
German Lute Tablature Recognition

Christoph Dalitz Christine Pranzas

Niederrhein University of Applied Sciences

Reinarzstr. 49, 47805 Krefeld, Germany

christoph.dalitz(at)hsnr.de, christine(at)pranzas.com

Abstract

This paper describes a document recognition system for

16th century German staffless lute tablature notation. We

present methods for page layout analysis, symbol recogni-

tion and symbol layout analysis and report error rates for

these methods on a variety of historic prints. Page layout

analysis is based on horizontal separator lines, which may

interfere with other symbols. The proposed algorithm for

their detection and removal is also applicable to other sin-

gle staff line detection problems (like percussion notation),

for which common staff line removal algorithms fail.

1. Introduction

During the 16th century, a great number of music no-

tations for string instruments were in use. For lute alone,

more than four different notational systems were used,

known as “Italian”, “French”, “Spanish” and “German” tab-

lature based on their predominant regional use [1]. Of these,

only two systems are still in general use today: “Spanish”

tablature has developed into the modern guitar tablature,

and “French” tablature is the tablature system preferred by

lutanists today. The peculiarity of German lute tablature is

that it does not use staff lines to identify the courses of the

instrument, but uses a staffless notational system with sym-

bols semantically different from the other notations.

There is a large body of historic tablature prints and

manuscripts preserved; a fairly complete catalog of extant

sources can be found in [2]. These provide an interesting

application area for document recognition techniques. Ac-

tually, one of the authors has already developed a recogni-

tion system for tablature system utilizing staff lines [3]. An-

other recognition system was recently developed indepen-

dently by Wei et al. for modern guitar tablature [4]. Both of

the existing systems use the staff lines for page layout anal-

ysis. The system by Wei et al. additionally assumes that the

tablature symbols be only numbers (0-9), and it relies on

a strictly proportional horizontal spacing of chords, an as-

Table 1. Symbol meaning in German tablature

up to the sixth position (“fret”). “Course 1”

means the highest string.

fret no: 0 1 2 3 4 5 6

course 1 5 e k p v e

course 2 4 d i o t d

course 3 3 c h n Ŋ z c

course 4 2 b g m r y b

course 5 1 a f l q x a

(course 6) A B C D E F G

sumption that does not hold for historic prints. So neither

of the existing OTR systems is applicable to the staffless

German tablature, thus making new approaches and experi-

ments necessary which are described in the present paper.

We have implemented our recognition system as a

“toolkit” for the Gamera framework for document image

analysis1. Gamera is a cross platform Python library for

building custom recognition systems that has already been

used successfully for the recognition of various non stan-

dard document types like documents in the Navajo language

or Byzantine chant notation [5]. Like Gamera itself, we

make our source code freely available under the GNU gen-

eral public license2.

2. German lute tablature

Tablature is a musical notation for string instruments that

does not specify the sound of the music, but rather when and

in which positions (“frets”) the strings (“courses”) of the in-

strument are stopped. Most tablature systems use staff lines

to indicate the course and numbers or letters to specify the

fret, such that the same fret character can appear on differ-

ent lines. German tablature in contrast does not use staff

1see http://gamera.sourceforge.net/
2see http://otr4gamera.sourceforge.net/

This is a self-archived version of a paper that appeared in the Proceedings of the

10th International Conference on Document Image Analysis and Recognition (ICDAR), pp. 371-375 (2009)

c© 2009 IEEE. Personal use of this material is permitted. Permission of IEEE must be obtained for all other uses, including reprinting/republishing this

material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works.



separator

line

chord of

three notes

beamed

flag group

accidental

note

bar

linerhythm

flag

metric

sign

Figure 1. Common properties of two historic German lute tablature prints: Judenkünig 1532 (left)

and Gerle 1552 (right).

lines, but uses unique characters for specifying both course

and fret as shown in Tbl. 1.

When the alphabet runs out after the fifth course, the

characters are periodically reused by placing a stroke above.

As the sixth course was added to the instrument after

the original invention of German lute tablature, different

crutches were used for its frets like upper case letters,

stroked through numbers, numbers with a stroke above or

even mixtures of these.

In the following, we will call the symbols from Tbl. 1

“notes” because they uniquely specify pitches (assuming a

fixed tuning of the instrument), like the notes in common

music notation. Fig. 1 shows excerpts of two typical historic

prints. While the individual shapes for the “note” charac-

ters can be different, there are a number of common general

properties:

• The tablature is organized in lines which are separated

by wide horizontal lines.

• Notes that are plucked simultaneously are vertically

aligned to form “chords”.

• Rhythm flags specifying the duration to the next chord

appear above the notes. The flags can be beamed simi-

lar to modern music notation resulting in a finite set of

grid shaped flag groups.

