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Abstract—In this work we propose a computationally efficient
yet effective color encoding scheme for the purpose of jigsaw
puzzle solving. Our contribution is twofold: (i) First of all, we
show that a Fisher vector encoding gives superior performance
over the commonly used compatibility descriptor of stacked color
values. (ii) Furthermore, we show experimentally on synthetic
and real-world data that our proposed color encoding is more
robust in the presence of noise, as compared to three widely
used features. Due to the robustness of our proposed descriptor
we also anticipate its use to yield performance improvements in
other applications, e.g., for the virtual reconstruction of hand-
torn documents and archaeological findings.

I. INTRODUCTION

Automated jigsaw puzzle solving is a traditional computer
vision problem that has been studied extensively in many vari-
ants. While some problem definitions include the identification
and matching of shapes [1], [2], others focus on matching
image content [3], [4], [5]. As the number of puzzle pieces
grows, so does the need for a more robust matching strategy.
In recent years, the prevalent scenario was to focus on images
that have been digitally cut into many square pieces.

Such synthetically generated jigsaw puzzles however over-
simplify piece matching: Pixel-correspondences between adja-
cent pieces are assumed to be known, and due to the puzzle’s
virtual nature, the pieces’ boundaries are not polluted by noise.
Under these premises, simple similarity metrics such as the
sum-of-squared color differences (across neighboring bound-
ary pixels) yield satisfactory results. In real-world jigsaw puz-
zles however, these assumptions typically do not hold. After
digitization, pieces suffer from artifacts along their boundaries;
also, in case of irregularly shaped jigsaw pieces, it may not be
straightforward to establish exact pixel-correspondences. These
problems often lead to a sharp decline in the robustness of the
matching.

In this work we propose to utilize the Fisher Vector (FV)
framework, which has enjoyed tremendous success in several
applications in image retrieval and image classification [6], [7],
[8], as well as in 3D object retrieval [9]. Besides being com-
putationally very efficient, we found our color encoding to be
very robust in the presence of noise. Despite having a compact
representation, our proposed micro color feature outperforms
traditional representations, which is shown experimentally on
both, synthetically generated as well as real-world data.

II. RELATED WORK

The literature on approaches to jigsaw puzzles is vast. Due
to the scope of our work, we briefly recap recent approaches
that rely on the pieces’ content rather than shape information.

For example, Alaijan in his work [3] considered square
pieces, focusing exclusively on image content. Grey-level pixel
values along the boundaries are used in conjunction with
a dissimilarity measure based on Dynamic Time Warping.
In [4] the authors propose a probabilistic approach for solving
jigsaw puzzles. Both color- and gradient-based features are
being evaluated, as well as a range of different dissimilarity
measures. We note however that all of their examined measures
rely on known pixel-correspondences. Yang et al. [10] adopt
a different probabilistic approach for solving the puzzle, using
color features and a particle filter.

Sholomon et al. [11] recently proposed a genetic algorithm-
based approach for reconstruction. The authors use the sum-
of-squared differences measure that was shown to be the most
discriminative in [4]. For the sake of completeness we hence
use this measure as our first baseline. Improved compatibility
measures have been introduced by Pomeranz et al. [12], who
utilize a Taylor expansion to extrapolate expected pixel values
across patch boundaries. Finally, the authors of [5] propose the
Mahalanobis Gradient Compatibility (MGC) measure, which
we use as a second baseline in our experiments.

III. FUNDAMENTALS OF THE FISHER VECTOR ENCODING

In the following we give a brief introduction to the Fisher
Vector framework, as it forms the basis of our proposed micro
feature. The Fisher Vector (FV) [13] provides a mechanism by
which a variable number of features can be incorporated into
a fixed-length signature, while retaining most of the discrim-
inative power of the original features. Although the encoding
incurs a loss of information — the original features cannot be
recovered — it can be beneficial to encode features in this way.
Normally, in order to successfully compare two feature sets
directly, it is necessary to (a) establish feature correspondences,
(b) define a sensible similarity measure on those features, and
(c) incorporate the similarity of the individual feature pairs
into a global measure of similarity.

