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Abstract—We report on the third international Competition on
Handwritten Mathematical Expression Recognition (CROHME),
in which eight teams from academia and industry took part. For
the third CROHME, the training dataset was expanded to over
8000 expressions, and new tools were developed for evaluating
performance at the level of strokes as well as expressions and
symbols. As an informal measure of progress, the performance
of the participating systems on the CROHME 2012 data set is
also reported. Data and tools used for the competition will be
made publicly available.

I. INTRODUCTION

Currently, string languages (e.g. I&TiEX) and template editors
are commonly used for entering math in technical documents,
search queries, and in other applications. These input methods
are unfamiliar and/or cumbersome for many users. Robust
handwritten math recognition systems would allow for more
natural math input interfaces; however, automatic recognition
of handwritten math is a challenging two-dimensional pars-
ing problem. A large variety of symbols are used in math
expressions, and frequently there are ambiguities in symbol
location, identity and layout in handwritten expressions. Even
recognizing isolated expressions written using a tablet is
difficult, such as those used in the Competition on Recognition
of Online Handwritten Math Expressions (CROHME!). In
this paper we report on the systems and results for the
third CROHME competition. Descriptions of the first two
CROHME competitions are available [1], [2].

Research into recognizing handwritten math began in the
late 1960’s, and since that time a number of research labs
around the world have worked on the problem [3]. The
relatively small community of math recognition researchers
along with the absence of benchmark data sets, standard
encodings, and evaluation tools limited the rate of progress
on this problem. In particular, researchers have often used
their own (frequently, private) data sets for evaluation. The

Iwww.isical.ac.in/~crohme/

CROHME competition was first held as a part of ICDAR 2011,
with the intent to facilitate meaningful comparison of systems,
and make it easier for newcomers to work on handwritten math
recognition.

CROHME 2013 was organized by one European (IRC-
CyN/IVC), two Asian (ISI/CVPR, KAIST) and one North
American (DPRL/RIT) research lab. As seen in Table I,
participation in CROHME has reached eight teams this year.
With help from the community, the training set has been
expanded more than six times to over 8800 expressions, and
a new writer-independent test set of 671 expressions was
collected by the IVC and DPRL labs: all writers in the test set
are not included in the training set. As illustrated in Table I,
over the years the difficulty of the CROHME recognition task
and the size of both the training and testing data sets have
increased.

New tools?> were developed to collect symbol and stroke-
level metrics from label graphs [4] (LgEval), and for con-
verting between CROHME InkML and label graph files
(CROHMELIib). CROHME InkML files are in an XML for-
mat, using Presentation MathML for expression structure. The
CROHME InkML viewer® visualizes stroke data along with
stroke segmentation, symbol classification, and symbol layout.

TABLE I
CROHME COMPETITION METRICS

2011 | 2012 | 2013

Expression Grammars 2 3 2
Max. # Symbol Classes 60 75 101
Training expressions 921 | 1341 | 8836
Test expressions 348 | 486 | 671
Registrations 6 10 9
Participating systems 4 6 8

2www.cs.rit.edu/ ~dprl/CROHMELIib_LgEval_Doc.html
3saskatoon.cs.rit.edu/inkml_viewer



Nine research groups registered to participate in the com-
petition, each of which received the training dataset. Eight of
these groups entered a system in the competition (see Table II).
Two of the submitted systems were created by organizing labs
(Univ. Nantes and RIT), leaving six systems eligible to win.
Three of the participating groups competed in CROHME for
the first time this year.

We summarize the participating systems in the next section,
and then describe the competition protocol and results in the
following sections.

II. SYSTEM DESCRIPTIONS

A description for each system that participated in CROHME
2013 (see Table II) is provided below. Participants were per-
mitted again this year to use additional training data, provided
that they informed the organizers; Table II indicates which
training data set(s) were used by each group.

System I (Czech Tech. Univ.): MFR [5], [6] was developed
at the Center of Machine Perception of Czech Technical
University. Its preliminary version has been submitted to
CROHME 2013. MFR recognizes online handwritten formulas
in three independent phases for stroke segmentation, symbol
recognition and structural analysis. Stroke segmentation iden-
tifies close stroke groups that satisfy several spatial constraints.
Strokes may belong to multiple segments, leading to multiple
segmentation hypotheses. Each segment is recognized by a
classifier that combines template matching based on an elastic
distance of strokes with a publicly available third party neural
network classifier. Each symbol candidate is labeled by one or
two characters and assigned a real-valued belief. The template
matching based classifier is defined using only the CROHME
2013 training data set.

