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Abstract—With the rapid increase of transnational communi-
cation and cooperation, people frequently encounter multilingual
scenarios in various situations. In this paper, we are concerned
with a relatively new problem: script identification at word or
line levels in natural scenes. A large-scale dataset with a great
quantity of natural images and 10 types of widely-used languages
is constructed and released. In allusion to the challenges in
script identification in real-world scenarios, a deep learning based
algorithm is proposed. The experiments on the proposed dataset
demonstrate that our algorithm achieves superior performance,
compared with conventional image classification methods, such
as the original CNN architecture and LLC.1

I. INTRODUCTION

Automatic script identification is a task that facilitates many
important applications in both document analysis and natural
scene text recognition. Previous work mostly focuses on script
identification in documents [1]–[3] or videos [4], [5]. In
document, script identification can be done at page/paragraph
level [6], text line level [7], word level [8] or character
level [9]. Tan [1] investigated the properties of a group of
rotation invariant texture features and used these features to
recognize the language type of characters in machine printed
document. Hochberg et al. [2] propose a script identification
system for characters stored electronically in image form.

In this paper, we are concerned with a relatively new
problem: script identification at word or line levels in natural
scenes. Identifying script in natural scene is an important
task, particularly to text reading systems under multilingual
scenarios [10]. Naturally, this problem can be casted as an
image classification problem, which has been studied ex-
tensively [11], [12]. Nevertheless, it remains a challenging
problem, mainly due to four reasons: (1) Characters in the
wild are usually with higher variability in font, color and
layout. (2) Backgrounds in natural scenes are more complex
and may contain clutter or noise. (3) Different scripts may
share a subset of alphabets, as illustrated in Figure 1. This
phenomenon makes it difficult to distinguish among different
types of languages solely from appearance. (4) Text images
are in arbitrary lengths, ruling out some classification methods
that only operate on fixed sized inputs. To deal with the chal-
lenges, we propose a deep leaning based unified framework
to recognizing scripts in the wild. Towards this end, we make
the following contributions:

1This paper has been submitted to International Conference on Document
Analysis and Recognition (ICDAR) 2015 and is now under peer-review.
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Fig. 1. Illustration of scripts that share subsets of alphabets. Characters “A”,
“B” and “E” appear in all these three scripts. The script identification relies
on special characters that are unique to particular scripts.

• We establish a large-scale benchmark for algorithm devel-
opment and comparison. The benchmark includes 13045
word images, cropped from 7700 full images taken in
diverse real-world scenarios. The scripts in the images
are from 10 different languages.

• To tackle the challenges described above, we propose a
deep leaning based algorithm, which could serve as the
baseline algorithm in future research.

• Compared with other conventional image classification
methods, our approach better exploits the characteristics
of texts in natural images and obtains superior perfor-
mance when evaluated on the proposed benchmark.

II. THE SIW-10 DATASET

There exist several public datasets that consist of natural
images with texts, for instance, ICDAR 2011 [13], SVT [14]
and IIIT 5K-Word [15]. However, these datasets are primarily
used for scene text detection and recognition tasks. Besides,
they are dominated by English or other Latin-based languages.
In the area of script identification, there exists datasets [2], [4],
[5]. But these databases only include characters in document
images or videos, rather than natural images.

Therefore, we propose a new dataset for script identification
in wild scenes2. The dataset contains multi-scripts images
that are taken from natural scenes images (Figure 2). As
illustrated in Figure 3, the database includes text images

2We will release the dataset (cropped images and full sized images) for
academic use.
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Fig. 3. Some examples in the SIW-10 dataset. The dataset contains all together 13,045 cropped images of words or text lines in 10 classes.

Fig. 2. Examples of images that we harvested from Google Street View,
along with the annotations.

from 10 languages: Arabic, Chinese, English, Greek, Hebrew,
Japanese, Korean, Russian, Thai and Tibetan. Hence, we call
this benchmark Script Identification in the Wild 10 Classes
(SIW-10) dataset.

We first harvest a collection of street view images from
the Google Street View and manually label the text regions
by their bounding boxes (Figure 2). Text line images are
then cropped from these images. For each language category,
600 to 1,000 street view images are collected and 1,000 to
2,000 text regions are extracted. In our dataset, we include
only horizontal text images that contain one or several words.
The dataset contains 13,045 cropped images of words or text
lines. Among them 5,000 are used for testing and the rest
8,045 are used for training.

