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Abstract—This paper describes a new algorithm for docu-
ment binarization, building upon recent work in energy-based
segmentation methods. It uses the Laplacian operator to assess
the local likelihood of foreground and background labels,
Canny edge detection to identify likely discontinuities, and
a graph cut implementation to efficiently find the minimum
energy solution of an objective function combining these
concepts. The results of this algorithm place it near the top
on both the DIBCO-09 and H-DIBCO assessments.

Index Terms—I.4.0.b Image processing software, I.4.6.b
Graph-theoretic methods, I.4.6.d Pixel classification.

I. INTRODUCTION

Binarized document images represent a miracle of effi-
ciency: by recording each pixel as a simple on-or-off value
they require a fraction of the storage space as compared to
a full-color scan, yet they can preserve most if not all of the
significant information content of a document. Many useful
computations on document images rely on binarization as
an initial step, and a high-quality binarization simplifies
most subsequent processing. By contrast, a low-quality
binarization that omits significant detail or contains other
errors can hinder the success of any methods that rely upon
it.

For these reasons, researchers have exerted considerable
effort toward improving binarization algorithms. In partic-
ular, commonly cited milestones include the work of Otsu
[11], Niblack [10], and Sauvola et. al. [14]. Each improves
upon its predecessors, but still falls short of perfection,
particularly for documents with challenging attributes such
as fading and bleed-through. Indeed, research continues on
various binarization methods, and a recent contest compar-
ing different techniques attracted 43 distinct entries.

Perhaps not surprisingly, document binarization is a
subjective and ill-posed problem. The configuration of
intensities that form the dot of a letter ’i’ in one case
may represent a simple inkstain in another. The presence
of pathological examples such as this does not diminish the
usefulness of binarization in the vast majority of instances.
Nevertheless subjectivity poses a problem for the evaluation
and comparison of different binarization methods. One way
around this difficulty is to look at how well binarization
supports some end application, such as optical character
recognition [5], [9]. A second approach simply ignores
the ambiguities, and evaluates binarization performance in
terms of a chosen ground truth [3]. This paper employs

the latter method, using the data set created for the 2009
Document Image Binarization Contest (DIBCO-09) and the
sequel contest that focused on handwriting (H-DIBCO).

Reading the brief descriptions of the techniques entered
in the first contest reveals that most employ some combina-
tion of background estimation and compensation, adaptive
thresholds, and heuristic filtering techniques [3]. A few rely
on Markov random field models, like the method presented
herein. Two make use of the Laplacian in some way, while
a third detects “domes”, perhaps performing an analogous
function. The different techniques vary in complexity, but
many involve a series of pre- and post-processing steps. At
least one other binarization method has employed a graph
cut implementation similar to the one used here [7], [6],
but does not report DIBCO results.

II. MOTIVATION AND METHOD

The approach explored in this paper relies on a combi-
nation of several simple concepts. First, it employs a well-
known vector property to achieve illumination invariance:
the Laplacian of the image intensity, ∇2I . The Laplacian
measures the divergence of the intensity gradient, and
therefore has greatest magnitude in areas that are local
peaks and valleys of intensity – negative in sign for the
former and positive for the latter. Thus it naturally separates
concentrations of darkness and lightness, independent of the
absolute local intensity level.

Second, the cues from the Laplacian operator are aggre-
gated across the entire image by finding the optimal solu-
tion to a global fitness function. This enforces long-range
consistency in the final solution, and discourages local
choices that are incompatible with one another. The global
fitness function chosen is easily solved with graph cut
(maximum flow) methods, which efficiently compute the
optimal binarization [1]. Similar approaches have proven
effective in foreground segmentation for videos [15].

Third, the results of Canny edge detection inform the bi-
narization, so that discontinuities in the output binarization
coincide with detected edges where possible. The graph cut
formulation provides the mechanism behind this linkage:
one can omit graph edges between neighboring pixels
wherever an image edge appears. The next section gives
further details on the graph construction. Edge detection
has been used in some prior work, but not in combination
with a global energy function [12], [4].



The method treats dark and light areas asymmetrically
in one respect. The Laplacian operator approaches zero in
areas of near uniform intensity. Thus the binarization of
large uniform areas depends entirely on the Laplacian at
the boundaries, and in the absence of any strong signal
some low-texture areas may receive incorrect labels on the
basis of small fluctuations at their border. To guard against
this possibility, the labeling fitness expression incorporates
a strong bias towards the background label for a small set
of bright outlier pixels (i.e., those 2 standard deviations
above their local mean). This breaks the symmetry in favor
of designating uniform areas as background, corresponding
to an assumption that most text documents will not contain
large areas of pure ink. For the ten DIBCO-09 test images,
the heuristic described above misidentifies only five pixels
on one single image that happens to contain a large inked
region.