Ambiguities originating in segmentation and symbol recog-
nition are resolved by the structural analyzer. It constructs
multiple derivation trees bottom-up for a manually defined
2D context-free grammar. Derivation trees are ranked based
on beliefs for symbol hypotheses and their spatial relations.
These are determined by a statistical model learned from the
competition training data. The tree with the highest belief is
selected and converted to TgX or MathML.

System-II (Tokyo Univ.): The Nakagawa Laboratory of
Tokyo University of Agriculture and Technology entered a

TABLE 11
PARTICIPATING GROUPS AND TRAINING DATA SETS USED BY EACH.
‘ADDITIONAL’ SIGNIFIES USED OF TRAINING DATA IN ADDITION TO
CROHME, AND ‘OTHER’ INDICATES USE OF A NON-CROHME DATA SET

System | Affiliation Training
* [ | Czech Technical Univ. (Czech Rep.) CROHME
x I | Tokyo Univ. of Agr. & Tech. (Japan) CROHME
# III | Univ. of Sao Paulo (Brazil)  Additional
IV | Univ. of Valencia (Spain) CROHME
#x V | Rochester Institute of Techn. (USA) CROHME
VI | Sabanci Univ. (Turkey) CROHME
VII | Vision Objects (France)  Other
#x VIII | Univ. of Nantes (France) =¥ CROHME

* : New CROHME participant w* : Organizing lab

system with three main modules: (i) segmentation based on
symbol hypotheses net [7], (ii) symbol recognition based
on combining online and offline methods [8], (iii) structural
analysis of mathematical expressions based on a Stochastic
Context Free Grammar. The grammar is written in Chomsky
Normal Form, and each production is associated with a geo-
metric relation. The CYK parser is used to find the most likely
expression candidate for the input handwritten strokes. Three-
fourths of the CROHME training data (6000 MEs) was used
for training, and the remainder of the data to test the system
during development.

System-III (Univ. Sao Paulo): This is an early prototype
developed by Frank D. Julca-Aguilar at the University of Sdo
Paulo as part of his doctoral studies. Symbol segmentation and
classification are formulated as a joint optimization problem,
in which a template-based classifier assigns costs to candidate
stroke partitions. Temporal and spatial constraints are used to
reduce the number of candidate partitions. The chosen symbol
segmentation and classification hypotheses are given by the
partition with lowest cost. Structural analysis is performed
by recursively extracting baselines [9], using contextual con-
straints to guide the selection of symbols on a baseline.
In addition to the CROHME dataset, the system has been
trained using samples from the ExpressMatch dataset [10].
The ExpressMatch dataset is composed of 468 expressions
and a total of 5600 symbols.

System-IV (Univ. Valencia): This system is based on
stochastic parsing of 2D context-free grammars [11]. Given
a sequence of strokes, the parser builds several hypotheses
for segmentation, symbol recognition and the structural re-
lations among them. Symbol classification is performed by
a Bidirectional Long Short-Term Memory Recurrent Neural
Network (BLSTM-RNN) using on-line features, and spatial
relations classification is carried out by Support Vector Ma-
chines (SVM) using geometric features. After the parsing
process, the most likely hypothesis that accounts for the whole
expression represents the recognized formula. The system uses
both grammar constraints and contextual information to solve
jointly all the problems involved in mathematical expression
recognition.

System-V (RIT): Symbol segmentation considers strokes
in time series, using a binary AdaBoost classifier to determine
which stroke pairs to merge [12]. Symbol classification is per-
formed by a set of boosted C4.5 decision trees obtained using
AdaBoost.M1 [13]. Input strokes are resampled using cubic
splines, with features including number of strokes, aspect
ratio, covariance matrix of sample points, fuzzy histograms
of line orientations, and a set of line crossings/cross-counts in
different orientations. This produces a single symbol set.

The parser is a variation of Eto and Suzuki’s Minimum-
Spanning Tree (MST) based algorithm [14]. The parser recur-
sively: 1) groups vertical structures (e.g. fractions, summations
and square roots), 2) extracts the dominant operator (e.g.
fraction line) in each vertical group, and then 3) locates
symbols on the main baseline, and on the main baselines in su-
perscripted and subscripted regions by finding an MST defined



over candidate symbol pairs with their associated classes and
spatial relationship, and then 4) repeats the procedure in nested
regions of vertical structures (e.g. fraction numerators and
denominators). Spatial relationships are classified as inline,
superscript or subscript by a Support Vector Machine, using
bounding box geometry and a shape context feature for the
region around symbol pairs.

