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Abstract—In this paper we present the use of Sparse Radial
Sampling Local Binary Patterns, a variant of Local Binary
Patterns (LBP) for text-as-texture classification. By adapting and
extending the standard LBP operator to the particularities of text
we get a generic text-as-texture classification scheme and apply it
to writer identification. In experiments on CVL and ICDAR 2013
datasets, the proposed feature-set demonstrates State-Of-the-Art
(SOA) performance. Among the SOA, the proposed method is the
only one that is based on dense extraction of a single local feature
descriptor. This makes it fast and applicable at the earliest stages
in a DIA pipeline without the need for segmentation, binarization,
or extraction of multiple features.

I. INTRODUCTION

Writer identification is the problem of identifying the au-
thorship of text samples based on an index of examples of
text written by known authors [1]. It has a long tradition
in forensics where it has been accepted by the court as
evidence for more than a century. From a pattern recognition
perspective, three variations of the problem of writer identity
are defined: writer identification, writer verification, and writer
retrieval. Writer identification is the most popular of these, and
in most cases a method can be modified from solving one to
solving another with little effort.

From a Document Image Analysis (DIA) perspective there
are other applications such as scribe identification for historical
documents. Handwriting has been considered as a behav-
ioral biometric [2], [3], although experiments on disguised
handwriting have proved to confuse both graphonomists, and
automatic systems [4]. Despite the attention writer identifi-
cation has received from DIA researchers in recent years,
it remains a difficult problem due to variations in writing
style and conditions, and the myriad problems arising from
variations in image quality due to document degradation and
other incidental factors.

LBP are dense local texture descriptors that can be used
to describe the local structure of images [5]. They have been
successfully applied to many of the major computer vision
problems, as well also been applied to specific problems in
Document Image Analysis, including optical font recognition
and writer identification. LBP were originally designed for
graylevel images, and despite their widespread application to
bilevel document images, it remains unclear how LBP should
be computed on such images in order to remain discriminative
and robust to noise.

In this paper we introduce Sparse Radial Sampling LBP
(SRS-LBP), a variant of LBP that is better suited for the task of
writer identification and text-as-oriented-texture classification
in bilevel images in general. Our main contribution is the
introduction of sparse radial sampling of the circular patterns
used for LBP construction. This allows sampling of patterns
up to very large radii for each pixel at low computational cost,
and we can also avoid vocabulary compression techniques such
as rotation invariant or uniform patterns commonly applied to
standard LBP representations. We show that using a single
local descriptor, our SRS-LBP variant densely extracted and
pooled over the entire image, results in a low-dimensional fea-
ture representation that yields SOA performance at a fraction
of the cost of other techniques. Our representation is compact
and extremely efficient to compute.

In the next section we describe work from the literature
related to our application of LBP to writer identification. We
describe the modified LBP we use and how we apply it to
writer identification in Section III. In Section IV we report on
experiments we performed comparing our approach with the
SOA on two standard writer identification benchmarks, and in
section V we conclude with a discussion of our contribution
and ongoing work.

II. RELATED WORK

A. Local Binary Patterns

LBP characterize local image patches using binary codes
that encode the relationship between a central pixel and its
neighbors [5]. LBP feature extraction usually consists of
computing LBP descriptors at each pixel of an image to create
an image of integer valued codes, followed by pooling of these
codes into a histogram [5]. LBP have been successfully applied
to many of the major computer vision problems such as face
recognition [6], and human detection [7].

In DIA, LBP have been used for text detection of text in
television streams [8], for printed script detection [9], and
in [10] LBP were compared to other features in a feature
selection process for historical document layout analysis and
were selected as best across all datasets. The authors used an
earlier proponent of the method presented in this paper for
Arabic font recognition [11].
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(a) Original LBP3×3 (b) [LBP1,8,LBP2,16] (c) LBP4,8 (d) [LBP1,8, ...,LBP12,8]
Fig. 1: Baseline (a),(b) and Proposed (c),(d) LBP transform sampling patterns. (b) and (d) mark several LBP used in in
conjunction.