The FV encoding provides a principled way to measure
the similarity without steps (a) and (b). It is based on the
assumption that the distribution of features can be modeled
through a generative process, i.e., it relies on a probability
density function p(x|A) that is parametrized by A. Typically,
a Gaussian mixture model (GMM) is used for this purpose,
in which case A = {m1,... 7T, by, Pg, 21,..., LK} are
the parameters of /X mixture components. Here the 7;.’s and
p;.’s denote the components’ priors and means, respectively.
A commonly used simplification is to only consider diagonal
covariance matrices . By applying this standard assumption
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one can denote the diagonal of the matrix by o7, which is the
vector of variances.

In what follows, X = {xi,...x,} represents our fea-
ture set, which has an associated likelihood function u(A|X)
with respect to the GMM. The FV encodes the gradient
Valog u(A|X) regarding the model parameters of the log-
likelihood of X. Since the mixture priors have been shown [8]
to add only little discriminative information, we exclude them
from the gradient computation and only consider the gradients
for A = {p,... pg,01,...,05}. Note that the dimension-
ality of the FV does not depend on the number of features
in A. That is, given that the =x;’s are d-dimensional vectors,
their FV encoding has a fixed dimensionality of 2K x d.
The computational effort for encoding of the feature set X is
O(nKd), since we only consider diagonal covariance matrices.

Although the FV allows to avoid the explicit definition of
feature correspondences and similarity measures on individual
features, one could have accomplished the same with a bag-of-
words [14] (BoW) approach. However, as discussed in [8], the
FV can be regarded as a generalization of BoW, and usually
leads to better performances for a given feature dimensionality.

IV. SYNTHETIC JIGSAW PUZZLES
A. Piece Comparison

As the most commonly used compatibility measures we
first recap the sum-of-squared color differences. We comple-
ment this first baseline with the gradient-based approach of [5].
A prerequisite for both features is that pixel-correspondences
between the boundaries of two pieces are known. Finally we
discuss two features without this requirement, the latter of
which being our proposed micro color feature.

1) Color Compatibility: A very simple — yet widely used —
approach to determine the compatibility of two square image
patches is based on the sum-of-squared color differences across
their adjacent boundaries. Denote by Py and P, two patches
of size H x H. Without loss of generality, we assume that
piece Py, is positioned to the left of piece P;. To determine the
pieces’ compatibility we first extract two feature descriptors by
stacking the color values along the rightmost column of P}, and
the leftmost column of P;. Therefore we write:

'l,b(P,l',y) = [P(‘r7y’c)}c=1,...,3 (1)

By ¢ we refer to the 3 color channels of the CIELUV color
space, x denotes a pixel column, and y is the pixel’s vertical
position within that column. According to the above definition,
the stacking of color values along the pieces’ adjacent bound-
aries can be formalized by ¥ (P) = [1#(731; 1,y)]y=1 e
which comprises color values in the leftmost pixel column of
the righthand piece!. Similarly, the boundary of the lefthand
piece is represented by ¥ (Px) = [V(Pi; H,y)|, _, - As
in [4], [11] we determine the color compatibility 0%/ bo)fﬁ’pieces
by computing the squared Euclidean distance between those
two descriptors.

WARME URERDE:
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Fig. 1. Three pages of the bdw082010 test set [15] that were used to sample
synthetic jigsaw pieces of size H X H.

2) Mahalanobis Gradient Compatibility: The Mahalanobis
gradient compatibility (MGC) has been proposed by Gallagher
et al. [5]. The authors’ key idea for the compatibility measure
is to penalize changes in color gradients rather than penalizing
changes in color directly. Thus the underlying assumption is
that matching puzzle pieces continue the gradient across their
adjacent boundaries. Besides, the authors propose to estimate
the covariance between color channels to replace the Euclidean
distance with the Mahalanobis distance.

3) Color Histogram: For our last baseline we extract the
color histograms over ¥ (P);) and ¥, (P;). As compatibility
measure we tried different kernel functions and number of bins,
as will be evaluated in section IV-B.