System-VI (Sabanci Univ.): The system from Sabanci
University, Turkey, uses a 2D-stochastic grammar for pars-
ing [15]. A grammar rule is applicable for a given set of tokens
(initially, a set of recognized symbols) if the applicability
predicate of the rule decides that the required relationship
(up, down, inside etc.) exists between the given tokens. For
instance, the subscript rule expects the subscript token to be
roughly below and to the right of the main token. A likelihood
score is assigned to a generated token based on the likelihood
of the component symbols and the likelihood of the spatial
relationship between the component symbols. In case of a
subscript, the likelihood value depends on the relative position
and size of the two tokens.

During parsing production rules are applied in an arbitrary
order, because the system generates all legal interpretations of
a given input string, along with their likelihoods. The system
can be slow for longer expressions, as it keeps track of all
possible interpretations of neighboring tokens. In future work,
we will look at speeding up the system by expanding the most
likely tokens first.

System-VII (Vision Objects): The MyScript Equation rec-
ognizer is an on-line recognizer that processes digital ink. The
overall recognition system is built on the principle that seg-
mentation, recognition and interpretation have to be handled
concurrently and at the same level in order to produce the best
candidate interpretation.

The equation recognition engine analyzes spatial relation-
ships between all the parts of the equation, in conformance
with a grammar, to determine the segmentation of all its
parts. Each grammar rule is associated with a specific spatial
relationship. For instance, a fraction rule defines a vertical
relationship between a numerator, a fraction bar and a denom-
inator.

The system has also a symbol expert that estimates the
probabilities for all the parts in the suggested segmentation.
This expert is based on feature extraction stages, where
different sets of features are computed, using a combination of
on-line and off-line information. The feature sets are processed
by a set of character classifiers, which use Neural Networks
and other pattern recognition paradigms.

The equation recognition engine includes a statistical lan-
guage model that uses context information between the dif-
ferent symbols depending on their spatial relationships in
the equation. Statistics have been estimated on hundreds of
thousands of equations. A global discriminant training scheme
on the equation level with automatic learning of all classifier
parameters and meta-parameters of the recognizer is employed
for the overall training of the recognizer. The recognizer has
been trained on writing samples that have been collected from

writers in several countries.

This system was not trained using the CROHME training
data set, but instead using roughly 30000 math expressions in
a private corpus.

System-VIII (Univ. Nantes): This system simultaneously
optimizes expression segmentation, symbol recognition, and 2-
D structure recognition under the restriction of an expression
grammar [16]. This strategy is adopted to prevent errors from
propagating from one step to another. The approach transforms
the recognition problem into a search for the best possible
interpretation of a sequence of input strokes.

The symbol classifier is a classical neural network, a mul-
tilayer perceptron, which has the capability to reject invalid
segmentation hypotheses, unlike most existing systems. The
originality of this system stems from the global learning
schema, which allows training a symbol classifier directly
from mathematical expressions. The advantage of this global
learning is to consider the ‘junk’ examples (i.e. invalid symbol
segments) and include them in the training set for the sym-
bol classifier’s reject class. Furthermore, contextual modeling
based on structural analysis of the expression is employed,
where the models are learnt directly from expressions using a
global learning scheme. This global approach is applicable for
other 2-D languages, for example, flowchart recognition [17].

III. COMPETITION PROTOCOL AND DATA

Systems entered in the competition were required to rec-
ognize expressions consistent with two different expression
grammars, which defined the set of legal symbol layouts.
The first was the most complex expression grammar used
in last year’s competition (Part 3, from CROHME 2012),
and the second was a new grammar, which included many
new symbols (101 classes), including additional Latin and
Greek letters, prime (/), pipe (|). We also added a new
layout structure, for n-th roots (e.g. v/2). This more complex
grammar is referred to as Part 4 (CROHME 2013).

Both grammars include vertical layout structures such as
fractions, square roots, subscripts, superscripts, and limits
above and/or below summations and integrals. Grid-based and
tabular structures such as matrices, choice notation, and cases
in function definitions have not been included in CROHME
to date. XML and human-readable representations of these
grammars were provided to participants, and are included
in the CROHMELIib library. A java-based parser was also
provided, to allow participants to check whether recognized
expressions were consistent with one of these grammars.