B. Writer Identification

Automatic writer identification has been researched for
many decades. In 2007 Schomaker et al. propose allographic
features for writer identification, and for an overview of
previous work on writer identification, we refer to their ex-
cellent survey [1]. Chawki et al. applied run length features
in 2010 for Arabic writer identification [12]. Jain et al. used
clusters of pseudo-letters [13] and fusion of features [14].
LBP have also been used for writer identification: Du et al.
extracted LBP features from the wavelet transform of Chinese
hand-writing samples [15], and Bertolini et al. [3] used LBP
in a comparative study with Local Phase Quantization and
concluded that LPQ performed better than their LBP variant.

C. Our contribution with respect to the State-Of-The-Art

Our adaptation of the LBP consists of replacing the sign
operator with a threshold statistically derived from each image,
the use of sparse radial sampling at each radius, and the use of
very large radii when computing LBP. Though we concatenate
LBP histograms extracted at many radii, sparse radial sampling
ensures that the final LBP features are compact.

We apply our SRS-LBP to writer identification using a stan-
dard LBP pipeline. SRS-LBP are computed at each location
in an image, and these features are pooled over the entire
page image. Our approach requires no character segmentation
and is based on a single, compact feature that is extremely
efficient to extract. In this sense it stands out with respect to
SOA approaches based on complex character segmentation,
clustering, and extraction of multiple feature descriptors [14].

III. WRITER IDENTIFICATION WITH LBP

In this section we describe our approach to LBP extraction
based on sparse radial sampling. We follow the development
and notation of [5].

A. The LBP transform

LBP feature extraction consists of two principal steps: the
LBP transform, and the pooling of LBP into a histogram
representation of an image. The LBP transform maps each
pixel to an integer code representing the relationship between
the center pixel and the pixels of its neighbourhood. It encap-
sulates the local geometry at each pixel by encoding binarized

differences with pixels of its local neighbourhood:

LBPP,R,t =

P−1∑
p=0

st(gp − gc) ∗ 2p, (1)

where gc is the central pixel being encoded, gp are P sym-
metrically and uniformly sampled points on the periphery of
a circular area of radius R around gc, and st is a binarization
function parametrized by t. The sampling of gp is performed
with bilinear interpolation. The use of local differences in (1)
endows LBP with a degree of illumination invariance.

In our LBP definition, s is a simple threshold:

st(x) =

{
1 : x ≥ t
0 : x < t

, (2)

where t, which in the standard definition is considered zero,
is a parameter that determines when local differences are
considered “big enough” for consideration.

LBPP,R,t can be seen as a transform from the graylevel
domain to a domain of discrete labels encoded over a vocab-
ulary of 2P integers. In Fig. 1 sampling patterns of popular
and proposed LBP can be seen where gc is marked as a black
dot and gp are marked as blue dots.

B. Sparse sampling LBP on bilevel images

The original LBP was designed for graylevel images.
Though text images are often fundamentally bilevel by nature,
the bilinear interpolation used to extract neighbouring pixel
values gp renders pixels non-binary and standard LBP is
(at least mathematically) applicable. However, images of a
bilevel nature such as text even when they are acquired on
the graylevel domain do not benefit much from illumination
invariance. Another problem is that large gc − gp differences
are more rare than small ones and so treating both of them
the same introduces noise.

Rather than use arbitrary or empirically derived threshold t
to re-binarize differences in the computation of LBP in (1), we
propose to apply Otsu’s method to estimate optimal threshold
t̂ from the statistics of image differences themselves:

t̂ = argminω(d1,t)σ
2(d1,t) + ω(dt,P )σ

2(dt,P ) (3)

where d1,t is the set of |gc−gp| less than threshold t̂, dt,P is the
set of |gc− gp| greater than the threshold, ω is the probability



of d... and σ2 its variance. The use of t̂ yields a unified
solution to both of these problems. The Otsu threshold of
the differences effectively separates the significant differences
from insignificant ones. Note that this formulation works for
bilevel and graylevel source imagery.