A. Problem Formulation

Assume an m × n grayscale image I where the pixel
intensities Iij lie within the range from 0 (black) to 1
(white). The goal of binarization is to produce a new image
B of the same dimensions, composed exclusively of black
and white pixels, i.e., Bij ∈ {0, 1}. The binarized image
should be perceptually similar to the original image, a
notion we can formalize by defining an energy function
EI(B) minimized by the ideal binarization B∗.

B∗ = argminBEI(B) (1)

Markov random field modeling suggests the use of
energy functions comprising a sum of individual label
penalty terms (meant to capture the affinity of a particular
pixel for a particular label) and pairwise label mismatch
terms (meant to capture the tendency of neighboring pixels
to share a label, for example). Such functions can be
efficiently solved via algorithms based upon graph cuts,
among other means [1]. For the average DIBCO image,
the solution takes less than two seconds to compute on a
2.2 GHz laptop.

EI(B) =
∑

i,j:Bij=0

L0
ij +

∑
i,j:Bij=1

L1
ij

+
∑

i,j,i′,j′:Bij 6=Bi′j′

C(i, j, i′, j′) (2)

Here L0
ij is the cost of assigning label 0 to the pixel

at (i, j), which intuitively should be lowest for intensity
valleys. Likewise L1

ij is the cost of assigning the label
1. C(i, j, i′, j′) is the cost of assigning different labels
to the pixel at (i, j) compared to the pixel at (i′, j′). C
will be zero for non-neighboring pixels; this formulation
corresponds to a Markov random field and allows a more
specific expression for the energy.

EI(B) =

m∑
i=0

n∑
j=0

[
L0
ij(1−Bij) + L1

ijBij

]
+

m−1∑
i=0

n∑
j=0

Ch
ij(Bij 6= Bi+1,j)

+

m∑
i=0

n−1∑
j=0

Cv
ij(Bij 6= Bi,j+1) (3)

Here Ch
ij and Cv

ij represent the costs of a label mis-
match between Bij and its neighbor to the south or east,
respectively. They take on either a constant value c or
zero, as described below. The boolean inequality expression
converts to either 0 or 1 in the standard manner.

The easiest choice would simply set all Ch
ij and Cv

ij to
a positive constant c. This approach enforces smoothness
in the binarized solution by penalizing any discontinuities.
However, some discontinuities must be tolerated in an
accurate binarization. Specifically, the edges of the inked
regions are discontinuous. Thus the energy function must
not penalize discontinuities between neighbors if an edge
separates them.

Standard edge detectors identify individual edge pixels,
but the formulation in Equation 3 requires knowing which
side of the pixel should be discontinuous with its neighbors.
Fortunately, the gradient direction provides an appropriate
cue, with two possible choices. If one places the discon-
tinuity on the high-gradient side, inked areas will tend
to include edge pixels, whereas placing discontinuities on
the low-gradient side will tend to group edge pixels with
the background. The experimental implementation here
chooses the former policy. Assuming that Eij represents the
presence or absence of a Canny-detected edge at pixel (i, j)
[2], the final expressions for Ch

ij and Cv
ij appear below.

Ch
ij =

 0 if Eij ∧ (Iij < Ii+1,j)
0 if Ei+1,j ∧ (Iij ≥ Ii+1,j)
c otherwise

(4)

Cv
ij =

 0 Eij ∧ Iij < Ii,j+1

0 Ei,j+1 ∧ Iij ≥ Ii,j+1

c otherwise
(5)

As mentioned, the Laplacian of the intensity provides a
useful starting point for the label costs because it identifies
areas of converging and diverging gradients (which indicate
heights and depressions respectively):

L0
ij = ∇2Iij (6)

L1
ij = −∇2Iij (7)

Note that this formulation is independent of absolute in-
tensity and perfectly symmetric with respect to light and
dark pixels. The asymmetric bias mentioned previously is
then applied by setting L1

ij = τ for certain bright outlier



pixels. With some abuse of notation, in the formulas below
let Gr(Iij) indicate the intensity at pixel (i, j) after the
image I has undergone smoothing by convolution with a
Gaussian kernel of radius r, representing the extent of the
search for outliers.

L1
ij =

{
−∇2Iij Hij ≤ 2Sij

τ Hij > 2Sij
(8)

where
Hij = Iij −Gr(Iij) (9)

Sij =
√
Gr(H2

ij) (10)

The computed image H resembles the original image I
adjusted to have local mean intensity of zero. (In this case,
“local” means the contributions of neighboring pixels are
weighted by a Gaussian of radius r.) The computed image
S represents the local standard deviation of H .

