
HAL Id: hal-01576305
https://hal.science/hal-01576305

Submitted on 5 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tree-based BLSTM for mathematical expression
recognition

Ting Zhang, Harold Mouchère, Christian Viard-Gaudin

To cite this version:
Ting Zhang, Harold Mouchère, Christian Viard-Gaudin. Tree-based BLSTM for mathematical ex-
pression recognition. International Conference on Document Analysis and Recognition (ICDAR),
Nov 2017, Kyoto, Japan. �10.1109/ICDAR.2017.154�. �hal-01576305�

https://hal.science/hal-01576305
https://hal.archives-ouvertes.fr

Tree-based BLSTM for mathematical expression
recognition

Ting ZHANG, Harold MOUCHERE, Christian VIARD-GAUDIN
LS2N/IPI - UMR CNRS 6004, Université de Nantes, France

ting.zhang1@etu.univ-nantes.fr, {harold.mouchere, christian.viard-gaudin}@univ-nantes.fr

Abstract—In this study, we extend the chain-structured
BLSTM to tree structure topology and apply this new network
model for online math expression recognition. The proposed
system addresses the recognition task as a graph building
problem. The input expression is a sequence of strokes from
which an intermediate graph is derived using temporal and
spatial relations among strokes. In this graph, a node corresponds
to a stroke and an edge denotes the relationship between a pair
of strokes. Then several trees are derived from the graph and
labeled with Tree-based BLSTM. The last step is to merge these
labeled trees to build an admissible label graph (LG) modeling 2-
D formulas uniquely. The proposed system achieves competitive
results in online math expression recognition domain.

I. INTRODUCTION

Handwritten mathematical expression (ME) recognition is

an appealing topic in pattern recognition field since it exhibits

a big research challenge and underpins many practical appli-

cations. From a scientific point of view, both a large set of

symbols (more than 100) and 2 dimensional (2-D) structures

increase the difficulty of this recognition problem; with regard

to the application, it offers an easy and direct way to input

MEs into computers, and therefore improves productivity for

scientific writers. We usually divide handwritten MEs into

online and offline domains. In the offline domain, data is

available as an image, while in the online domain it is a

sequence of strokes, which are themselves sequences of points

recorded along the pen trajectory. Compared to the offline ME,

time information is available in online form. This paper will

be focused on online handwritten ME recognition.

Three tasks are involved in ME recognition [2], [1]: (1)

symbol segmentation, which consists in grouping strokes that

belong to the same symbol; (2) symbol recognition, the task

of labeling the symbols to assign each of them a symbol

class; (3) structural analysis, its goal is to identify spatial

relations between symbols and with the help of a grammar

to produce a mathematical interpretation. The state of the art

solutions [3], [4], [1] are mainly grammar-driven solutions: a

set of symbol hypotheses maybe generated and a structural

analysis algorithm (grammar parsing usually) may select the

best hypotheses while building the structure. However, these

classical grammar-driven solutions, require not only a large

amount of manual work for defining grammars, but also a

high computational complexity for grammar parsing process.

In this work, we have been exploring online handwritten ME

recognition from a new perspective, treating it as a problem of

building a graph, and then, extracting several trees which are

embbeded in the graph and recognized them with a tree-based

BLSTM. As known, it is possible to describe a ME using a

primitive Label Graph (LG, refer to Section II-A) in which

nodes represent strokes whereas labels on the edges encode

either segmentation or layout information. In [5], [18], the

solution of building a graph by merging multiple 1D sequences

of labels produced by a sequence labeler was proposed. This

study will be focused on integrating multiple trees labeled by

a tree labeler to recognize MEs.

Advanced recurrent neural network — Long Short-Term

Memory (LSTM) — achieved great success in temporal de-

pendency modeling for chain-structured data, such as text and

speeches [6], [7]. This success is due to LSTM’s representa-

tional power and effectiveness at capturing long-term depen-

dency in a sequence. Recently, research on LSTM has been

beyond sequential structure. It was extended to tree structure

in [8], [9] and DAG (directed acyclic graph) structure in [10].

In this work, we put efforts on a similar task, generalizing

the classical LSTM architecture to a tree network topology.