Note that the SIW-10 dataset is diverse and challenging. The
images are captured from different locations all over the world,
under different imaging conditions. Majority of the images
are with low resolution, noise or blur. We believe the SIW-
10 dataset can be serve as a standard benchmark for script
identification in the wild.

III. OUR APPROACH

Considering the challenges discussed in Section I, it would
be desirable if our approach is able to capture distinctive

characters or components in the text images, and able to deal
with inputs with arbitrary aspect ratios.

Recent research on image classification has seen a leap
forward, thanks to the wide applications of deep convolutional
neural networks (CNNs, [16]). CNNs are designed to operate
on input maps with fixed widths and heights. Text images,
however, come in arbitrary sizes and aspect ratios. Their aspect
ratios vary greatly, depending on the number of characters they
contain.

To utilize the power of automatic feature learning in CNNs,
while making it fit to the script identification problem, in the
following we propose Multi-stage Spatially-sensitive Pooling
Network (MSPN), a novel variant of CNN, for the script
identification task. The network efficiently captures rich and
distinctive features in text images for script identification,
while inherently and naturally deals with input images with
arbitrary aspect ratios.

A. Architecture

The architecture of the network is depicted in Figure 4. As
the preprocessing step, the input images are resized to have
fixed height (32 pixels throughout our experiments), keeping
their aspect ratios. The first four convolutional layers (with
max-pooling and rectifier layers) in the network work the
same way as they do in a CNN, except that the sizes of the
input maps are arbitrary. Since convolutional layers apply filter
banks to all places in an image, these layers are inherently
capable of dealing with images in arbitrary sizes. The sizes
of their output maps change with the input sizes. In our
network, images are fixed in height. Therefore the response
maps produced by these convolutional layers are fixed in
height but varied in length. In our settings, output maps have
heights 15, 7, 3, 1 respectively and widths proportional to the
width of the input image. These layers aim to capture rich,
hierarchical features from raw image pixels.

In a conventional CNN structure, response maps output
by the last convolutional layer are flattened and fed to the
following fully-connected layers or locally-connected layers.
These kinds of layers can only accept inputs with fixed number
of dimensions. They are not suitable for our problem due to
that text images vary in lengths. Besides, the discriminative
features in a text image can appear at any horizontal positions,
since that characters are arranged in different orders, but their
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Fig. 4. MSPN architecture illustrated following the style used in [12]. The four cuboids after convolutional stages represent response maps. The size for
each of the cuboids corresponds to map width × map height × number of maps. The cuboids inside represent convolutional kernels. The spatially-sensitive
pooling layers are indicated by arrows in three different colors. The output is the softmax probability vector of length 10. See Section III-A for details.

vertical positions still matter. To address these problems, we
propose the spatially-sensitive pooling layer, which accepts
input maps with arbitrary widths, and captures topological
information along vertical directions.

B. Spatially-sensitive pooling layer

As have discussed in Section II, distinctive parts play
an important role in script identification. Typically, text is
a collection of characters arranged in a line. A distinctive
character or character component may appear at any horizontal
position in the image, so that their horizontal positions are
less informative. But their vertical positions still matter as
characters are written upright. On the other hand, text images
are in arbitrary aspect ratios. Conventional CNNs cannot
deal with them directly. We propose the Spatially-Sensitive
Pooling (SSP) layer, which captures useful features for script
identification, as well as deals with arbitrary input sizes.

The SSP layer takes input maps that have a fixed number of
rows but a variable number of columns. For each of the input
maps, the SSP layer pools along each row of the map by taking
the maximum or average value in each row. Assuming that the
input is a tensor of sizes nmap × w × h, where nmap is the
number of input maps, w, h are the width and height of the
maps. Then the output would be a vector of length nmaph,
which is independent on the width of the input images.

The SSP layer introduces invariance to horizontal positions
of responses to the network. Meanwhile it keeps vertical
positions of the responses. This makes it suitable for describing
images of texts in a line. Furthermore, SSP layers accept
input maps with arbitrary widths and output vectors with
fixed lengths, thus capable of acting as the bridge between
the convolutional layers and fully-connected layers. As a
consequence, the network is able to deal with images with
arbitrary sizes and aspect ratios inherently and naturally.