Sparse radial sampling is integrated into our descriptor by
holding constant the number of points sampled at each radius:

SRS-LBPR = LBP8,R,t̂. (4)

Keeping P = 8 constant (i.e. sparse radial sampling) allows
us to sample more radii while maintaining a compact code.

C. Processing pipeline

Our complete processing pipeline is comprised of the fol-
lowing steps:

1) SRS-LBP transformation: each image pixel is trans-
formed to several SRS-LBP according to (1) and (4).
This encodes the input image as several 8-bit images
(one for each radius).

2) SRS-LBP pooling: a histogram of SRS-LBP codes is
computed for each radius. We discard the zero pattern
which corresponds to foreground- and background-only
patterns, and then L1 normalize and concatenate all
histograms. The result is a block-normalized descriptor
of size 256× |R|, where |R| is the number of radii.

3) PCA projection: the block-normalized descriptor is pro-
jected onto the first N principal components computed
through Principal Component Analysis (PCA).

4) Normalization: the Hellinger kernel is applied to the
projected descriptor, followed L2 normalization. This
combination has been shown to improve performance
of a variety of image recognition techniques and specif-
ically on writer identification [16].

Note that we use none of the standard vocabulary compres-
sion techniques such as rotation invariance or uniformity used
in [5] to make possible the usage of larger radii. Avoiding
these techniques is one of the main motivations for SRS-LBP
because, in the case of textual images specifically, there is
important information in the discarded patterns.

IV. EXPERIMENTAL RESULTS

In this section we report on a series of writer identification
experiments we performed to evaluate the potential of SRS-
LBP and to compare its performance with the SOA.

A. Datasets

We use a range of publicly available benchmark datasets for
our experimental evaluation.
ICDAR 2013: The dataset from the ICDAR 2013 compe-
tition consists of 1,000 samples from 250 persons who each
contributed two samples in English and two in Greek [17].
CVL: The CVL [18] dataset consists of 1,550 samples from
310 persons who contributed four samples in English and one
in German. The samples were acquired in color with different
pens.

ICHFR 2012: The ICHFR 2012 dataset consists of 400
samples from 100 subjects contributing two samples in English
and two samples in Greek [19]. We use this dataset for baseline
performance analysis.

B. Evaluation protocols

Our approach uses a nearest neighbor classifier, and eval-
uation is based on leave-one-out cross validation. For each
sample represented in feature space, we rank all remaining
samples by their distance to that sample. Two important
performance measures are the top-n soft criterion, which
means having any image of the same class as the query sample
in the first n most ranked results, and the top-n hard criterion
which means having only images of the same class as the
query sample in first n samples [17], [19].

Comparison with the SOA is complicated by the wide
variety of evaluation protocols for writer identification used
by international benchmarks and contests. Just indicatively
on the three most recent competitions in writer identification,
methods had to be, a similarity measurement [19], a trainable
classifier [4], and a feature extraction method accompanied by
a metric [17].

In our evaluation we employ two evaluation protocols. One
we refer to as metric and is a protocol totally compatible
with measurements in [19], [17] (e.g. we only consider pairs of
samples, never the entire dataset as a whole). The other we call
l1out and is the average performance of a leave-one-out cross-
validation in a trainable classifier sense which is compatible
with [4]. In practice the difference between l1out and metric
is that l1out allows access to all the samples in the evaluation
dataset while metric restricts access to each sample alone.

For our approach, the difference between the two amounts
to whether PCA analysis was done on the evaluation dataset
(and thus learning from it) or an independent dataset. In
all experiments other than comparison with the SOA, the
evaluation protocol used is l1out. Since metric is a stricter
protocol than l1out, all SOA performance numbers derived
from a protocol that explicitly adheres to metric are marked
with an asterisk (*).