Thereby, the new topology could handle tree-structured data

as well as sequence-structured data.

In Section II, the related works will be reviewed, consisting

of ME representation and an overview of LSTM. Tree-based

BLSTM, as the base of our recognition system, is described

in detail in Section III. Afterwards, we introduce our tree-

based BLSTM recognition system in Section IV step by step,

which is the main part of our study. At last, experiments and

conclusion are covered in Sections V and VI respectively.

II. RELATED WORK

A. ME Representation

Structures can be depicted at three different levels: sym-

bolic, object and primitive [13]. In the case of handwritten ME,

the corresponding levels are expression, symbol and stroke.

Symbol Relation Tree (SRT) It is possible to describe

a ME at the symbol level using a SRT which represents

spatial relationships between symbols. In SRT, nodes represent

symbols, while labels on the edges indicate the relationships

between symbols. For example, in Figure 1a, the symbol ’-’

on the base line is the root of the tree with symbol ’a’ above

and symbol ’c’ below it. In Figure 1b, the symbol ’a’ is the

root; the symbol ’+’ is on the right of ’a’.

2017 14th IAPR International Conference on Document Analysis and Recognition

2379-2140/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDAR.2017.154

914

2017 14th IAPR International Conference on Document Analysis and Recognition

2379-2140/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDAR.2017.154

914

2017 14th IAPR International Conference on Document Analysis and Recognition

2379-2140/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDAR.2017.154

914

2017 14th IAPR International Conference on Document Analysis and Recognition

2379-2140/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDAR.2017.154

914

2017 14th IAPR International Conference on Document Analysis and Recognition

2379-2140/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDAR.2017.154

914

(a) (b)

Fig. 1. The symbol relation tree (SRT) for (a) a+b
c

and (b) a+ b
c

. ’R’ is for
left-right relationship

(a) (b)

Fig. 2. (a) ’2 + 2’ written with four strokes; (b) the SLG of ’2 + 2’. The
four strokes are indicated as s1, s2, s3, s4 in writing order. (ver.) and (hor.)
are added to differentiate the vertical and the horizontal strokes for ’+’. ’R’
is for left-right relationship

Label Graph (LG) If we go down at the stroke level, a

LG, and more specifically a Stroke Label Graph (SLG), can be

derived from the SRT. In LG, nodes represent strokes, while

labels on the edges encode either segmentation information

or symbol relationships. Consider the simple expression ’2

+ 2’ written using four strokes (two strokes for ’+’), the

handwritten input and its LG can be seen in Figure 2a and 2b.

As illustrated, nodes of SLG are labeled with the class of the

corresponding symbol to which the stroke belongs. A dashed

edge corresponds to segmentation information; it indicates that

a pair of strokes belongs to the same symbol. In this case, the

edge label is the same as the common symbol label. On the

other hand, the non-dashed edges define spatial relationships

between nodes and are labeled with one of the different

possible relationships between symbols. As a consequence,

all strokes belonging to the same symbol are fully connected,

nodes and edges sharing the same symbol label; when two

symbols are in relation, all strokes from the source symbol

are connected to all strokes from the target symbol by edges

sharing the same relationship label. The spatial relationships as

defined in the CROHME [1] competition are: Right, Above,

Below, Inside (for square root), Superscript, Subscript.

B. Long Short-Term Memory Networks

Recurrent neural networks (RNNs). RNNs can access

contextual information and therefore are suitable for sequence

labeling [11]. We show an unfolded single-directional recur-

rent network in Figure 3, where each node at a single time-step

represents a layer of network units. The network output at step

ti depends on both the current input at step ti and the hidden

state of ti−1. The same weights (w1, w2, w3) are reused at

every time-step.

LSTM. Unfortunately, with standard RNN architectures, the

range of context that can be accessed is quite limited due to

Fig. 3. An unfolded single-directional recurrent network

the vanishing gradient problem [14]. Long short-term memory

(LSTM) [12] could address this problem by introducing a

memory block which has the ability to preserve the state over

long period of time. An LSTM network is similar to a standard

RNN, except that the summation units in the hidden layer are

replaced by memory blocks. Each block contains one or more

self-connected memory cells and three multiplicative units

(the input, output and forget gates). The three gates collect

activation from inside and outside the block and control the

activation of the cell via multiplications. The input and output

gates multiply the input and output of the cell while the forget

gate multiplies the cells previous state. The only output from

the block to the rest of the network emanates from the output

gate multiplication.