B. Parameters

The algorithm just described includes five important
parameters: τ , c, r, and two Canny thresholds tlo and thi.
Actually, the specific value of τ matters little so long as
it is large enough to force pixels to take a foreground
label. The expected size of ink components in the document
should guide the choice of r: it should be at least several
multiples of the expected ink stroke width. The remaining
three parameters interact more strongly. With low values
of c, the edge locations matter less and local sign changes
in the value of the Laplacian dominate the discontinuities
in B. Alternatively, with high values of c, discontinuities
in B will increase the overall energy unless they align
with detected edges, and the choice of tlo and thi becomes
critical because it determines which edges appear and thus
the components included in B. In general, the edges of
ground-truth ink boundaries often have higher contrast
than noise sources such as stains, smudges, and bleed-
through from the opposite side of a paper document, etc.
However, with high values for c, edges must be detected as
completely as possible to minimize the discontinuity costs
in Equation 3. These considerations motivate a high value
for thi and low value for tlo.

Empirically the following choices are effective parameter
settings for a range of documents and may be used as
sensible defaults: τ = −2, c = 0.8, r = 20, tlo = 0
and thi = 0.4. (The latter two are specified as a fraction
of the maximum observed edge gradient.) On the other
hand, given a particular document or set of documents
with ground truth, one can optimize the parameters for
greater performance on those documents and others like
them. This strategy was adopted for the DIBCO contests.
For example, with clean documents the values of c and thi
may be reduced for better recall without loss of precision.
In cases where a training set can be used for explicit opti-
mization, the experiments in the next section begin with the
values above and execute a derivative-free unconstrained
minimization on the F-measure using Matlab’s fminsearch

function [8]. It is worth noting that such tuning only
changes the final performance by a few percent: in other
words, a wide range of parameter values (including the
defaults previously mentioned) still give acceptable results.

C. Post Processing

One innovation that can slightly improve binarization
quality is to repeat the energy minimization step after
adding additional low-strength edges located within inked
areas of B after the first pass. (Trying to include these faint
edges in one pass would also pick up unwanted noise in
background areas, but restricting their inclusion to areas
likely to contain ink avoids this problem.) If E1

ij are the
Canny edges with the original value of thi, and E2

ij are
the Canny edges with tlo = thi = 0, then generate a new
combined edge map:

Eij = E1
ij ∨ (E2

ij ∧Bij) (11)

Binarization with the new edge map introduces no new
false positive labels, although it can produce some false
negatives particularly on print documents (examples visible
in Figure 1). However, it also lowers the false positive rate
by hollowing out letter loops that were mistakenly filled in
the original binarization. Because the net effect is usually
beneficial, the experiments adopt this procedure.

A final wrinkle may reflect a quirk of the ground truth
data used in the experiments. A visual examination of the
discrepancies between initial computed binarizations and
the ground truth provided shows a disproportionate number
of false positives positioned on the northwest border of
each ink component. A single erosion of the binarization
output to remove all northwest corner pixels (those with
background to north and west of them) restores isotropy to
the error profile and consistently improves the quantitative
results. Since the algorithm development provides no justifi-
cation for such an operation, it may reflect the way in which
the ground truth was developed. The experiment section
reports numbers both with and without this adjustment.

III. EXPERIMENTS

This paper adopts its experimental framework from the
two DIBCO contests [3], [13], using a small set of docu-
ments for training and a separate set for testing. DIBCO-09
used a selection of ten test documents with ground truth
binarization; five were handwritten and five printed. All
contain one or more features known to hinder standard
binarization algorithms: stains, bleed-through, colored text,
large areas of background, and unusual fonts. Following
the contests’ conclusion the document images and ground
truth were released as public data sets.

Results in the contest were evaluated on four measures of
binarization quality: F-measure, peak signal-to-noise ratio,
negative metric rate, and misclassification metric penalty.
Good binarizations maximize the first two of these and
minimize the latter two. Formulas for the four quantities
appear below, assuming the following definitions: NTP ,



NFP , NTN , NFN are respectively the number of true
positive, false positive, true negative, and false negative
identifications of ink pixels; Tij is the ground truth labeling,
and Dij is the distance of each pixel to the boundary
contours of the ground truth.