C. Multi-stage pooling

The distinctive features could be at different abstraction
levels. Both higher level features and lower level features may
help the recognition process. To utilize features at different

abstraction levels, we introduce a multi-stage pooling scheme
into the network. As illustrated in Figure 4. The colored lines
whose arrowheads start from conv2, conv3 and conv4 layers
indicate SSP layers that are inserted after these convolutional
layers. The output of the three pooling layers are concatenated
as a long vector, which is fed to later fully-connected layers.
Thereafter, the pooling features in the long vector contain
pooling features from all the three SSP layers. Since layers
conv2, conv3 and conv4 output response maps at different
abstraction levels, the features concatenated from their pooling
features describe the text image in both high-levels and low-
levels. The resulting features are rich and describe multiple
aspects of the text image, which is desirable for script identi-
fication.

The multi-stage pooling scheme results in a graph struc-
tured network that is more complex than simple sequential
structured network. In this network, convolutional layers take
errors back-propagated from multiple layers. For example,
conv2 receives errors back-propagated from both conv3 and
fc1. These convolutional layers (conv2 and conv3 in our
network) are trained with respect to gradients on pooling
features as well as response maps. This potentially encourages
these layers to produce more discriminative response maps,
due to that their outputs are directly used for classifying after
pooling. Therefore, the network benefits from the the rich and
discriminative features.

IV. EXPERIMENTS

We evaluate our MSPN on the collected SIW-10 dataset.
Besides, we implement a baseline algorithm using the con-
ventional CNN, with some simple workarounds to bypass
the variable aspect ratio problems. As another baseline, we
implement the Locality-constrained Linear Coding (LLC) [11]
algorithm, which is widely used in image classification tasks.
We compare the performances of these approaches with the
proposed approach on the SIW-10 dataset.

A. Dataset and Implementation Details
1) Dataset: We evaluate our algorithms on the SIW-10

dataset. We build the testing set with all together 5, 000



images with 500 testing images for each class. The rest 8, 045
images are for training. The number of training images for all
the script classes are respectively: Arabic 503, Chinese 809,
English 725, Greek 522, Hebrew 770, Japanese 717, Korean
1064, Russian 532, Thai 1726 and Tibetan 677. For all classes
the number of testing samples are 500.

2) Implementation details: We train the network using
stochastic gradient descent (SGD) [17] with the initial learning
rate set to 0.01 and the momentum set to 0.9. Following [12],
the learning rate is decreased by a factor of 0.1 when the
validation error plateaus. The training terminates once the
learning rate is less than 1× 10−5.

B. Baseline Methods
1) CNN-Simple: We setup a convolutional neural network

to identify the scripts from text images. The CNN structure
we use is similar to our MSPN in the convolutional parts.
CNN cannot deal with inputs with arbitrary sizes. To address
this problem, we first sample patches in the input images and
resize them to a fixed size, as illustrated in Figure 4. Patches
are set to labels that are same to the image they are cropped
from. In our implementation, text images are first resized to
have heights of 40 and squared patches with sizes randomly
chosen within range [25, 40]. All the patches are then resized
to 32× 32 after sampling. The CNN is trained on the patches
sampled from training images, with the same scheme described
in Section IV-A2.

During the testing process, we first predict the labels of
patches using the trained CNN. Their classification probability
vectors p output by the CNN soft-max layer are then used to
predict the class of the whole text image. Denote the set of
patches cropped from text image I(i) by {x(i)

j }
ni
j=1, where

ni is the number of patches sampled from image I(i). The
prediction is done by:

p
(i)
j = CNN(xj). (1)

In order to get the final prediction on the whole image,
we combine the predictions on all patches by calculating the
average of their probabilities:

y(i) =
1

ni

ni∑
j=1

p
(i)
j . (2)

The resulting y(i) is taken as the multi-class score vector
for text image I(i). The prediction is made by choosing the
class with the max score in y(i).

