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Abstract—Currently, owing to the ubiquity of mobile devices,
online handwritten Chinese character recognition (HCCR) has
become one of the suitable choice for feeding input to cell
phones and tablet devices. Over the past few years, larger and
deeper convolutional neural networks (CNNs) have extensively
been employed for improving character recognition performance.
However, its substantial storage requirement is a significant ob-
stacle in deploying such networks into portable electronic devices.
To circumvent this problem, we propose a novel technique called
DropWeight for pruning redundant connections in the CNN
architecture. It is revealed that the proposed method not only
treats streamlined architectures such as AlexNet and VGGNet
well but also exhibits remarkable performance for deep residual
network and inception network. We also demonstrate that global
pooling is a better choice for building very compact online HCCR
systems. Experiments were performed on the ICDAR-2013 online
HCCR competition dataset using our proposed network, and it
is found that the proposed approach requires only 0.57 MB for
storage, whereas state-of-the-art CNN-based methods require up
to 135 MB; meanwhile the performance is decreased only by
0.91%.

Keywords—Convolutional neural network, Online handwritten
Chinese character recognition, CNN Compression

I. INTRODUCTION

Over the last five decades [1], [2], handwritten Chinese

character recognition (HCCR) has attracted considerable at-

tention from researchers and has extensively been studied

owing to the large number of character classes, similarity

between characters, and variation in writing style. Handwriting

recognition can broadly be categorized into online and offline

handwriting recognition. The main motivation of this paper

is to deal with the problem of storage capacity for online

HCCR by using some novel techniques such as GoogleNet.

In contrast to offline HCCR, in which gray-scale images

are analyzed and classified into different groups, for online

HCCR, pen trajectories are the main source of information

to recognize different characters [3]. Moreover, online HCCR

finds numerous applications in pen input devices, personal

digital assistants, smart phones, touch-screen devices, etc.

Academic and commercial research in HCCR has greatly

progressed owing to handwriting recognition competitions

held over the past few years [4]–[6]. In these competitions,

many participants began to use methods based on convolu-

tional neural networks (CNNs) for HCCR, instead of con-

ventional machine learning tools such as the MQDF-classifier

[1]. It was also demonstrated that methods based on CNNs

can learn more discriminative representations from raw data

and can lead to end-to-end solutions for HCCR problems. For

the ICDAR 2013 online HCCR competition dataset [6], the

novel DropSample training method was proposed in [7], which

achieved an accuracy of 97.23% and subsequently of 97.51%

when ensembling nine model. Zhang et al. [8] combined

conventional normalization-cooperated direction-decomposed

feature maps and CNNs to achieve an accuracy of 97.55%

and of 97.64% by voting on three models. Thus far, the state-

of-the-art CNN-based architecture has produced an accuracy

of 97.79% [9] by using the DropDistortion training strategy.

Currently, CNN-based methods are quite popular to deal

with the problems of character recognition, and it seems intu-

itive that the deployment of CNN in portable devices would

improve the performance of online handwriting recognition.

However, they demand a considerable amount of storage and

memory bandwidth. For online HCCR, the aforementioned

state-of-the-art methods [7]–[9] require storage spaces of 135.0

MB, 70.50 MB, and 19.03 MB, respectively. This requirement

of large storage space is the main hindrance in deploying such

deep networks into portable devices such as mobile phones.

The large and deep networks are not a pragmatic choice for

on-chip storage as they demand additional memory resources.

This problem has led to the proposal of some compact designs

that would be viable to deploy in portable electronic gadgets.

Recently, many researchers have attempted to build compact

networks. Prominently, network pruning [10], [11] is the most

effective method to compress CNNs by pruning the redundant

connections in each layer. However, to our knowledge, no

study has investigated whether these methods are feasible for

large-scale online HCCR involving more than 3,700 classes of

characters. In previous [12], they adopted the network pruning

technique to compress a model built for offline HCCR to

2.3 MB. In the present paper, we propose the use of the

DropWeight technique for online HCCR. We also reveal that

the DropWeight technique is immune to network architectures

and that it can be applied to compress various types of deep

network structures, such as VGGNet [13], GoogLeNet [14],
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Fig. 1. (a) Characters distortion. (b) Path signature feature map of input pen-tip trajectories.

and ResNet [15]. In the present work, we also demonstrate that

the use of global pooling is a good choice for building compact

online HCCR systems. We conducted an experiment with the

ICDAR 2013 online HCCR competition dataset, based on

which we carefully designed deeper and thinner networks that

use global pooling, which only costs 9.9 MB storage before

connections pruning. After integrating our DropWeight tech-

nique, the model costs only 0.57 MB storage. The accuracy

of this model is slightly lower than that of the state-of-the-art

CNN-based network by 0.91%, but it costs only 1/33 of the

storage required for the best CNN model so far reported in

the literature.

The remainder of this paper is organized as follows. Section

II gives a brief description of the DropWeight technique.

Section III highlights various contemporary network architec-

tures. Experiments and results are presented in section IV, and

section V concludes the results.