BLSTM. LSTM network processes the input sequence from

past to future while Bidirectional LSTM [15], consisting of

2 separated LSTM layers, models the sequence from two

opposite directions (past to future and future to past) in

parallel. Both of 2 LSTM layers are connected to the same

output layer. With this setup, complete long-term past and

future context is available at each time step for the output

layer.

Deep BLSTM. DBLSTM [16] can be created by stacking

multiple BLSTM layers on top of each other in order to get

higher level representation of the input data. The outputs of 2

opposite hidden layer at one level are concatenated and used

as the input to the next level.

Non-chain-structured LSTM. A limitation of the network

topology described above is that they only allow for sequential

information propagation. Multidimensional LSTM [11] could

memorize the information from n dimensions by introducing

n forget gates in one memory block. In [8], the basic LSTM

architecture was extend to tree structures, the Child-sum Tree-

LSTM and the N-ary Tree-LSTM, allowing for richer network

topology where each unit is able to incorporate information

from multiple child units. In parallel to the work in [8], [9]

explores the similar idea. The DAG-structured LSTM was

proposed for semantic compositionality [10].

III. TREE-BASED BLSTM

This section will be focused on Tree-based BLSTM. Differ-

ent with the tree structures depicted in [8], [9], we devote it to

the kind of structures presented in Figure 4 where most nodes

have only one next node. In fact, this kind of structure could be

regarded as several chains with shared or overlapped segments.

Traditional BLSTM process a sequence both from left to right

915915915915915

Fig. 4. A tree based structure for chains.

and from right to left in order to access information coming

from two directions. In our case, the tree will be processed

from root to leaves and from leaves to root.

From root to leaves. There are 2 special nodes (red) having

more than one next node in Figure 4. We name them Mul-next

node. The hidden states of Mul-next node will be propagated

to its next nodes equally. The forward propagation of a Mul-

next nodes is the same as for a chain LSTM node; with regard

to the error propagation, the errors coming from all the next

nodes will be summed up and propagated to Mul-next node.

From leaves to root. Suppose all the arrows in Figure 4

are reversed, the 2 red nodes are still special cases because

they have more than one previous node. We call them Mul-

previous nodes. The information from all the previous nodes

will be summed up and propagated to the Mul-previous node;

the error propagation is processed like for a typical LSTM

node.

We give the specific formulas below regarding to the for-

ward propagation of Mul-previous node and the error back-

propagation of Mul-next node. The same notations as in [11]

are used here. The network input to unit i at node n is denoted

ani and the activation of unit i at node n is bni . wij is the weight

of the connection from unit i to unit j. Considering a network

with I input units, K output units and H hidden units, let

the subscripts ς , φ, ω referring to the input, forget and output

gate. The subscript c refers to one of the C cells. Thus, the

peep-hole weights from cell c to the input, forget, output gates

can be denoted as wcς , wcφ, wcω . snc is the state of cell c at

node n. f is the activation function of the gates, and g and h
are respectively the cell input and output activation functions.

L is the loss function used for training.

We only give the equations for a single memory block. For

multiple blocks the calculations are simply repeated for each

block. Let Pr(n) denote the set of previous nodes of node n
and Ne(n) denote the set of next nodes.