F =
2 ·R · P
R+ P

(12)

where
R =

NTP

NTP +NFN
(13)

P =
NTP

NTP +NFP
(14)

PSNR = 10 log

(
1

MSE

)
(15)

where

MSE =
1

n ·m

m∑
i=1

n∑
j=1

(Bij − Tij)2 (16)

NRM =
RFN +RFP

2
(17)

where
RFN =

NFN

NFN +NTP
(18)

RFP =
NFP

NFP +NTN
(19)

MPM =
MPFN +MPFP

2
(20)

where

MPFN =
1

SD

m∑
i=1

n∑
j=1

Dij · (¬Bij ∧ Tij) (21)

MPFP =
1

SD

m∑
i=1

n∑
j=1

Dij · (Bij ∧ ¬Tij) (22)

SD =

m∑
i=1

n∑
j=1

Dij (23)

Table I summarizes the results of the method described
in this paper for several parameter settings on the DIBCO-
09 test set. The reported results use parameters tuned on a
training set provided to all entrants in the contest, consisting
of two handwritten images and two printed images, all with
ground truth. Despite the small size of this training set,
the method still performs strongly on the test images. It
beats 42 of 43 contestants, scoring significantly above the
median, and falls an insignificant fraction short of the top
method’s results. Figure 1 shows the results for a printed
document from the test set.

The table also shows several results for comparison. De-
fault uses the standard parameter values from Section II-B
and omits the post-processing described in Section II-C.
Comparative results from DIBCO-09 appear below the

F NRM MPM
Method

(%)
PSNR (×10−2) (×10−3)

All test documents 91.07 18.51 4.39 0.67
Print documents 94.30 18.95 2.87 0.54
Hand documents 87.31 19.66 4.92 0.70
Default 90.02 17.91 3.12 1.25
DIBCO-09 first 91.24 18.66 4.31 0.55
DIBCO-09 second 90.06 18.23 4.75 0.89
DIBCO-09 median 83.98 15.81 4.51 5.48

TABLE I
RESULTS ON DIBCO-09 TEST IMAGES.

Tuning c r tlo thi
Training set 0.48 22.2 0.0001 0.47
Print (median) 0.78 16.8 0 0.56
Hand (median) 0.48 21.8 0.0005 0.39

TABLE II
PARAMETER SETTINGS FOUND FROM TRAINING DATA, USED TO

GENERATE THE RESULTS IN TABLE I.

double line: Lu & Tan’s unpublished method was the
highest-rated in the competition, and Fabrizio & Marcotegui
was second highest [3].

The table also shows results achieved for print and
handwritten documents separately, although no prior results
have been reported in these subcategories for the DIBCO-
09 images. Since the number of documents is so small,
these experiments combine the training and test images
and adopt a leave-one-out methodology. In this framework
parameter tuning uses all the documents except one, which
is tested using the resulting parameter set. The reported
numbers average the results for all documents together.
The tuned parameters for each group of documents mostly
resemble each other, but differ somewhat between the two
groups. The median parameter values found appear in
Table II.

Table III shows blind results from the H-DIBCO compe-
tition [13], using parameter values trained from the DIBCO-
09 handwriting samples. The method does comparatively
well: only four of the seventeen entrants placed better.
Without a detailed description of the other methods in the
contest, the reasons for the differing levels of performance
are unclear. Visual inspection suggests that the algorithm
was too conservative in identifying faint pen strokes under
the chosen parameters; Figure 2 shows one example where
thin connecting lines disappear in the result.

F NRM MPM
Method

(%)
PSNR (×10−2) (×10−3)

Tuned on DIBCO-09 89.73 18.90 5.78 0.41
H-DIBCO-09 best 91.78 19.78 8.180 0.231
H-DIBCO-09 median 85.06 17.56 10.42 0.95

TABLE III
RESULTS FROM H-DIBCO [13].



Fig. 1. Binarization of a print document from the DIBCO-09 test set.

Fig. 2. Binarization of a handwritten document from the H-DIBCO test
set (third worst of the ten test images).

IV. CONCLUSION

This paper presents a document binarization algorithm
based on the Laplacian of the image intensity, with an en-
ergy function minimized efficiently via a graph-cut compu-
tation. It incorporates Canny edge information in the graph
construction to encourage solutions where discontinuities
align with detected edges. Graph cut methods have proven
successful for other sorts of segmentation but have received
fairly little attention to date for document binarization.
These results show that they should be taken seriously.
A reference implementation of the algorithm in Matlab is
available from the author’s web site.

Aside from its excellent performance on challenging data

sets as compared to state-of-the-art competitors, the algo-
rithm also retains an attractive simplicity. It seems likely
that some of the more complicated techniques developed
by others to solve specific problems in binarization might
prove complementary to the basic approach. For example,
parameter tuning in the edge detector currently provides
the main mechanism for ignoring marks bleeding through
from the reverse side of the paper. Others have developed
techniques that explicitly recognize such marks and remove
them from the final binarization [16]. Such methods might
prove even more effective when used in combination with
the basic algorithm in this paper.
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