While the symbol variety between different prints is best

treated with a training based statistical classifier, these com-

mon features are to be utilized for page segmentation and

symbol layout analysis.

3. The recognition system

The recognition process in our system consists of the

four steps preprocessing, segmentation, classification and

symbol layout analysis which are performed sequentially.

These steps are described in detail in the following subsec-

tions.

The output of our system is an ASCII encoding of the

tablature in Dalitz’ extension of the abc format3. Due to the

current lack of a widely accepted lute tablature encoding

standard we have used this format because of the availabil-

ity of commodity software. There is however nothing spe-

cific about this code, and the system can easily be adjusted

to different output formats like Crawford’s TabCode [6].

3.1. Preprocessing

The images were scanned with a resolution of 300 dpi

and binarized with Otsu’s global threshold. To improve the

quality of the resulting onebit images, we have removed

black borders (“copy margins”) by flood filling from black

border pixels, corrected a possible rotation with the pro-

jection profile based method described in [5] and removed

black and white speckles as connected components contain-

ing less than eight pixels on the original and inverted (for

white speckles) image. Remaining speckles were left to be

sorted out at the classification stage.

Some prints (e.g. Waissel 1573 in Tbl. 3) showed highly

fragmented symbols due to poor printing quality. For these

prints, we additionally did a morphological closing opera-

tion with a 3× 3 structuring element. This somewhat reme-

died the fragmentation, but introduced other problems (see

Sec. 4).

3.2. Page segmentation

The goal of the page segmentation step is to segment

the image into lines of tablature and to remove the sepa-

3see http://www.lautengesellschaft.de/cdmm/

2



rator lines. Most human readers probably use the texture of

the rhythm flags to identify tablature lines. This approach

however requires knowledge about the symbol shapes in a

particular print and is thus classification based and not im-

age independent. We therefore utilized instead the separa-

tor lines for page segmentation, which must be found and

removed anyway, as they often touch the symbols.

Formally, the problem of finding and removing the sep-

arator lines is similar to the problem of staff line removal in

common music notation. None of the algorithms described

in [7] is however applicable to single staff line removal due

to their reliance on an estimator “staffspace height” for the

distance between adjacent lines within the same staff group.

We therefore devised our own algorithm, based on Carter’s

idea of analyzing the adjacency of black vertical runlengths

[8].

This approach requires an estimator for the line height of

the separator lines. To be able to estimate this value from

the maximum in the histogram of black vertical runlengths

[7], we followed the idea in [5] to filter out some connected

components, so that the runlength histogram of the remain-

ing image is dominated by the separator lines. We estimate

two dimensions character height (the height of a “note”

character) and line height (the height of a separator line)

as follows:

• character height is set to the median height of all con-

nected components (CCs)

• to avoid that separator lines form a single CC with

touching vertical lines (from bar lines or a surround-

ing frames), we remove all vertical black runlengths

greater than character height

• of the remaining CCs, all CCs with an aspect ratio

width/height < 3 are removed so that only wide CCs

remain, of which most are horizontal lines

• on the resulting filtered image, we set line height to the

most frequent black vertical runlength; other than for

the estimation of line height, the filtered image is not

used

Our algorithm for finding the separator lines first collects

line segment candidates as filaments of adjacent black ver-

tical runs shorter than 2∗ line height, a threshold that breaks

the lines at crossing symbols. These filaments are then di-

vided into those wider than 10% of the total image width

and those narrower. The wide filaments are further par-

titioned into equivalence classes of filaments, where the

equivalence inducing criterion is a vertical distance less

than 6 ∗ line height, a threshold that allows for some curva-

ture and vertical offsets within a line. Each of the resulting

filament sets forms a horizontal line, but not necessarily a

separator line.

To pick the separator lines from these “horizontal lines”,

they are again partitioned into equivalence classes, where

now the equivalence inducing criterion is a vertical distance

less than 3∗character height, a distance that corresponds to

a two part chord with a rhythm flag. In each resulting class,

we pick the “horizontal line” containing the most vertical

runlengths as a separator line. From the separator lines, we

estimate the tablature system height as the median distance

between adjacent separator lines. As separator lines are of-

ten broken in the historic print, the lines found so far are

only approximate, and occasionally even a complete line

might have been missed.

We have therefore added two final steps to the line find-

ing algorithm, taking all line filaments (wide and narrow)

into account. By adding filaments close to the least square

fitted separator line, gaps are filled and filaments lying too

far away are replaced with closer filaments in the line.

Moreover, missed separator lines are detected by looking

for filaments around the middle between two lines that are

more than 1.5 ∗ system height apart, a distance unlikely to

occur when all systems are of similar height as was the case

in all examined prints.

As the found lines consist only of the line segments with-

out possibly superimposing objects, none of the sophisti-

cated methods described in [7] is necessary to separate line

segments from symbols. Removing all line segments thus

only removes the lines while keeping touching or crossing

symbols intact.