The forward propagation of Mul-previous node

bnς = f(

I∑

i=1

wiςx
n
i +

H∑

h=1

whς

|Pr(n)|∑

p=1

bph +

C∑

c=1

wcς

|Pr(n)|∑

p=1

spc) (1)

bnφ = f(

I∑

i=1

wiφx
n
i +

H∑

h=1

whφ

|Pr(n)|∑

p=1

bph +

C∑

c=1

wcφ

|Pr(n)|∑

p=1

spc) (2)

snc = bnφ

|Pr(n)|∑

p=1

spc + bnς g(

I∑

i=1

wicx
n
i +

H∑

h=1

whc

|Pr(n)|∑

p=1

bph) (3)

bnω = f(

I∑

i=1

wiωx
n
i +

H∑

h=1

whω

|Pr(n)|∑

p=1

bph +

C∑

c=1

wcωs
n
c) (4)

bnc = bnωh(s
n
c) (5)

The error back-propagation of Mul-next node

We define

εnc =
∂L

∂bnc
εns =

∂L

∂snc
δni =

∂L

∂an
i

(6)

Then

εnc =

K∑

k=1

wckδ
n
k +

4H∑

g=1

wcg

|Ne(n)|∑

e

δeg (7)

δnw = f ′(an
w)

C∑

c=1

h(snc)ε
n
c (8)

εns = bnwh
′(snc)ε

n
c +

|Ne(n)|∑

e=1

beφ

|Ne(n)|∑

e=1

εes

+wcς

|Ne(n)|∑

e=1

δeς + wcφ

|Ne(n)|∑

e=1

δeφ + wcωδ
n
ω

(9)

δnc = bnς g
′(an

c)ε
n
s (10)

δnφ = f ′(an
φ)

C∑

c=1

|Pr(n)|∑

p=1

spcε
n
s (11)

δnς = f ′(an
ς)

C∑

c=1

g(an
c)ε

n
s (12)

IV. OUR TREE-BASED BLSTM RECOGNITION SYSTEM

The input data is available as a sequence of strokes S from

which we would like to obtain the final LG graph describing

unambiguously the ME. Let S = (s0, ..., sn−1), where we

assume si has been written before sj for i < j.

A. Derivation of an intermediate graph G

In a first step, we will derive an intermediate graph G
where each node is a stroke and edges are added according

to temporal or spatial relationships between strokes. Some

definitions are introduced below for a better understanding of

the derivation process.

Definition 2.1 A stroke si is considered visible from stroke

sj if the straight line between the centers of their bounding

boxes does not cross the bounding box of any other stroke sk.

Definition 2.2 We define five positional relations between

two strokes si and sj . The positional relation between them

is simplified as the positional relation between the centers of

their bounding boxes.

As shown in Figure 5, five regions (R1, R2, R3, R4 and

R5) are defined for stroke si. If the center of bounding box of

sj is in one of these five regions, for example R1 region, we

can say sj is in the R1 direction of si. A wider searching range

is defined for both R3 and R4 directions. That is because in

some expressions like a+b+c
d+e+f , a larger searching range means

916916916916916

Fig. 5. Five directions for a stroke si. Point (0, 0) is the center of bounding
box of si. The angle range of R1 region is [−π

8
, π
8
]; R2 : [π

8
, 3∗π

8
]; R3 :

[3∗π
8

, 7∗π
8

]; R4 : [− 7∗π
8

,− 3∗π
8

]; R5 : [− 3∗π
8

,−π
8
].

(a) (b)

Fig. 6. (a) f
a

= b
f

is written with 10 strokes; (b) the derived graph G, the

red part is one of the possible trees with s2 as the root. C : Crossing,
T : T ime.

more possibilities to catch the Above relationship from ’−’ to

’a’ and the Below relationship from ’−’ to ’d’.

Definition 2.3 Let G be a directed graph in which each

node corresponds to a stroke and edges are added according

to the following criteria in succession.

We defined for each stroke si (i from 0 to n-2):

• the set of crossing strokes Scro(i) = {scro1, scro2, ...}
from {si+1, ..., sn−1}.

For stroke si (i from 0 to n-1):

• the set Svis(i) of the visible rightmost strokes in five

directions respectively.

Edges from si to the Scro(i)

⋃
Svis(i)will be added to G.

Then, we check if the edge from si to si+1 (i from 0 to n-

2) exists in G. If not, this edge is added to G to ensure that

the path covering the sequence of strokes in the time order is

included in G. Each edge is tagged depending on the specific

criterion we used to find it before. Consequently, we have

at most 7 types of edges (Crossing,R1, R2, R3, R4, R5 and

T ime) in the graph. For those edges from si to the Scro(i) ∩
Svis(i), the type Crossing is assigned.

