hundred dimensions 
are extracted from the input character.  In order to 
have a non-singular class covariance matrix, the 
number of training samples must be greater than the 
feature dimension.  Moreover, for statistical accuracy, 
the number of samples should be a lot more than this 
minimum.  In practice, three techniques can be used to 
deal with this problem.  The first is to regularize the 
class covariance matrix, as in the modified quadratic 
discriminant functions (MQDF) proposed by Kimura 
et al [1].  The second is to reduce the feature 

dimension using Fisher's dimension reduction 
technique [21].  The third method is to generate a huge 
number of artificial training samples by applying 
distortions to existing training samples [15-20].  The 
first two techniques are very popular and have been 
adopted in most of the reported systems including 
those with the highest recognition rates [2,4,5,10].  In 
this paper, we propose to apply all the three techniques 
together and we show that this can boost the 
recognition rate to a record high of 99.46% on the 
ETL-9B database.  We also carried out a study on 
evaluating the relative effectiveness of these three 
techniques for boosting the recognition rate. 
 
2. Regularization, Fisher’s linear 

discriminant, and distorted sample 
generation 

2.1 Regularization 
 Let n be the feature dimension, x be the unknown 
feature vector to be classified, μj and Σj be the mean 
vector and covariance matrix respectively of class j, λi 
and φi be the ith largest eigenvalue and eigenvector of 
Σj respectively.  The quadratic discriminant function 
(QDF) is:  
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 To alleviate the problem of inaccurate estimation 
of the covariance matrix, two forms of modified QDFs, 
namely MQDF1 and MQDF2 [1], are often adopted, 
with MQDF1 given by: 
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where h2 is a constant and 1< k < n. 
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2.2 Fisher’s Linear Discriminant 
 The technique of Fisher’s linear discriminant aims 
at reducing the dimension of the feature space while 
maximizing the separation of different classes of 
samples by finding some optimal projection planes wi.  
It can be shown that wi are solutions to the generalized 
eigenvector problem [21]: 

B i i W iS w S wλ=   i = 1, 2, ... 

where SB and SW are the between-class and within-
class scatter matrices respectively. 
 
2.3 Distorted sample generation 
 Let f(x,y) be an original handwritten character.  
By applying distortions to f(x,y), additional samples 
can be obtained.  Let g(u,v) be the distorted character.  
The distortions are achieved via the mapping functions 
hx and hy such that u = hx(x,y) and v = hy(x,y) for all x 
and y.  In this paper, we follow the mapping functions 
as described in [15] that take care of both shearing and 
local resizing.  First we set:  

( ) ( )( )1 1 1 1, ,x nu h x y w a b x k y c= = + + , and  

( ) ( )( )2 2 2 2, ,y nv h x y w a b y k x c= = + + , 

where k1 and k2 are the shearing slopes, a1 ≠ 0 and a2 ≠ 
0 are constants, c1 and c2 are constants to align the 
centroid back to the original position, b1 and b2 are 
functions to linearly scale the original coordinates to 
the interval [0,1], and wn is a nonlinear warping 
function for producing local variations on the size of 
sub-patterns. 
 Two nonlinear warping functions w1 and w2 are 
implemented in order to produce more kinds of 
variations.  The choice between w1 and w2 is selected 
randomly with a certain pre-defined probability.  The 
two warping functions are plotted in Figure 1 and an 
example of distorted sample generation is illustrated in 
Figure 2. 
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3. Normalization and feature extraction 
 The input character in the form of a 64x64 binary 
matrix to be recognized is first preprocessed to remove 
isolated noise pixels.  The stroke boundaries are 
extracted and a 4-direction chain code is assigned to 
each boundary pixel.   

 

 
Figure 1: Warping functions w1(a,t) and w2(a,t). 
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Figure 2:  (Left) Genuine handwritten sample “近”; 