II. DROPWEIGHT

As CNN architectures are very large in size, it is quite

desirable to compress the networks by pruning redundant

connections. Therefore, the network connections of a network

trained in advance are pruned with the idea that weights

lower than a threshold should be removed, thereby converting

a dense, fully-connected network to a sparse network [10].

The network is pruned and retrained iteratively so that its

performance does not degrade significantly.

As proposed by [10], [11], the fixed pruning threshold is

computed as follows:

Pth =
η

N

N
∑

i=1

|wi|+ β

√

√

√

√

1

N

N
∑

i=1

(wi−
1

N

N
∑

i=1

wi)2 + λ. (1)

For the layer containing N weights, the pruning threshold

Pth is mainly dependent on the average absolute value and

variance of weights of layer wi, but the value of this threshold

can also be empirically determined by varying the parameters

η, β and λ. However, the application of a fixed threshold is

complicated, as an excessively high threshold would remove

many significant connections at the start, and it will be very

difficult for the network to recover the original performance;

conversely, if the threshold is too low, the desired compression

ratio may not be achieved.

To address this problem, we adopt the DropWeight tech-

nique, in which the threshold is gradually increased. In exper-

iments, we prune the connections after every I iterations (in

experiments, we set I = 10). If we wish to prune a certain

percentage of connections for a layer, the pruning number

must be increased for each pruning iteration. Therefore, the

threshold is determined by the pruning number. The absolute

values of weights below this threshold are set to zero. By

dynamically increasing the pruning number, the threshold

would also be gradually increased. During iterations without

the pruning process, the weights are updated with a gradient,

and the pruned weights cannot be retrieved. Once the desired

pruning ratio is reached, the increasing threshold is fixed and

noted for further pruning of the layer until pruning ends.

Finally, the weight quantization topology, as proposed by

[16], is incorporated, following which this quantized-pruned

network is fine-tuned for improving performance.

III. NETWORK ARCHITECTURES FOR ONLINE HCCR

A. Characters Distortion

A potential problem in online character recognition is the

variation in handwriting style. To address this problem, the

concept of character distortion is introduced to generate a large

number of training samples artificially. Character distortion

is produced by introducing an affine transformation and its

variants to the training samples [17]. In character distortion,

a nonlinear normalization, as proposed by [18], is also enter-

tained for character shearing and stroke distortion.

Let α be the total degree of character distortion, θ a

number ranging from (−α, α), [x, y] the pixel coordinates

before transformation, and [x, y] the pixel coordinates after

transformation. Then, affine transformations are formulated as

follows:



[x′, y′] ⇐ [x, y] ·

[

1 + αx 0
0 1 + αy

]

, (2)

[x′, y′] ⇐ [x, y] ·

[

1 α

0 1

]

, (3)

[x′, y′] ⇐ [x, y] ·

[

1 0
α 1

]

, (4)

[x′, y′] ⇐ [x, y] ·

[

cos (α) − sin (α)
sin (α) cos (α)

]

, (5)

Eq.2 and Eq.3 tilts the strokes; Eq.4 stretches or shrinks

strokes, and Eq.5 generates rotational distortion.

As shown in Fig.1(a), global character stretching, scaling,

rotation, and translation are performed using affine transfor-

mations, whereas local distortion is performed using one-

dimensional deformation and non-linear normalization, as pro-

posed by [18]. Non-linear normalization produces character

shearing and stroke distortion.

B. Path Signatures

The idea of path signatures was originally proposed by

Chen et al. [19] as an iterated integral for solving differential

equations. This concept of path signatures was implemented as

a set of features by [20] to improve the performance of CNNs

for online handwritten character recognition. Empirically, it

is revealed that the first and second iterated integrals entail

significant information for CNNs. Mathematically, for positive

integers k and intervals [s, t], the k-th iterated integral of X is

the dk-dimensional vector defined by

Iks,t =

∫

s<u1<...<uk<t

1dXu1
⊗...⊗ dXuk

, (6)

where ⊗ denotes the tensor product. For k=0, the iterated

integral is 1 and corresponds to its offline image; for k=1, the

iterated integral corresponds to path displacement; and for k=2,

the iterated integral corresponds to path curvature, as shown

in Fig.1(b).

C. Network Structure

For online HCCR, we designed three different network

structures. The first is a conventional streamlined CNN, as

shown in Fig.2(a). In this network, all convolutional filters

were 3 × 3 size with one padding pixel for retaining the

original size. A max-pooling operation was performed over

a 3 × 3 window with a stride of 2. All convolutional layers

and the first fully connected layer were equipped with a

batch normalization (BN) [21] layer, and PReLU [22] was

added to each BN layer. The overall architecture can be

represented as Input-128C3-MP3-160C3-160C3-MP3-256C3-

256C3-MP3-384C3-384C3-MP3-1024FC-Output. Then, to re-

duce the original network’s storage size, we use a global

average pooling (GAP) layer to replace the last pooling layer

and the first fully connected layer. We refer to the two

networks as HCCR-Str-FC and HCCR-Str-GAP, respectively.

(a) (b)

Fig. 2. Network structure of (a) HCCR-Str-FC and (b) HCCR-Inc-GAP.