B. Derivation of trees from G

Figure 6 illustrates the ME f
a = b

f written with 10 strokes

and the corresponding G. We would like to label nodes and

edges of G correctly to build a SLG finally. The solution

adopted in this study is deriving trees from G, then recognizing

the trees using the tree-based BLSTM.

There exists different strategies to derive trees from G. First

of all, a start node should be selected. We take the left most

stroke as the starter. For the example mentioned in the last

paragraph, stroke s2 is the starter. From the starting node,

we traverse the graph with the Depth-First Search algorithm.

Each node should be visited only once. When there are more

than one edge outputting from one node, the visiting order

will follow (Crossing,R1, R4, R3, R2, R5, T ime). With this

strategy, a tree is derived to which we give the name Tree-Left.

In Figure 6b, Tree-Left is depicted in red with the root in s2.

Note that in this case, all the nodes are accessible from the

start node s2. However, as G is a directed graph, some nodes

are not reachable from the starter in some cases. Therefore,

one tree might not model all the strokes and the relationships

between them for some expressions. Now, suppose that instead

of the left-most stroke we use stroke s0 as the starting node

and keep the same strategy to derive the tree. This new tree

is called Tree-0. Finally, if s0 is taken as the starting point

and time order is considered first, a special tree Tree-Time

is obtained which is a chain structure in fact. Tree-Time is

defined by s0→ s1→ s2→ s3 . . .→ s9 for the ME in Fig.

6.

C. Feed the inputs of the Tree-based BLSTM

In section IV-B, we derived trees from the intermediate

graph. Nodes of the tree represent visible strokes and edges

denote the relationships between pairs of strokes. We would

like to label each node and edge correctly aiming to build a

complete SLG finally.

Fig. 7. A re-sampled tree. The small arrows between points provide the
directions of information flows. With regard to the sequence of points inside
one node or edge, most of small arrows are omitted.

The next step is to go from the previous trees defined

at the stroke level down to a tree at the point level, points

being the raw information that are recorded along the pen

trajectory in the online signal. In the considered trees, nodes,

which represent strokes, are re-sampled with a fixed spatial

step, and the same holds for edges by considering the straight

lines in the air between the last point and the first point

of a pair of strokes that are connected in the tree. This

is illustrated in Fig. 7, where the re-sampled points are

displayed inside the nodes and above the edges. Since this

tree will be processed by the BLSTM network, we need for

the training stage to assign it a corresponding ground-truth.

We derive it from the SLG by using the corresponding

symbol label of the strokes (nodes) for the on-paper points

and the corresponding symbol or relationship label for the

in-air points (edges) when this edge exists in the SLG. When

an edge of the tree does not exist in the SLG, the label

NoRelation noted ’ ’ will be used. In this way, an edge

in the graph which was originally denoted with a C, Ri
(i = 1...5) or T relation will be assigned one of the 7 labels:

(Right,Above,Below, Inside, Superscript, Subscript,)

or a symbol label when the two strokes are belonging to the

same symbol.

917917917917917

Fig. 8. The possible labels of points in one short sequence.

D. Training process

The system processes each node or edge separately but

following the order with which the correct propagation of

activation or errors could be ensured. As a matter of fact, each

node or edge is a short sequence. It is known that BLSTM and

CTC stage have better performance when a ”blank” label is

introduced during training [17], so that decision can be made

only at some point in the input sequence. Globally, the data

structure we are dealing with is a tree; locally, it consists of

several short sequences. Inside each short sequence, or we

can say each node or edge, the CTC loss function could be

computed. Since each node or edge belongs to one class, the

possible labels of points are shown in Fig. 8. We refer the

readers to [18] for a detailed description.

E. Recognition process

As mentioned, the system treats each node or edge as a

short sequence. A simple decoding method is adopted here. We

choose for each node or edge the label which has the highest

cumulative probability over the short sequence. Suppose that

pij is the probability of outputting the i label at the j point.

The probability of outputting the i label can be computed as

Pi =
∑s

j=1 pij , where s is the number of points in a short

sequence. The label with the highest probability is assigned to

this short sequence.

