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Abstract—This paper presents a new language model for text
recognition in natural images. Many existing techniques incorpo-
rate n-gram information as an additional source of information.
One problem is that some n-grams are very uncommon, but will
still appear in a word across a syllable boundary. These words are
given a low probability under an n-gram model. To overcome this
problem, we introduce a probabilistic syllable model that uses a
probabilistic context-free grammar to generate recognized word
labels that are consistent with syllables. In other words, labels
generated by this model are pronounceable. This is important
for scene text recognition where text often includes proper nouns
and standard dictionary information cannot be a useful resource.
We show that this language model leads to increased recognition
accuracy over a bigram model and discuss the benefits over a
dictionary model.

I. INTRODUCTION

The problem of recognizing text in natural images has
gained a lot of popularity in recent years. The rise of smart-
phone users and the potential applications of translating text
in the environment for travelers and aiding in navigation for
people with low vision make this a particularly interesting and
useful area of research. New approaches are needed, since text
in the environment can exhibit characteristics that are very
different from text in documents. Traditional optical character
recognition solutions do not need to take artistic fonts or
widely varying backgrounds into account and do not need to
consider the unconstrained nature in which images may be
captured.

While many appearance models have been shown to per-
form very well for recognizing individual characters [1], [2],
[3], language information is also important for improving
recognition results. Many existing techniques incorporate n-
gram information into their models, which describes how likely
groups of characters are to occur next to each other [2], [4],
[5], [6]. This information is very informative, but it is a highly
local source of information so it can lead to word labeling
errors. For example, bigram models allow a word to have a
high probability as long as neighboring character labels have
a high probability of occurring together. This means that a
word may have a sequence of three unlikely consonants, but
the probability will be high as long as each pair is likely to
occur next to each other. Additionally, pairs of neighboring
characters that occur across a syllable boundary may have a
very low probability of occurring together, giving the entire
word a low probability. As an example, consider the word
‘Ambherst’. The combination of ‘m’ followed by ‘h’ is very
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Fig. 1: Sample scene text images with fonts that are difficult
to recognize. Performance can be improved by combining
appearance information with language information.

rare in English, and as a result the word has a low probability
under a bigram model.

In this paper we introduce a new probabilistic syllable
language model that overcomes this problem by incorporating
additional information about syllables into the model. We
demonstrate the use of a probabilistic context-free gram-
mar (PCFG), which encapsulates information about syllables,
consonant groups and vowel groups in English and forces
word labels to be consistent with a grammar. When humans
encounter a new word, we often parse the word into syllables
first and then look at the vowel and consonant sequences. This
model produces word labels that can be parsed in the same
way, because each will be made up of syllables. As a result,
each recognized word generated under this language model is
pronounceable. This type of syllable-based language model is
particularly useful for the domain of scene text recognition
where many of the words are proper nouns. These words are
not likely to be in a standard dictionary, but we can take
advantage of the fact that they should all be pronounceable.

The remainder of the paper is organized as follows. In
section two we describe related work. Then in section three
we describe our new language model in greater detail. Section
four describes our data set, experimental setup and results and
in section five we discuss related future work. We conclude in
section six.



II. RELATED WORK

There is a large amount of existing work on many different
subproblems of scene text recognition. In this section, we will
discuss those that are most closely related to our work.

There are several existing methods that incorporate lan-
guage information from a small lexicon. Wang et al. first
introduced this subproblem, called word spotting, where rec-
ognized words must be drawn from a given lexicon of 50 to
1000 words [7], [8]. Mishra et al. [9] and Wang et al. [10]
also present competitive systems that provide word spotting
solutions. Similarly, Novikova et al. present a system that
uses a larger lexicon of 90,000 words [11]. These techniques
all provide solutions for closed-vocabulary text recognition,
because recognized words are restricted to those in the lexicon.
This can be a problem for recognizing text in the environment,
because a lot of text is from street signs or business signs and
is not likely to appear in a standard lexicon and would have
to be added manually. The technique we present in this paper
allows recognized words that are not found in a lexicon.

There are other existing techniques that incorporate n-gram
language information, such as bigram or trigram probabilities
to provide solutions for open-vocabulary text recognition.
Smith et al. [4] incorporate bigram probabilities into their
model. Weinman et al. [S] and Neumann et al. [2] combine
information from bigram probabilities and a lexicon. Mishra
et al [6] incorporate higher order n-grams into their model to
improve text recognition performance. Unfortunately, n-gram
probabilities penalize rare letter combinations that can often
occur across syllable boundaries in words. In this work, we
introduce a language model that overcomes this limitation by
modeling syllables directly.