C. Baseline performance analysis

Here we report on a number of baseline experiments we
performed to quantify the performance of our approach and
to estimate key parameters of our SRS-LBP. All experiments
in this section were performed on the ICHFR 2012 dataset.
Comparison of SRS-LBP and standard LBP. We
consider four standard LBP variants in these experiments:
LBP3×3 [20], LBP8,1 [5], LBP16,2 [5], and a concatenation
of LBP [LBP8,1,LBP16,2] [5]. For SRS-LBP we consider two
variations: a single radius SRS-LBP8,4 and a multi-radius
[SRS-LBP8,1, ...,SRS-LBP8,12].

In Fig. 3 we report the error rates of top-1 accuracy leave-
one-cross-validation for standard LBP and proposed SRS-
LBP. In addition to the full LBP vocabulary, we also show
results for each LBP variant with combinations of vocabulary
compression commonly employed for standard LBP. From
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Fig. 3: Comparison of SRS-LBP with baseline LBP.

this figure, we see that SRS-LBP outperform standard LBP
in all compression modalities. Note also that SRS-LBP are
less sensitive to compression than standard LBP. Compres-
sion is usually applied to standard LBP in order to render
vocabulary sizes tractable. Due to their sparse nature, SRS-
LBP are already a compact and tractable without resorting to
compression.

Radii Contribution. To better understand the contribution of
each radius and principal component to the robustness of our
descriptor, we decomposed performance as a function of each.
In Fig. 2(a) we show the accuracy of each radius independently
and cumulatively (i.e. by concatenation). From this, we see that
even large radii continue to contribute to improved recognition
performance. Note also how, as radii grow beyond 3, the
performance of the uniform-compressed features (in blue),
drops quite sharply compared to the non-compressed features
(in black). This hints that uniformity compression doesn’t scale
to large radii. Since performance continues increasing until
about twelve sparsely sampled radii, we use this configuration
of SRS-LBP = [LBP8,1, . . . ,LBP8,12] for all subsequent
experiments.

Contribution of principal components. PCA in the
pipeline pipeline improves recognition accuracy in all cases.

TABLE I. Comparison with the SOA on ICDAR 2013
Method Top 1 Top 2 Top 5 Top 10 Hard 2 Hard 3
Tebessa-C* [21] 93.4 96.1 97.8 98.0 62.6 37.8
CS-UMD-a* [13] 95.1 97.7 98.6 99.1 19.6 7.1
Super Vector [16] 97.1 NA NA NA 42.8 23.8
SRS-LBP8,4 l1out 97.2 98.2 98.9 99.2 52.9 29.2
SRS-LBP metric* 96.9 98.5 99.0 99.5 54.5 32.9

TABLE II. State-of-the-art on ICDAR 2013 Greek
Method Top 1 Top 2 Top 5 Top 10
Tebessa-C* [21] 93.1 97.0 99.5 99.5
Delta-n Hinge [2] 93.4 NA NA 98.4
CS-UMD-a* [13] 95.1 97.7 98.6 99.1
Multi Feature*[14] 99.2 99.6 99.8 99.8
SRS-LBP8,4 l1out 96.6 98.0 99.6 99.8
SRS-LBP metric* 96.6 97.8 98.8 99.4
SRS-LBP l1out 98.4 99.2 99.4 99.8

In Fig. 2(b) we plot of top-1 writer identification accuracy as
a function of increasing PCs. Although performance quickly
begins to saturate, it improves steadily until around 200
principal components. For all subsequent experiments we use
200 principal components, resulting in a very compact image
descriptor of only 200 dimensions.
Rotation sensitivity. Tolerance to small rotations can be
important for text documents, and in the case of handwritten
text the exact orientation of text is probably unknown. To
measure sensitivity to rotation, the ICHFR 2012 data-set was
rotated from angles -20◦to 20◦. For each rotation, all samples
in the non-rotated dataset were used as queries against the
rotated dataset. In Fig. 2(c) we show the sensitivity to rotation
of the proposed SRS-LBP pipeline. An interesting observation
in Fig. 2(b) is that while the single radius SRS-LBP performs
nearly equivalently to the multi-radius one, it is more sensitive
to rotations.