3.3. Symbol classification

Once the separator lines are found and removed, the indi-

vidual symbols are isolated by connected component label-

ing and then classified with a nearest neighbor (NN) clas-

sifier. For classification, we have chosen the feature set

aspect ratio, moments, volume64regions, nrows4, because

previous experiments on different prints have shown that

from all of Gamera’s builtin features, this combination had

the lowest error rate, both with respect to a holdout error

estimate [3] and a cross correlation error estimate [5].

In addition to the classes representing actually meaning-

ful glyphs, we have introduced a class “trash” for noise.

This was necessary because even after preprocessing the

images were still considerably noisy and we have let the

classifier sort out the noise. As noise can have any shape,

but is typically small, our feature set included the scale vari-

ant feature nrows, which is simply the height of a glyph.

To deal with the problem of broken symbols, we have

used Droettboom’s classification based grouping algorithm

[9]. To deal with the problem of touching rhythm flags

forming beamed groups (see Fig. 1 right), we have trained

beamed groups as a whole using a special class naming con-

vention for the number of stems and rhythm values within

the group, e.g. flag.2.1.4.2 for , i.e. note value

4see the Gamera documentation for their precise definition

3



Figure 2. Examples for bar lines in Waissel
1573 (after preprocessing with closing)

1/2 once followed by note value 1/4 twice. This was possi-

ble, because, unlike in common music notation, the beams

in German lute tablature do not vary in slant direction, but

are of rather fixed shapes.

While the NN classifier turned out to be quite reliable for

notes and rhythm flags, the same did not hold for bar lines.

One reason for this problem was that flagless rhythm stems

(representing a whole note) are identical to bar lines. An-

other, more fundamental problem were broken bar lines in

which the relative position of the parts varied (see Fig. 2).

These made it necessary to set the parameters in Droett-

boom’s grouping algorithm [9] for the maximum number of

parts per group and their distance so high, that the algorithm

became both slow and error prone, due to the necessity to

check too many possible subgraphs.

We therefore devised two additional alternative classi-

fication rules for bar lines. One consists in training and

classifying bar line fragments as bar part and then joining

adjacent bar parts with a small horizontal distance. The

other approach does not include training and is similar to

the separator line detection described in Sec. 3.2, but an-

alyzes the adjacency of horizontal black runlengths rather

than vertical runlengths. Our experimental results described

in Sec. 4.2 show that for prints with fragmented bar lines,

the purely rule based approach outperforms the other two.

3.4. Symbol layout analysis

Once the symbols are classified, they need to be orga-

nized as a linear sequence of chords with rhythm values at-

tached. In the earlier recognition system for French and

Italian lute tablature [3], this grouping was based solely on

building equivalence classes of glyphs based on horizontal

overlap. In the case of German lute tablature, this is how-

ever not sufficient, because rhythm flags can be beamed and

thus span several chords. Moreover, the individual chords

are often printed so close to each other that they overlap

significantly (see Fig. 3).

To deal with beamed flags, we have split the chord

grouping into two steps. First the notes are grouped ac-

cording to their horizontal overlap. Then the note chords

are attached to the rhythm flag with which they have the

largest horizontal overlap, with the additional constraint that

Figure 3. Close by note chords can overlap
and need further splitting (Gerle 1552)

no rhythm flag should have more note chords than stems as

specified in its class name (see Sec. 3.3). Overlapping note

chords can be detected from different symbols at a similar

y-position within the same chord. These are segmented by

matching the chord to a grid of rows and columns.

4. Results

We have tested our recognition system on facsimile

reprints of different 16th century German lute tablature

prints. These facsimile prints were particularly suited for

testing the system, because they reproduce image defects of

the original prints, which the publishers have not tried to

remedy. We have counted the error rates both for the sep-

arator line detection algorithm and the symbol recognition

and grouping.

4.1. Separator line detection

From nine different prints, we have picked a random set

of 20 pages each, resulting in totally 1263 separator lines

on 180 pages. Of these, only three lines were missed and

one line was falsely found, which is an error rate of about

0.3%. The four errors occurred in only two prints, which

had significant show through (Judenkünig 1532) or highly

fragmented lines and characters (Ochsenkuhn 1558). The

fragmentation can have the effect, that not sufficiently many

“wide” filaments are found in the first stage of our line de-

tection algorithm. Nevertheless, even on this print only 3

out of 206 lines were not correctly detected.