This work is also related to literature on probabilistic
context-free grammars (PCFG). In this work, we use a PCFG
as a language model for a text recognition task. This is
done previously for mathematical equation recognition [12]. In
addition, probabilistic context-free grammars have been used
as language models for speech recognition tasks [13], [14].
They have also been used for syllabification tasks [15], [16].

III. PROBABILISTIC SYLLABLE MODEL

We model syllables in words with a probabilistic context-
free grammar (PCFG). A context-free grammar G is formally
defined as a four tuple G =< V, 3, R, S >, where V is a set
of non-terminal characters, > is a set of terminal characters,
R is a set of production rules and S is the start symbol.
A probabilistic context-free grammar associates a probability
with each production rule. The probability of a particular parse
under a grammar can be found by multiplying the probabilities
of each rule in the parse.

Using a PCFG for our language model will incorporate
a broader range of information. Instead of producing results
which are consistent at the level of pairs of characters, results
under this model will be consistent at the syllable level. This
syllable model will also alleviate the problem of penalties on
neighboring labels that cross a syllable boundary. Consider
the example of the word ‘Amherst’ which was mentioned
previously. A syllable model can produce the syllables ‘am’
and ‘herst’, which are both likely under a standard English

syllable model, giving ‘Amherst’ a high probability. Next we
define the probabilistic context-free grammar and explain our
training method.

A. Probabilistic Context-Free Grammar Definition

Here we define a PCFG G that models syllables. G has
the following set of terminal characters,

E = { A’B’C’D’E’F’G7H’I’J7K’L,M’N9O’P7Q’R’S?T’U?V?W’X7Y7Z’
a,b,c.d,ef,g.hij.k,]l,mn,o0,p,q,rs,tLu,v,w,x,y,z }.

The set of non-terminals is,
V= {W9S,S1952353954,SS5SG3S7aSS7V7C3V1s'-,V35 Cls--705}
with the start symbol of W.

The start symbol W represents a word. The non-terminal
S represents a syllable and S;-Sg represent the eight types
of syllables in this grammar. Each syllable type is made
up of some combination of vowel and consonant sequences,
represented by the non-terminals V and C. Vowel sequences
can be one to three vowels long and consonant sequences can
be one to five consonants long. Within each sequence, this
grammar models the character at each position explicitly from
training data, represented by the non-terminals V; — V3 and
C, — Cb.

The rules R are the following set:

w = S
v = SW
S — 51|SQ|S3‘S4|S5|SGS7‘58
Sl - V
SQ — Cv
53 —  VC
S4 — CVC
S5 —  VCe
SG —  CVCe
S — CVCeC
Ss — VCeC
Vo = WKV
C — 01‘02|03|C4|C5
Vi —  alelilojuly
Vo —  aalaelai|aolaulay]...|yy
Vs —  aaalaaelaailaaolaau|aay|...|yyy
Ci — bz
Cs3 —  bbb|...|zzz
Cy — DbbD|...|zz22
%

bbbbb|...|zz222

The following table contains examples of words of varying
lengths that are randomly generated from this grammar:

Length | 2 3 4 6 8

Words | co nag tear tanluw ancenner
el  sel pene enples  opintest
ta  bal whin esshep ritfurci
ni  ner bini tyfmyc itentlec
am dow thaw enodan iinefoth




These examples show that this grammar generates words
that are pronounceable. Note that they are not necessarily
words in English, since this grammar is only a basic ap-
proximation of English grammatical rules. The case of each
character is not taken into account by this grammar, so we
converted these examples to lowercase for readability, since
letters can swap between uppercase and lowercase within a
word.

B. Model Training

We estimated the probabilities for this context free
grammar on a combination of two types of documents. First,
we used a syllabified dictionary to count and normalize the
information needed. Since a dictionary does not contain a
proportional amount of syllables (i.e. there are many words
in a dictionary that start with zy, but these do not occur
nearly as often in real documents), we augmented this
training data with the same information from the top ten
books from Project Gutenburg. We tested the three methods
of just dictionary information, just book information and
both types of information together and found that all three
performed similarly. For the experiments in this paper we use
the combination method.

IV. EXPERIMENTS

In this section we compare the performance of a prob-
abilistic syllable model to three different models for text
recognition. These include an appearance model, a model that
combines appearance and bigram information, and a model
that combines appearance and dictionary information.