4) Fisher Vector Color Encoding: The main contribution
of this work is a micro color feature that eliminates the need of
establishing pixel-correspondences. Denote by ¥ 3 (P; z,y)
a micro patch descriptor along a piece’s boundary. Each such
descriptor is the stacking of the color values on an image patch
P, at position (z,y), having a spatial extent of M pixels in
height 2. We perform a dense extraction of overlapping micro
patches with 1 pixel stride, resulting in feature set X'(P;x) =
{15 (Piz,y) e R3M |y =1,..., H— M+1}. We then use
the FV encoding to represent this set of local color descriptors
as the concatenation of gradients relative to the log-likelihood
of a Gaussian mixture model. With X = X (P;x) we write

d)x(P;x):(g‘f‘;,...,%‘ﬁ,%jﬁ,...,gfk), (2)

where %fk and g;‘i are the d-dimensional gradient vectors
with respect to a GMM with K mixture components (see [8]
for details). We use VLFeat [16] for computation of the im-
proved FV, for which a power normalization is first applied in
each dimension, before finally, the descriptor is £2-normalized.

By using the FV encoding, we represent an entire pixel
column of each piece through statistics of the deviation of its
micro patch descriptors from a generative Gaussian mixture
model. Similar as for the color compatibility we extract two
descriptors ¥ 5 (Py) = ., (Pys H) and 9 (Pr) = by, (P 1).
Typically, the similarity measure of choice between two FVs
is their dot product. However, since both vectors have unit
length, there is no functional difference between their dot
product and their Euclidean distance, because both measures
yield equivalent results up to an additive and multiplicative
constant.

'We index both rows and columns from 1 to H.

ZWe assume pieces to be matched along their vertical boundaries.
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Fig. 2.

(b) Mahalanobis Gradient Compatibility
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(c) Color histogram (d) Fisher vector

Feature comparison on the test set, organized in three groups of experiments (rows), in which we evaluate the impact of the patch height (i.e., the

boundary length), a multilayer representation, and how void regions influence performance. Columns from left to right: (a) Color compatibility, (b) Mahalanobis
gradient compatibility (MGC), (c) color histogram (B = 32 bins per channel), (d) Fisher vector encoding on micro patches, (M = 1, and K = 4 Gaussian
mixture components). The feature parameters for the FV (M, K) and the color histogram (B) were determined on the validation set (see text for details).

B. Evaluation

We now quantitatively compare the feature performances
on synthetically generated jigsaw pieces.

1) Dataset: We conduct experiments on the bdw082010
dataset [15], which consists of 96 magazine pages that have
been digitized using an off-the-shelf scanner. All pages have
been partitioned into three disjoint sets: {train} (32 pages),
{val} (16 pages), and {test} (48 pages). The document pages
feature plain text, natural images, and concept art among other
contents, and the datasplits were chosen deliberately to contain
all the different contents (see figure 1 for examples).

We then extract positive and negative examples from 10
randomly rotated versions of each page so as to avoid any bias
for predominant horizontal or vertical image features. Positive
examples are composed of two adjacent patches, e.g., (Pr, Py),
which are sampled randomly from individual pages. Negative
examples on the other hand are composed of two patches that
are sampled from different pages. For each example, patch Py,
is always positioned to the left of P;.

2) Methodology: We compute the feature compatibilites for
all positive and negative examples, and plot their ROC curve
from the resulting list. The area-under-curve (AUC) is used as
the measure for our quantitative comparison.

3) GMM Training and Feature Parameters: The GMM was
trained using 10% micropatches that were randomly sampled
from {train}. We used the VLFeat [16] library for training,
and the covariance matrices were restricted to diagonal form.

Parameters for the color histogram (number of bins, B)
and the FV (size of micro patches M, number of components
in the GMM, K) were determined in separate experiments
on {val}. To decide on a compatibility measure for the color
histograms, we conducted experiments using a linear kernel,
normalized- and unnormalized histogram intersection, and Chi-
square. The number of bins (per color channel) was chosen
from {2,4,8,16,32,64}. We found that B = 32, in conjunc-
tion with the unnormalized histogram intersection, worked the
best and is hence used for all experiments on {test}.