4.2. Symbol recognition and grouping

As described in Sec. 3.3, the recognition of bar lines

posed more problems than the recognition of the other sym-

bols. We therefore evaluated our three approaches to bar

line recognition on 140 pages of seven prints. The results

are shown in Tbl. 2, where Gamera stands for NN with

Droettboom’s grouping, bar parts for classifying fragments

and runlength for the rule based approach utilizing a run-

length analysis. It turned out that on prints without broken

4



bar error rate (%)

historic print lines runlength Gamera bar parts

Gerle 1546 459 1.74 0.21 3.49

Gerle 1552 456 1.97 1.32 4.82

Judenkünig 1523 937 1.71 13.98 4.82

Newsidler 1536 422 3.55 45.02 45.02

Newsidler 1544 362 0.82 22.38 3.31

Newsidler 1549 452 3.98 27.21 32.08

Waissel 1573 823 6.31 49.21 31.59

Table 2. Bar line recognition error rates for
our three different approaches. Bold face in-

dicates the lowest error.

historic print symbols error rate (%)

Gerle 1546 1881 2.2 ± 0.7

Gerle 1552 2161 6.7 ± 1.1

Judenkünig 1523 1995 4.5 ± 0.9

Newsidler 1536 2352 2.8 ± 0.7

Newsidler 1544 1794 3.4 ± 0.8

Newsidler 1549 1825 6.4 ± 1.1

Waissel 1573 3692 10.8 ± 1.0

Table 3. Error rates of our recognition system

on historic prints (see [2] about the sources).

bar lines (the two books by Gerle) the NN classifier was

best, while on books with broken bars, the purely rule based

approach performed best.

The performance of the entire system on these prints is

shown in Tbl. 3. For each print, the system has been trained

on two pages and then tested on six pages. The given error

rate is the number of wrong, unmatched or missing output

symbols divided by the total number of symbols. The con-

fidence intervals are Agresti-Coull intervals [5] for a confi-

dence level α = 0.05. It should be noted that the reported

error rates not only include errors due to misclassifications,

but also layout analysis errors.

From Tbl. 3, we conclude that the recognition rate of

our system strongly depends on the print quality. The two

Newsidler prints from 1536 and 1549 for instance use the

same typeface, but the later print shows more printing de-

fects and noise. The poor performance on Waissel’s print

from 1573 was due to severely broken characters. Some of

these defects were somewhat remedied by morphological

closing during preprocessing, which however introduced

new problems by occasionally joining different characters.

5. Conclusions

The present work demonstrates that the Gamera frame-

work provides a solid foundation for building a custom

recognition system for German lute tablature. For prints of

decent quality, the recognition rates of our system are quite

good. In case of highly fragmented glyphs however, our CC

based glyph segmentation approach causes problems. Even

though Gamera has a builtin algorithm for dealing with bro-

ken characters, this turned out to only yield limited results

in our experiments. We therefore consider further research

concerning broken character recognition to be crucial for

improving the recognition of historic tablature prints.

Acknowledgements

We thank the Cornetto Verlag (Stuttgart) for the kind

permission to reproduce details from its facsimile reprints

of Gerle 1552 and Waissel 1573, and Dr. Bernd Christoph

Becker (Cologne) for the kind permission to reproduce de-

tails from his facsimile reprint of Judenkünig 1532.

References

[1] D.A. Smith: “A History of the Lute from Antiquity to

the Renaissance.” The Lute Society of America, 2002

[2] E. Pohlmann: “Laute, Theorbe, Chitarrone.” Eres Edi-

tion, Bremen, 1982

[3] C. Dalitz, T. Karsten: “Using the Gamera Framework

for building a Lute Tablature Recognition System.”

Proceedings ISMIR, pp. 478-481, 2005

[4] L.L. Wei, Q.A. Salih, H.S. Hock: “Optical Tabla-

ture Recognition (OTR) System: Using Fourier De-

scriptors as a Recognition Tool.” Proceedings ICALIP,

pp. 1532-1539, 2008

[5] C. Dalitz, G.K. Michalakis, C. Pranzas: “Optical

Recognition of Psaltic Byzantine Chant Notation.” In-

ternational Journal of Document Analysis and Recog-

nition 11, pp. 143-158, 2008

[6] G. Wiggins, T. Crawford, M. Gale, D. Lewis: “An

Electronic Corpus of Lute Music (ECOLM)”. http:

//www.ecolm.org/, 1999-2006

[7] C. Dalitz, M. Droettboom, B. Pranzas, I. Fujinaga:

“A Comparative Study of Staff Removal Algorithms.”

IEEE Transactions on Pattern Analysis and Machine

Intelligence 30, pp. 753-766, 2008

[8] N.P. Carter, R.A. Bacon: “Automatic Recognition of

Printed Music.” In H.S. Baird, H. Bunke, K. Ya-

mamoto (editors): “StructuredDocument Image Anal-

ysis”, pp. 454-65, Springer, 1992

[9] M. Droettboom: “Correcting broken characters in

the recognition of historical printed documents.” Joint

Conference on Digital Libraries, pp. 364-366, 2003

5