The second network structure we used is residual network

[15], which introduces the short-cut connections to smoothly

pass the gradients into shallow layers for solving the problem

of vanishing gradients. This architecture won the first place

in the ILSVRC 2015 classification challenge. We used an

18-layer architecture in which the output channels of all

convolution layers were decreased by 50%. For comparison,

we used a fully connected layer that contains 1024 neurons to

replace the original global pooling layer. We refer to the two

networks as HCCR-Res-FC and HCCR-Res-GAP, respectively.

The last network structure we used is the Inception-v4

[23] network. It is mainly based on GoogLeNet or Inception-

v1 [14], which was introduced to address the challenges

of memory utilization and computational cost. In order to

make it suitable for online HCCR, we removed the first

two convolutional layers in the stem module and added a

Reduction-A block between the stem block and Inception-A

block. As shown in Fig.2(b), we only used three inception

modules, and the output channels of all convolution layers

were decreased in size by 75%. For fair comparison, we used

a fully connected layer that contains 1024 neurons to replace



the original global pooling layer. We refer to the two networks

as HCCR-Inc-FC and HCCR-Inc- GAP, respectively.

IV. EXPERIMENT

A. Network Training

Our proposed framework was evaluated using online HCCR

dataset. The network was trained using the OLHWDB1.0 and

OLHWDB1.1 datasets [24], and the performance of the pro-

posed network was tested using the On-ICDAR2013 dataset

[6], which contained 3,755 classes. The network was trained

using a set of 2,693,183 samples from 720 different subjects,

whereas it was evaluated using 224,590 test images from 60

different writers.

For training the online HCCR network, the distortion tech-

nique was used for each sample at each training epoch. Path

signature feature maps were extracted from online handwritten

Chinese characters, and these feature maps were fed as the

input for training the network. The baseline model was trained

on the Caffe [25] deep learning platform with a mini-batch

size of 128 and momentum of 0.9. The learning rate was

initialized with 0.1, and it was reduced by 0.1 after every

70,000 iterations. The training process concluded after 300,000

iterations.

TABLE I
COMPRESSION RESULTS FOR DIFFERENT NETWORK STRUCTURES

Model
Before Compression After Compression

Stor.(MB) Accu.(%) Stor.(MB) Accu.(%)

HCCR-Str-GAP 19.24 97.51 0.84 96.62
HCCR-Str-FC 41.93 97.77 1.18 96.49

HCCR-Res-GAP 14.40 96.89 0.70 96.05
HCCR-Res-FC 29.42 97.02 1.07 96.03

HCCR-Inc-GAP 9.36 97.45 0.57 96.88
HCCR-Inc-FC 56.05 97.65 0.76 96.83

B. Accuracy and Storage

Tab.I presents a comparative analysis of storage and accu-

racy for the ICDAR-2013 online competition database for our

six proposed networks. For the same structure, we can find that

the use of global pooling to replace the fully connected layer

slightly decreases the performance but significantly decreases

the storage space required. Therefore, by using the Drop-

Weight technique for the six networks, the storage capacity

is drastically decreased, whereas the accuracy is only slightly

decreased. For the streamlined, residual, and inception-based

network, it is initially observed that the global pooling layer

achieves a slightly lower accuracy compared to that of the fully

connected layer. However, after compression, the performance

of global pooling networks is better than those of fully

connected layer networks; in addition, the storage required

for the former is lower than that required for the latter. Thus,

it is clearly demonstrated that global pooling is a good choice

to build a compact system for online HCCR.

Tab.II illustrates the results of three previous CNN-based

methods [4]–[6] that have achieved the highest performance

thus far on the ICDAR-2013 online database. It is clear that

our HCCR-Inc-GP can achieve a very compact design as

compared with the three previous architectures, costing only

9.9 MB of memory. Moreover, after further compression, it

costs merely 0.57 MB of memory and can still reach an

accuracy of 96.88%, which is certainly higher but requires 210

times smaller storage compared to the conventional method

(DFE + DLQDF) [26]. Even compared with the state-of-the-

art CNN models for online HCCR, our model is 1/33 times

more cost efficient while the performance is decreased only

by 0.91%.

TABLE II
RESULT FOR ICDAR-2013 ONLINE HCCR COMPETITION DATASET

Method Ref. Storage(MB) Accuracy(%)

Traditional Method: DFE+DLQDF [26] 120.0 95.31

DropSample [7] 135.0 97.51

DirectMap+ConvNet [8] 70.50 97.64

DropDistortion [9] 19.03 97.79

HCCR-Inc-GAP ours 9.90 97.45

HCCR-Inc-GAP-Pruned ours 0.57 96.88

V. CONCLUSION

In this paper, we proposed the DropWeight technique to

compress popular CNN architectures for online HCCR, which

includes a streamlined, residual, and inception-based network.

We also demonstrated that global pooling is a good choice

to build a compact network for online HCCR. Finally, we

built a network that costs only 0.57 MB of storage but can

still achieve an accuracy comparable to those of state-of-the-

art CNN models. In the future, we will extend the method

to other deep learning model such as long short-term memory

(LSTM) network to address the problem of online handwritten

text recognition and natural language processing.
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