For the FV we evaluated micro patches of varying size, i.e.,
M € {1,2,3,5,10}, in conjunction with different numbers of
mixture components K for the GMM. We chose K to range
from 1 to 16 in powers of 2. While most of the 25 experiments
provided comparable AUC values, M/ = 1, K = 4 produced
the best results. Notice that for this parameter configuration,
micro patches correspond to individual pixels, hence the micro
patch descriptors 1 ., are only d = 3 dimensional. We want
to emphasize that the FV, with M = 1, K = 4, thus yields a
compact 24-dimensional color descriptor.
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4) Experiments: We organized experiments on the test set
in the following three groups, in which we compare the feature
performances in different settings:

(1) Varying Patch Height (H): In our first set of experiments
we evaluate the features’ robustness depending on patch height
H. As one would expect, longer pixel boundaries lead to a
higher discriminativeness, as is also reflected by the plots in the
first row of figure 2. Despite its more compact representation,
the FV performs on a par with the MGC, and both features
outperform the color compatibility and color histograms. Since
the number of available pixels in practice is often limited (e.g.,
due to an increasing number of puzzle pieces), we assume a
fixed height of H = 40 for the remainder experiments.

(2) Mutliple Layers (L): Next we make use of a multilayer
pixel band closest to the piece’s outer boundary. As dictated by
L, we now consider up to 5 layers for pixelwise comparison,
as well as for feature extraction (for color histogram, MGC,
and FV), respectively.? As can be seen in figure 2, this change
has a detrimental effect on all features but the color histogram.
However, we also note that the performance degradation for
the FV is not as pronounced as for the pixelwise comparison
and the MGC.

(3) Void Region (V): With the plots in the last row we strive
to evaluate the “robustness” of each individual layer. Therefore
we plot ROC curves for single layers that are offset from the
outer boundary by V' pixels. As can be seen in this series of
plots, the features’ performances generally decline for pixel
layers that are more distant from the piece boundary. One
can conclude from the plots however that the FV is the most
reliable feature when close-by pixel layers (e.g., immediate
neighbors across the boundaries) are not readily available.

In summary, for real-world jigsaw puzzles one would an-
ticipate the FV to outperform the other three features, because
in this scenario “void regions” become inevitable. Considering
the tearing process, be it by hand or a shredding machine, it
becomes apparent that pieces are likely to suffer from material
loss along their boundaries. Less obvious yet very important
is that the tearing not only proceeds along a paper’s surface,
but also through the thickness of the document. Consequently,
some of the outmost boundary pixels may be non-informative
or even detrimental for matching and feature extraction.

We want to emphasize that our 24-dimensional FV offers a
more memory efficient representation than the other features:
For H = 40, the color compatibility and the MGC respectively
store 120 color values and color gradients. Note that even a
sparse color histogram requires to encode at most 40 non-
empty bins.

V. REAL-WORLD JIGSAW PUZZLES

In this section we discuss our approach to feature extraction
on real-world jigsaw puzzles. We also give a quantitative com-
parison of the features’ performances regarding the experiment
on the synthetic examples.

3For the MGC we use gradients of all L layers for the computation of the
covariance matrices.

T

T Y

Si+1

-

T

w
(3
AERANNENEN

H/2 pixels in height

Fig. 3. LCEis used to extract a rectified pixel layer (L = 1) as representation
of point §; (light blue column). In this example, due to the insufficient length
of the first line segment, additional support points are needed to obtain H/2
many rectified pixels. Source pixels stem from the local coordinate systems
spanned by B°, B! and B2. Embedded pixels in white color stem from a void
region of size V = 1 and are omitted from the representation. Also note that
the remaining H /2 pixels in clockwise direction are not shown here.

A. Hand-Torn Document Pieces

Same as for the experiments on square jigsaw pieces we
use to the bdw082010 dataset [15]. The dataset provides a
collection of hand-torn pieces for each document page. Those
pieces vary in size and can have arbitrary shape. For this
reason, the color compatibility and the MGC are not directly
applicable for a piece-wise comparison, as both require known
pixel-correspondences. In order to provide a fair comparison
between all four features we thus resort to the use of contour
subsegments of fixed length.

A common representation of a piece’s outer boundary is
a closed polygonal curve that separates its foreground from
its background. A polygonal curve is defined by a sequence
of n support points S = {§;}I_;. Each pair of consecutive
points along the polygonal curve encloses one line segment
that provides a locally linear approximation of the piece’s exact
boundary. Since those line segments typically vary in length,
we next explain our approach to extract a fixed-size rectangular
image patch comprising the outer pixel layers around a given
support point.