A. Data Sets

We use two publicly available data sets in our experiments.
The first is the VIDI data set provided by Weinman et
al. [5]. It contains 215 cropped word images taken from signs
in a city and truth labels. The data set contains character
bounding boxes, which we use in our experiments. The second
data set was created for the ICDAR 2011 Robust Reading
competition [17]. It contains 1189 cropped word images and
truth labels. These images contain text in the environment,
but not necessarily from a sign. This data set does not
include character bounding boxes, so we use an existing text
segmentation method to identify character locations [18]. Since
the probabilistic syllable model produces labels from the 52
character classes A...Za...z, we use subsets of both of these
data sets created by removing words that include punctuation
and numbers. The ICDAR 2011 subset includes 1008 words
and the VIDI subset includes 209 words.

B. Appearance Model

Since the focus of this paper is on demonstrating the benefit
of using a probabilistic syllable model, we use a very simple
appearance model in our experiments. We choose to use a
logistic regression classifier because it is easy to train and
produces a conditional probability for each character class,
given an input feature descriptor. Note that this will not
produce state-of-the-art character recognition results, but is

Fig. 2: Hidden Markov model used to combine appearance
information with bigram probabilities.

sufficient for showing the benefits of using our new language
model over a bigram model and a dictionary model.

We choose to use a histogram of oriented gradients (HOG)
descriptor to model the appearance of characters. This descrip-
tor has been shown to work well for scene text images [7], [8],
[9], [6]. We resize each character to 60 by 60 pixels, and we
extract one HOG descriptor, centered over the image.

We use these descriptors to train a 52 class (A-Za-z)
logistic regression classifier. We use an implementation by
Mark Schmidt [19]. This classifier is trained with synthetic
font images provided by Weinman et al. [5]. These are binary
character images for each character class in 1866 different
fonts. We used 1866 positive example images and 200 negative
example images for each class.

Once trained, this classifier takes a feature descriptor from
an image and produces the conditional probability of each
character class. To compute a word label for a new word
image using only appearance information, we extract a HOG
descriptor from each character image and find the maximum
probability label for each using the classifier.

C. Bigram Language Model

We also show the results of using appearance information
with bigram language information. These two sources of
information can be combined using a standard hidden Markov
model (HMM). This is represented by the graphical model
in Figure 2. Each output label y; takes into account the
appearance of that character x; and the previous label y;_1
Given this model, we know that,

N-— N
p(x,y) = p(y1) * Hi=11p(yi+1|yi) * Hi=1 p(xilys)

Our goal is to find the word labels y that maximize that

probability. We do this using the Viterbi algorithm, which

uses dynamic programming to efficiently compute the most

probable character labels, given appearance and bigram prob-
abilities [20].

To compute a word label for a new word image we extract
appearance information using the process described in the
previous section and estimate bigram probabilities from a
collection of books from Project Gutenburg.! We then use the

Thttp://www.gutenberg.org/



VIDI | ICDARI11
Appearance 29.19 14.09
Appearance + Bigrams | 31.10 15.38
Appearance + PSM 33.49 16.37

Fig. 3: Word accuracy results comparing a probabilistic sylla-
ble model to a bigram model on the VIDI and ICDARI11 data
sets.

VIDI | ICDARI11
Appearance + PSM_ ¢ 59.33 27.38
Appearance + Dictionary.qse | 57.42 30.46

Fig. 4: Word accuracy results comparing a probabilistic sylla-
ble model to a dictionary model on the VIDI and ICDAR11
data sets.

Viterbi algorithm to compute the most probable word label
given the appearance and bigram information.

D. Probabilistic Syllable Language Model

In comparison, we show the result of using appearance
information with our probabilistic syllable model (PSM). One
of the benefits of using a probabilistic context-free grammar
is that a dynamic programming algorithm exists to efficiently
search for the most probable parse of a sequence of characters
under a grammar. This algorithm is called CYK [21]. So for a
new word image, we extract HOG descriptors for each char-
acter, and calculate the conditional probability for each class
using the logistic regression classifier described above. We
alter CYK slightly to include these appearance probabilities.
So for each character, we give CYK a different distribution
over the terminal characters, based on the appearance model
probabilities for that character. Then, we run the standard CYK
algorithm to find the most probable output labels using our
probabilistic syllable language model.