Systems were ranked using data collected for the more
challenging Part 4 grammar. The results of the system for the
Part 3 grammar are also considered, as a way to informally
measure progress in handwritten math recognition.

The training data was distributed over two months before
the evaluation of the systems. Instead of distributing the test
dataset, participating teams submitted their systems to the
organizers, who then ran the systems on the test set.



A. Datasets and Expression Encodings

The training data for Part 3 (1341 expressions) is a subset of
the training data for Part 4 (8836 expressions), but the two test
sets are distinct from one another and both training sets. Part
3’s test set contains 486 expressions, and Part 4’s contains
671 expressions. In both cases the test expressions were
collected from writers who were not included in the training
data, making the task writer-independent, and as a result
quite challenging. Training and test data for CROHME 2012
along with related tools were available from the International
Association of Pattern Recognition (IAPR)*.

For Part 4, the training data includes thousands of ex-
pressions from existing handwritten expression datasets, in-
cluding (i) MathBrush (University of Waterloo) [18], (ii)
HAMEX (University of Nantes) [19], (iii) MfrDB (Czech
Technical University) [5], (iv) ExpressMatch (University of
Sao Paulo) [20] and (v) the KAIST dataset. Due to differences
in legal symbols and layouts, not all expressions in these data
sets were consistent with the Part 4 grammar.

Participants’ systems could produce CROHME InkML files
or Comma Separated Variable (CSV) files representing label
graphs [4]. CROHME InkML files describe how strokes are
grouped into symbols and classified, along with a Presentation
MathML representation of symbol layout. This is the encoding
that participants could use to view stroke data and recognition
results. A perl-based evaluation script was used to produce
Table IV from CROHME InkML files.

Label graphs represent structure at the stroke level. Each
stroke is represented by a node labeled with the class of its
associated symbol, and all stroke pairs are associated by a pair
of labeled directed edges. Edge labels represent whether two
strokes are unrelated, belong to the same symbol, or belong to
two symbols in a spatial relationship (relations: Right, Above,
Below, Inside (square root), Superscript, or Subscript). The
LgEval library was used to compare label graph files.

These two encodings provide us with complementary struc-
ture representations. The use of the two representations was
helpful for debugging our evaluation scripts, as it allowed us
to compare their results.

IV. RESULTS

We report results below, first for the Part 3 data set to
provide an informal measure of progress, and then for the
new Part 4 (2013) data set, which was used to rank systems.

A. Part 3 (CROHME 2012 Test Set)

First, consider the evolution of the systems with regard
to the hardest task from last year’s competition. Table III
shows that all systems that participated last year have improved
in performance. This is an encouraging sign of progress,
tempered to some degree by the possibility of (unintentional)
fitting of the test set by participants. Amongst the new par-
ticipants, system II performs very well in comparison to the
other systems.

4 www.iapr-tc11.org/mediawiki/index.php/Datasets_List

TABLE III
PERFORMANCE ON CROHME 2012 TEST SET (PART 3; 486
EXPRESSIONS). SYSTEMS DIFFER BETWEEN 2012 AND 2013

2012 | 2013

VII | 62.50 | 70.16
IV | 2275 | 24.90
1I - | 23.46
VI 492 | 11.93
I - 6.38
I - 3.91
VIII | 25.61 | 32.92
v 9.43 | 12.55

B. Part 4 (CROHME 2013 Test Set)

Comparisons were made at three different levels of abstrac-
tion: the expression level (Table IV), symbol level (Table V)
and stroke level (Table VI). Table IV shows the expression
recognition rate for each system, with systems sorted in
decreasing order of their correct expression rate. Also shown
are the number of expressions correctly recognized when 1 to 3
errors in symbol or MathML layout tag labels (e.g. msubsup,
munder) are permitted. Allowing just one labeling error, all
rates increase substantially, in many cases roughly doubling
the expression rate.