D. Comparison with the State-Of-The-Art

In recent years the topic of writer identification has seen
a lot of activity. Contests, datasets, as well as several top
performing methods have been published. In this section we
compare SRS-LBP with the SOA in writer identification.
Performance on ICDAR 2013. In Table I we compare
the performance of SRS-LBP with the SOA on the ICDAR
2013 contest dataset. In Table II and Table III we compare



TABLE IV. State-of-the-art on CVL using only 4+1 samples per writer
Method Soft Top 1 Soft Top 2 Soft Top 5 Soft Top 10 Hard Top 2 Hard Top 3 Hard Top 4
Tebessa-C* [21] 97.6 97.9 98.3 98.5 96.1 94.2 90.0
Multi-feature* [14] 99.4 99.5 99.6 99.7 98.3 94.8 82.9
Super Vector [16] 99.2 NA NA NA 98.1 95.8 88.7
SRS-LBP8,4 l1out 99.0 99.2 99.4 99.5 97.7 95.2 86.0
SRS-LBP metric* 98.6 98.8 98.9 99.1 97.8 94.6 85.3
SRS-LBP l1out 99.4 99.4 99.5 99.6 98.6 97.0 90.1

TABLE III. State-of-the-art on ICDAR 2013 English
Method Top 1 Top 2 Top 5 Top 10
Tebessa-C* [21] 91.5 95.5 97.5 98.0
Delta-n Hinge [2] 93.4 NA NA 97.8
CS-UMD-a* [13] 95.2 98.2 98.8 99.2
Multi Feature* [14] 97.4 97.8 98.6 98.8
SRS-LBP8,4 l1out 95.2 96.4 98.0 98.4
SRS-LBP metric* 95.6 96.8 98.4 99.0

our performance with the SOA on the Greek and English
portions of the ICDAR 2013 dataset. As of this writing, the
Multi Feature method represents the SOA in writer identifica-
tion [14]. This technique is based on character segmentation
and clustering (which is one reason they do not report results
on the mixed-language dataset) and multiple features extracted
from characters. It is interesting that our approach, which
is based on dense extraction of a single feature, performs
comparably to this more complicated technique.
Performance on CVL. Finally, in Table IV we compare the
performance on SRS-LBP with the SOA on the CVL dataset.
On this dataset we have the most complete comparison with
SOA approaches for both hard and soft criteria. Our approach
performs equivalently to the Multi Feature technique of [14]
for top-1 evaluation criterion, and we outperform all others
approaches for the hard recognition evaluation criterion across
all ranks which is associated with writer retrieval.

V. CONCLUSION

In this paper we introduced a writer identification approach
based on sparse radial sampling Local Binary Patters. Our
approach achieves SOA performance on ICDAR 2013 and
CVL datasets. Our proposed method has several advantages
over other SOA techniques. Of the top performers, ours is
the only one that is based on dense extraction of a single
local feature descriptor. This makes it applicable at the earliest
stages in a DIA pipeline without the need for segmentation,
binarization, or extraction of multiple features. Its simplicity
makes it a good candidate for fusion with other methods.

The SRS-LBP we propose is a generic LBP variant that
should be applicable to many document image analysis tasks
such as font recognition, handwritten and printed script de-
tection, ant document page classification. Future and ongoing
work will concentrate on experiments demonstrating the range
of application the proposed method has and the improvements
it can bring in end-to-end document recognition scenarios.
While PCA was the sole learning component of the proposed
method, it is unsupervised and feature space transformations
taking full advantage of labelled training data should yield
improved results.
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