E. Dictionary Language Model

We also compare the performance of a probabilistic syl-
lable model to the performance of a dictionary model. To
label a new word image using a dictionary, we evaluate the
probability of each word in the dictionary by multiplying the
appearance probabilities of each character in the word. Then,
we choose the dictionary word with the highest probability as
the label. Since a dictionary does not include case information,
we evaluate three versions of each dictionary word, one in all
uppercase letters, one in all lowercase letters and one in title
case with the first letter in uppercase and the rest in lowercase.
In order to make a fair comparison to the probabilistic syllable
model, we modify the labeling process to include case as well.
We generate label versions using CYK, restricted to choose
only uppercase letters, only lowercase letters, or an uppercase
letter followed by all lowercase letters.

F Results

We computed word labels for images in both data sets us-
ing appearance information, appearance and bigram language

ddres

Word HMM Output | PCFG Output
1 | AMHERST | LMBERst AMHERst
2 | PRODUCTS | pPOoUCTS pRODUCTS
3 | Essex SssEx EssEx
4 | address Rdiness address
5 | Attorney Nttorney Attorney
6 | Oldenburg Cldenburg oldenburg

Fig. 5: Output of the HMM model vs. the PCFG model for
sample scene text images.

information, and appearance information combined with our
probabilistic syllable model. The word accuracy results are
shown in Figure 3. This experiment shows that on the VIDI
data set, the word accuracy increased by around 2% when
bigram language information is added and by another 2%
when the probabilistic syllable model is used, compared to
the bigram model. For the ICDAR 2011 data set, the word
accuracy increased by 1% each time. This demonstrates the
benefits of using a more sophisticated model, that can capture
correct language information across syllable boundaries.

Figure 5 shows the output of the HMM model and the
PCFG model for some sample scene text images. Each of these
examples shows the benefit of using a probabilistic context-free
grammar as a language model instead of a bigram model. As
mentioned previously, one of the downfalls of a bigram model
is that it gives high probabilities to entire words as long as
each pair of neighboring characters is likely to occur together.
In the first example, 'Im’ and ‘mb’ are common bigrams, but
put together in a sequence they become highly unlikely. The
PCFG constructs results by syllables instead, so the output in
each example, even if it is incorrect, is pronounceable.

We also computed word labels for images in both data
sets using appearance information and a dictionary, compared
to appearance information and a probabilistic syllable model.
The word accuracy results are shown in Figure 4. On the VIDI



data set, the syllable model performs better than the dictionary
model with a word accuracy of 59.33% compared to 57.42%
using the dictionary model. On the ICDAR 2011 data set,
the dictionary model performs better with a word accuracy of
30.46 % compared to 27.38% using the probabilistic syllable
model. The strength of the dictionary model is that it maps
each word image to the best dictionary word. The downfall is
that it cannot produce labels that do no occur in the dictionary.
In contrast, the probabilistic syllable model labelled 16.67%
of the ICDAR 2011 non-dictionary words correctly, and 33%
of the VIDI non-dictionary words correctly. This makes the
probabilistic syllable model a better choice for data sets that
include a large fraction of non-dictionary words.

V. DISCUSSION

This model suggests several directions for future work. The
first is to explore changes to the grammar definition. In this
paper, we defined a grammar that models each syllable as a
sequence of consonant and vowel groups, and models the prob-
abilities of each combination of consonants or vowels within
those groups. This grammar does not use any information
about how often syllable types occur next to each other, which
can be a problem, for example, when words are generated
with two vowel groups next to each other. We could alter the
grammar to include information about what types of syllables
occur near each other. As another extension, we could also
learn how consonant and vowel groups relate to one another, i.e
a particular vowel group follows a particular consonant group
with high probability.

The experimental results in Figure 3 and Figure 4 also
show the motivation for incorporating case information into
the model. We see a large increase in accuracy on both
data sets when case information is added to the probabilistic
syllable model. Without this information, the case can swap
between lowercase and uppercase in the middle of a word. One
special case we discovered is when words have an uppercase
letter in the middle of the word. This can occur in business
names, i.e. PeoplesBank. The uppercase letter is likely to occur
at the beginning of a syllable, so a syllable-based language
model like this is a natural choice to handle this special
case. In the future we will investigate the best way to design
a grammar to allow this special case while incorporating
additional information about case consistency.

VI. CONCLUSION

In this paper, we present a new language model for scene
text recognition. It incorporates more sophisticated language
information by modeling syllables with a probabilistic context-
free grammar. This approach is a better model of language
information across syllable boundaries, so words with unlikely
bigrams that cross syllable boundaries are not penalized. In
addition, words are made up of syllable components, so word
labels produced are pronounceable. In our experiments, we
show an increase in recognition performance when using this
language model, compared to a bigram model and show the
benefits of using it compared to a dictionary model.
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