TABLE IV
EXPRESSION-LEVEL EVALUATION, SHOWING < 0...3 SYMBOL OR
MATHML STRUCTURE LABEL ERRORS (671 EXPRESSIONS)

Correct (%) | < 1error < 2errors < 3 errors

VII 60.36 80.33 84.95 86.14
v 23.40 37.85 4471 47.84
11 19.97 34.13 40.83 42.92
I 9.39 18.48 24.14 27.27
VI 8.35 19.08 24.44 26.23
I 2.68 9.69 16.24 20.72
VIII 18.33 32.04 40.24 42.92
\" 14.31 24.74 32.19 36.21

Table V provides recall and precision metrics for symbol
segmentation, classification, and spatial relationship detec-
tion. Metrics are provided for symbol detection (‘Segments’)
and detection of symbols with their correct classification
(‘Seg+Class’). A correct spatial relationship between two sym-
bols requires that both symbols are correctly segmented and
in the right relationship. For spatial relationships, we present
both detection metrics for edges in the symbol layout trees
(‘Tree Rels.”) along with these metrics in Directed Acyclic
Graphs (DAGs) obtained by inheriting relationships down the
layout tree, for example representing for x2¢ that both the
2 and a are superscripted [4]. As seen last year, detecting
spatial relationships was more challenging for participants than
symbol detection and classification. Note that amongst the
systems, some have stronger spatial relationship detection but
weaker symbol detection than other systems (e.g. System II
vs. System III).

Table VI shows the stroke level evaluation for segmen-
tation, classification and relation analysis. For stroke pairs,
the number of segmentation vs. relationship errors made by



TABLE V
SYMBOL-LEVEL EVALUATION. SYSTEMS SORTED BY DECREASING
RECALL FOR CORRECT SYMBOL SEGMENTATION AND CLASSIFICATION
(SEG+CLASS) (6082 SYMBOLS; 5409 LAYOUT TREE EDGES; 29525 DAG

EDGES)
Segments (%) Seg+Class (%) Tree Rels. (%) DAG Rels. (%)
Recall Prec. Recall Prec. Recall Prec. Recall Prec.
VII 97.86  98.14 93.03  93.29 88.65 88.93 95.18  95.46
v 8497  87.08 73.94  75.77 49.73 51.48 7634 79.86
I 80.70  86.35 66.41 71.06 22.44  27.00 4578  63.00
il 8524 7793 62.63  57.26 5324  48.17 88.46 7834
VI 57.86  47.33 47.68  39.00 33.63 4954 31.83  69.99
1 4693 3843 25.19  20.63 2485 4244 33.67 71.63
VIII 90.32  86.86 73.84  71.02 50.19  49.26 73.01 77.73
\Y% 84.45 86.46 66.66  68.25 4134 4244 72.60  74.31

each system are shown. Also shown are summary metrics
(whose definitions are available elsewhere [4]), for the average
percentage of mislabeled node and edge labels per expression
(AB,,) along with a variation designed to weight segmenta-
tion, classification and parsing decisions more equally (AFE).
Both are normalized by the number of strokes in each expres-
sion, e.g. for the best system on average 2.43% of the strokes
and stroke pair labels in each expression are incorrect (4.27%
in the re-weighed AFE). These measures provide a fairer
comparison between systems in terms of the number of stroke-
level decisions that need to be made, without a thresholding
effect caused by ignoring correct stroke-level decisions within
incorrectly detected symbols and relationships at the symbol
or expression levels. We can see that all systems mislabel at
most 26.82% of the labels in a label graph for an expression
incorrectly on average (42% in the re-weighted AFE).

TABLE VI
STROKE-LEVEL EVALUATION. SYSTEMS SORTED BY INCREASING STROKE
LABEL ERRORS/AE. AB,, AND AE ARE MEASURED ON DIRECTED
LABEL GRAPHS (8548 STROKES; 81007 (UNDIRECTED) STROKE PAIRS)

Label Hamming Distances u error (%)

Strokes | Pairs Seg Rel | AB, AFE

VII 537 1777 170 1607 2.43 4.27
v 2187 9493 1201 8292 | 10.05 18.31
II 2748 | 19768 1527 18241 | 13.87 22.04
111 3415 | 15135 1262 13873 | 15.01 26.21
VI 4768 | 43893 5094 38799 | 27.60 36.67
I 6543 | 41295 5849 35446 | 26.82 41.63
VIII 2302 | 15644 4945 10699 | 12.06 19.30
\ 2898 | 10803 1228 9575 | 1271 22.80

V. OUTCOME

Eight groups submitted systems for the CROHME compe-
tition, with two submitted by a couple of the organizing labs.
For this year’s competition, we have selected two winners: 1)
VisionObjects, which produced the strongest system using a
large private training set, and 2) the University of Valencia,
whose team produced the strongest system trained using only
the CROHME training data set.

This systems submitted to this year’s competition performed
at similar levels of accuracy as last year, but on a harder task,
with more symbols and structures in the expression grammar

for Part 4. In the process, we have created new data sets and
evaluation tools for the research community.
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