2) LLC: The LLC [11] is a widely adopted image
classification algorithm. It is based on the Bag-of-Words
model (BoW), max-pooling and spatial pyramid matching
(SPM) [18]. We densely sample SIFT descriptors at 3 different
scales. A part of them are used to build a codebook with
2048 codewords. Training and testing images are coded using
the LLC coding scheme. The SPM is applied by vertically
dividing text images into respectively 2 and 3 subregions
with equal heights. The resulting coding features are in
(1 + 2 + 3) × 2048 = 12288 dimensions. Finally, a linear
SVM [19] classifier is learned on the coding features.
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Fig. 5. Comparisons on recognition accuracies among CNN-Simple, LLC
and MSPN, evaluated on the SIW-10 dataset.
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Fig. 6. Prediction confusion matrix on SIW-10 made by MSPN. On Y-
axis are ground truth labels and on X-axis are predictions. Mis-classifications
frequently happen between Chinese and Japanese; Russian and Greek; Russian
and English, etc.

C. Evaluation

We evaluate our MSPN as well as the baseline methods on
the SIW-10 dataset. The prediction accuracies for each class
is evaluated and compared in Figure 5. It can be seen that our
approach achieves the best results on all classes and reduces
the error of LLC by a large margin.

From the confusion matrix shown in Figure 6 we can
see that mis-classifications frequently happen between several
pairs of scripts, e.g. Chinese and Japanese. The reason is
most likely to be that these languages share a large proportion
of alphabets. Some words are even indistinguishable without
semantic information, which we have not yet incorporated into
our framework.

The CNN-Simple approach performs significantly worse
than the MSPN. The reasons could be that 1) in CNN-Simple,
the network is not directly optimized with respect to a loss
function that corresponds to the final classification accuracy,
and 2) CNN-Simple does not sufficiently exploit discriminative
features. It simply combines the results from all the sampled



Fig. 7. Some misclassified samples. The misclassification are mainly due to
the shared characters between languages (e.g. Japanese vs. Chinese), unusual
layout and cluttered background.

patches, some of which might be uninformative or misleading.
LLC performs better than CNN-Simple. One of the reason

is that Bag-of-Words models inherently deal with inputs with
arbitrary sizes. MSPN outperforms LLC by a large margin.
Apart from the reason that deep models are stronger learner,
MSPN differs from LLC in that it learns task-specific filters
and implicitly extracts discriminative features. Furthermore,
compared to LLC, MSPN learns a much more compact image-
level descriptor (3456 vs 12288 dimensions), which further
shows the superiority of our approach.

Figure 7 shows some failure cases. From it one can see
that our method might fail under cases of unusual layout,
blurry text and ambiguity (sometimes Japanese words are
written entirely in Chinese characters and there is no way to
distinguish them other than using semantics).

D. Discussion

In this section we discuss the effect of multi-stage pooling.
To verify the effectiveness of multi-stage pooling, we construct
several network variants by removing part of the pooling
layers. Table I shows the configurations of the variants and
their corresponding recognition accuracies. We can see from
the table that the performances of the pooling layers are close
when they are used separately. Significant performance gain
can be observed when they are combined. This demonstrate
the effectiveness of multi-stage pooling.

V. CONCLUSION

We have presented an effective algorithm for script identifi-
cation in real-world scenarios. The proposed algorithm is able
to better exploit the properties of texts in natural images. More-
over, we collected and released a large-scale benchmark for
performance evaluation and comparison. The experiments on
this dataset demonstrate that the proposed algorithm achieves
higher performance than conventional approaches, including
the original CNN method and LLC.

In this paper, we have only performed script identification
in cropped word images. In future work, we plan to investigate

TABLE I
MULTI-STAGE POOLING CONFIGURATIONS FOR MSPN AND ITS

VARIANTS. “SSP-3” INDICATES THAT THE NETWORK VARIANT ONLY USES
SPATIALLY-SENSITIVE POOLING LAYER-3 (SSP-3) IN FIGURE 4, “SSP-2 +
SSP-3” INDICATES THE NETWORK VARIANT THAT USES BOTH SSP-2 AND

SSP-3 (*IN VARIANT-1 THE NUMBER OF HIDDEN NODES IN FC2 IS SET TO
512)

Variant Configurations Average Error (%)
Variant-1 ssp-1 7.3
Variant-2 ssp-2 7.8
Variant-3 ssp-3* 8.0
Variant-4 ssp-2 + ssp-3 7.4
Variant-5 ssp-1 + ssp-2 6.6
MSPN ssp-1 + ssp-2 + ssp-3 5.6

approaches that can recognize the language type of texts from
full natural images. This direction would be more promising
and practical, because in reality the input to the script iden-
tification system is more likely to be full images, instead of
cropped images.
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