B. Local Coordinate Embedding (LCE)

To obtain a rectified contour representation of fixed length
we introduce a method dubbed Local Coordinate Embedding
(LCE). The purpose of the LCE is to align pixels within close
proximity to the boundary into a rectangular image patch. In
analogy with synthetic pieces we further want the pixels to
be laid out orthogonally to their boundary, i.e., its piecewise
linear approximation. Consider the illustration in figure 3. To
embed the piece’s pixels in the vicinity of support point §;, we
always consider two subsequent points { (814 Sitkt1)},50
at a time. -

Denote by v¥ = 8; 141 — 8;4 the direction vector which
is associated with the line segment enclosed by the k-th tuple.
Based on v} we then choose v5 as the orthogonal vector
being directed towards the inside of the piece. Intuitively,

those two vectors define an orthogonal basis B* and span a
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local coordinate system. We embed boundary pixels from that
coordinate system into a straight pixel column (highlighted in
light blue in the figure). By aligning v% and v} with the image
axes, we implicitly change the basis from B to an orthogonal
basis of the local image coordinate system. Pixel intensities
in the resulting rectified layer are computed from the source
image using bilinear interpolation. Note that in the illustration
in figure 3, a single layer is embedded (L = 1), which is
offset by a one pixel void region (V' = 1) from the boundary,
in direction of v5.

Since line segments vary in length, so does the number of
pixels that can be embedded along direction v¥. In order to
obtain a rectified patch of fixed height H, we thus adaptively
adjust k (i.e., the number of local coordinate embeddings), un-
til at least H/2 pixels have been stacked. Starting from 8;, the
procedure is once applied for clockwise- and counterclockwise
direction. The two resulting patches are each truncated to H /2
pixels, and finally become stacked to define the rectified image
patch of size H x L.

C. Evaluation

1) Ground Truth: After all pieces have been digitized and
preprocessed, individual document pages have been reassem-
bled manually using an annotation tool. Only adjacent point-
pairs between neighboring pieces are considered to be positive
examples throughout our experiments. To obtain a collection
of negative examples we once again use random piece-pairs
from different pages. For each such pair we sample a pair of
support points that then defines a negative example.

2) Experiments: In our real-world experiments we use the
same feature parameters that were previously determined on
{val} (see section IV-B3), using synthetic jigsaw pieces. Also
we re-use the Gaussian mixture model that was obtained from
the synthetic training examples.

Parameters AUC on the test set
(L,V) Color compat. MGC [5] Color hist. Fisher vector (FV)
(1,0 0.778 0.799 0.692 0.805
(1,1) 0.806 0.882 0.820 0.919
(1,2) 0.796 0.900 0.873 0.950
2,2) 0.790 0.898 0.887 0.951
(3,2) 0.785 0.896 0.893 0.950
(5,2) 0.782 0.894 0.898 0.949
TABLE I COMPARISON OF FEATURE PERFORMANCES, DEPENDING ON

THE NUMBER OF LAYERS (L), AND VOID REGION SIZE (V) IN PIXELS. THE
BEST PERFORMANCE FOR EACH FEATURE IS MARKED BOLD.

In table I we summarize the results of our experiments on
{test}. Two important observations can be made: First of all,
despite having an “implicit void region” due to material loss,
adding an explicit 2 pixel void region (V' = 2) improves the
classification performance (except for the color compatibility,
where V' = 1 works best). We attribute this to the fact that
the outmost pixel layer is often contaminated by noise, e.g.,
by pixels that stem from the scan background. Second, we
observe that the pixelwise comparison is outperformed by color
histograms and the MGC, yet the latter requires only a single
instead of five pixel layers for equivalent performance. Finally,

in direct comparison to the MGC with L =1 and V = 2, we
observe that the Fisher vector achieves a flat 5% increase in
AUC. This is quite remarkable, because its representation is
more compact compared to the two features based on pixel-
correspondences.

VI. CONCLUSION

In this work we proposed a color-based Fisher vector
encoding for solving jigsaw puzzles. We chose three common
baselines for comparison and conducted experiments on both
synthetic- and real-world data. While on synthetic data our
proposed feature offers essentially the same performance as
the state-of-the art, it provides a substantial performance gain
on real-world pieces. Due to its low memory requirements and
its robustness, we deem our encoding scheme to be particularly
useful in practical applications.
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