(Right) Artificially generated sample. 
 Nonlinear normalization is then applied to 
normalize the stroke distribution of the character.  We 
adopt two nonlinear normalization methods: NLN-T 
[6] and NLN-Y [7], and extended them to 2D NLN-T 
and 2D NLN-Y respectively by the method in [8].  In 
implementing the NLN-T method [6], we set α = β = 
0.22 for all the stoke pixels.  A deficiency in the 
original NLN-T method is that most of the white 
pixels outside the convex hull of the character (i.e., 
near the character frame boundary) generally possess a 
large value of α(i,j) and β(i,j), leading to the formation 
of completely blank rows and columns in the 
normalized image.  This is not desirable for 
recognition because the normalized characters tend to 
have large variations in size.  To rectify this problem, 
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we apply an edge penalty to scale down α(i,j) and β(i,j) 
for these pixels by multiplying them with a constant 
less than 1.0.  In our experiments, this constant is fixed 
at 0.2.  The unified line density at a point, as needed in 
the 2D normalization process, is taken as [α(i,j) + 
β(i,j)]/2.  In implementing the NLN-Y method, we 
directly follow the method named “line density by 
inscribed circle” as described in [7].  For converting 
the 1D NLN-T and 1D NLN-Y to their 2D counterpart, 
the technique suggested by Horiuchi et al. [8] is 
implemented.  We do not include the offset functions 
θx and θy for smoothing the line densities since we 
empirically find that this would produce adverse 
effects to the overall recognition rates.  The parameter 
σ in the Gaussian mask for 2D normalization is set to 
16.0 in all experiments. 
 Since nonlinear normalization distorts the original 
character, the stroke directions are distorted.  Besides 
causing problems in discriminating between characters 
such as “千 ” and “干 ”, the normalized character 
strokes often look very rugged instead of smooth.  
Hence we assign the direction codes in the original 
character to the stroke pixels in the normalized 
character [11].  The character is split into four sub-
frames with each sub-frame containing pixels of one 
direction code only.  Each sub-frame is then filtered 
by a 16x16 mask and sampled at an 8x8 sampling grid 
to give 64 feature values.  The mask is of an improved 
design such that for each pixel, the contribution to 
each of its four neighboring sampling grid points is 
approximately inversely proportional to the Euclidean 
distance and the total contribution is 1 (Figure 3).  
This makes the extracted features more invariant to 
local variations of stroke positions.  With 4 sub-frames, 
a 256-D feature vector is obtained.  Variable 
transformation (by taking the square root) is then 
applied to each feature value to make the statistical 
distribution more Gaussian-like [17]. 
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Figure 3:  Improved 16x16 mask (scaled by 100).  
 

4. Experimental results 
 The handwritten character samples from the ETL-
9B database are used for evaluation of the algorithms.  
The database contains 3,036 character classes with 
200 samples per class.  Following the partitioning 
scheme in [10], for each character class, we take 
sample number 21 - 180 to form the training set while 
the remaining samples form the test set. 
 Regarding the generation of distorted character 
samples, the constant a in the warping functions 
controlling the extent of local resizing is randomly 
taken from the interval [-1.6, +1.6].  Shearing 
constants k1 and k2 are random numbers picked from  
[-0.17, +0.17] and [-0.20, +0.20] respectively.  Finally, 
the probabilities of applying warping function w1 and 
w2 are fixed at 0.8 and 0.2 respectively. 
 We performed five sets of experiments to fully 
evaluate our recognition system: 
• [Regularization] only 
• [Fisher’s linear discriminant] only 
• [Distorted sample generation] only 
• [Regularization + Fisher’s linear discriminant] 
• [Regularization + Fisher’s linear discriminant + 

Distorted sample generation] 
 The Bayes classifier assuming Gaussian statistics 
was employed with the regularization method as given 
in MQDF1.  The 2D NLN-T and 2D NLN-Y methods 
were used for nonlinear normalization.  We found that 
after applying the edge penalty as explained above, 2D 
NLN-T performed better than 2D NLN-Y.  The 
adoption of the direction code from the original 
character (before normalization) as well as using the 
improved 16x16 mask also helped to increase the 
recognition rate.   
 We first used the regularization method alone 
without the distortion model and Fisher’s linear 
discriminant.    The results are given in Table 1.  The 
best recognition rate achieved is 99.19%. 
Table 1: Recognition rates (%) obtained by using 

regularization only. 
Regularization constant 

in MQDF1 
Recognition rate (%) 

(2D NLN-T) 
0.75 99.17 
0.85 99.18 
0.95 99.19 
1.05 99.19 
1.15 99.19 
1.25 99.19 
1.50 99.19 
2.00 99.17 
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 We then applied Fisher’s discriminant alone.  As 
the original feature dimension is 256 and the number 
of training samples per class is only 160, the reduced 
dimension should be within the range of 1 to 159 in 
order for Σ-1 in the QDF equation to exist.  Table 2 
summarizes our findings.  Relatively low recognition 
rates are attained, implying that Fisher’s linear 
discriminant by itself is not very effective.  A Fisher’s 
dimension of 60 gives the best recognition rate of 
96.90%. 
Table 2: Recognition rates (%) obtained by using 

Fisher’s linear discriminant only. 

Fisher dimension Recognition rate (%) 
(2D NLN-T) 

20 92.77 
40 96.81 
60 96.90 
80 96.10 

100 94.26 
120 89.69 
140 74.63 

 The third experiment is on the effectiveness of 
applying distorted sample generation alone.  We 
generated additional training samples from each 
genuine training sample.  As summarized in Table 3, 
the recognition rate increases with the number of 
generated samples.  With a total of 16,000 (= 100x160) 
training samples per class, the recognition rate reaches 
99.37%, showing that distorted sample generation is 
the most effective technique among the three methods. 
Table 3: Recognition rates (%) obtained by using 

distorted sample generation only. 
Distorted samples per 

genuine sample 
Recognition rate (%) 

(2D NLN-T) 
4 98.50 
9 99.09 
24 99.29 
49 99.35 
74 99.36 
99 99.37 

 Next, we combined the regularization method 
with Fisher's linear discriminant.  In the Fisher's 
discriminant, we also regularized SB and SW such that 
for each matrix, we added the 201st largest eigenvalue 
of the matrix to all the diagonal elements.  The 
nonlinear normalization method adopted was either 
2D NLN-Y or 2D NLN-T.  From the results in Table 4, 
it is observed that combined technique performs better 
than either of the methods alone.  Furthermore, using 
the modified SB and SW in Fisher's linear discriminant 
also leads to some improvement.  A recognition rate of 
99.31% is achieved, which is comparable to those 

attained by Liu using discriminative training [4], and 
Gao and Liu using LDA compound distance [5]. 
Table 4: Recognition rates (%) obtained by using 

regularization and Fisher’s discriminant. 

 
Original 
Fisher’s 
equation 

Fisher’s 
equation with 
modified SB 

and SW 

Fisher 
dimen-

sion 

Regulari-
zation 

constant  
in MQDF1

2D 
NLN-Y 

2D 
NLN-T 

2D 
NLN-Y

2D 
NLN-T

160 

0.55 98.98 99.24 98.99 99.24 
0.75 98.99 99.26 99.02 99.27 
0.95 98.99 99.26 99.02 99.29 
1.15 98.99 99.24 99.02 99.28 
1.50 98.97 99.22 99.02 99.27 

200 

0.55 99.00 99.25 98.99 99.25 
0.75 99.01 99.28 99.00 99.29 
0.95 99.01 99.26 99.02 99.31 
1.15 99.00 99.24 99.01 99.31 
1.50 98.97 99.23 99.01 99.29 

 Finally, we combined regularization, Fisher's 
linear discriminant, and distorted sample generation 
together.  In the Fisher's discriminant, we regularized 
each of SB and SW by adding the 217th largest 
eigenvalue of the matrix to its diagonal elements.  The 
results are shown in Table 5.  The highest recognition 
rate is 99.46%. 
Table 5: Recognition rates (%) obtained by using 

regularization, Fisher’s discriminant and 
distorted sample generation. 

 

 
Distorted sample per  

genuine sample 
24 74 

Fisher 
dimen-

sion 

Regulari-
zation 

constant  
in MQDF1

2D 
NLN-Y 

2D 
NLN-T 

2D 
NLN-Y

2D 
NLN-T

176 

0.10 99.26 99.37 99.31 99.41 
0.20 99.28 99.38 99.31 99.43 
0.25 99.28 99.39 99.30 99.43 
0.30 99.28 99.41 99.30 99.44 
0.40 99.28 99.40 99.30 99.44 
0.50 99.28 99.40 99.29 99.43 

216 

0.10 99.28 99.40 99.32 99.43 
0.20 99.31 99.42 99.33 99.46 
0.25 99.30 99.42 99.32 99.46 
0.30 99.30 99.42 99.32 99.45 
0.40 99.30 99.42 99.31 99.45 
0.50 99.30 99.41 99.31 99.44 
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5. Discussions and conclusions 
 The improved feature extraction mask, the 
modified nonlinear normalization method, and 
Fisher’s equation with regularized SB and SW help to 
give more stable statistical estimations in training the 
classifier.  Moreover, by combining regularization, 
Fisher's discriminant and distorted sample generation, 
we have achieved a record high recognition rate of 
99.46% on the ETL-9B database.  To our knowledge, 
this is the highest recognition rate reported in the 
literature so far.  We have also compared the relative 
effectiveness of these three methods in boosting the 
recognition rate.  Our experiments show that distorted 
sample generation is the most effective, followed by 
regularization and Fisher's discriminant. 
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