F. Post process

Several trees related to one ME will be merged to build a

LG after labeling. Each node or edge belongs at least to one

tree, but possibly to several trees. Hence, several recognition

results can be available for a single node or edge. We take an

intuitive and simple way to deal with the problem of multiple

results, choosing the one with the highest probability.

Afterwards, some edges can be added automatically to

complete a valid LG. We first look for the symbols using

connected component analysis: a connected component where

nodes and edges have the same label is a symbol. With

regards to the relationship between two symbols, we choose

the label having the maximum accumulative probability among

the edges between two symbols. Then, according to the rule

that all strokes in a symbol have the same input and output

edges and that double-direction edges represent the segments,

some missing edges can be completed automatically.

V. EXPERIMENTS

Features. A stroke is a sequence of points sampled from the

trajectory of a writing tool between a pen-down and a pen-up

at a fixed interval of time. Then an additional re-sampling is

performed with a fixed spatial step to get rid of the writing

speed. The number of re-sampling points depends on the size

of expression. For each node or edge, we re-sample with 10×
l/d points. Here, l refers to the length of a visible stroke

or a straight line connecting 2 strokes and d refers to the

average diagonal of the bounding boxes of all the strokes in

an expression.

Subsequently, we compute five features per point, which are

quite close to the state of art [7], [3]. For every point p(x, y)
we obtained 5 features [sinθ, cosθ, sinφ, cosφ, PenUD]. The

detailed description can be seen in [18].

Data set. The complete data set from CROHME 2014 is

used, 8834 expressions for training and 982 expressions for

test. We extract 10% of the 8834 expressions of the training set

as a validation set. For each expression, Tree-Time, Tree-Left

and Tree-0 were derived to train three classifiers separately.

Setup. We constructed the tree-based BLSTM recognition

system with the RNNLIB library1. Two types of configurations

are included in this paper: Network (i) and Network (ii).

The first one consists of one bidirectional hidden level (two

opposite LSTM layers of 100 cells). This configuration has

obtained good results in both handwritten text recognition

[6] and handwritten math symbol classification [7]. Network

(ii) is a deep structure with two bidirectional hidden levels,

each containing two opposite LSTM layers of 100 cells. The

setup about the input layer and output layer remains the same.

The size of the input layer is 5 (5 features); the size of the

output layer is 109 (101 symbol classes + 6 relationships +

NoRelation + blank).

Evaluation. With the Label Graph Evaluation library

(LgEval) [19], the recognition results can be evaluated on

symbol level and on expression level. We introduce several

evaluation criteria: symbol segmentation (Segments), refers to

a symbol that is correctly segmented whatever the label is;

symbol segmentation and recognition (Seg+Class), refers to

a symbol that is segmented and classified correctly; spatial

relationship classification (Tree Rels.), a correct spatial rela-

tionship between two symbols requires that both symbols are

correctly segmented and with the correct relationship label.

Discussion. The evaluation results on symbol level and

global expression level are presented in Table I and II respec-

tively. We give both the individual tree recognition results and

the merging results in each table. Tree-Time covers all the

strokes of the input expression but can miss some relational

edges between strokes; Tree-Left and Tree-0 could catch some

additional edges which are not covered by Tree-Time. The

experiment results also verified this tendency. Compared to (i,

Tree-Time), the symbol segmentation and classification results

of (i, Merge3) are improved in a moderate amount while the

recall rate of relationship classification is greatly improved

(about 10%) with the precision rate remaining almost the

same. The different recognition results of network (ii) are

systematically increased when compared to (i) as the deep

structure could get higher level representations of the input

1Graves A. RNNLIB: A recurrent neural network library for sequence
learning problems. http://sourceforge.net/projects/rnnl/.

918918918918918

TABLE I
THE SYMBOL LEVEL EVALUATION RESULTS ON CROHME 2014 TEST SET,

INCLUDING THE EXPERIMENT RESULTS IN THIS WORK AND CROHME
2014 PARTICIPANT RESULTS (TOP 4 BY RECALL OF SEGMENTS).

Network, model Segments (%) Seg + Class (%) Tree Rels. (%)
Rec. Prec. Rec. Prec. Rec. Prec.

i, Tree-Time 92.85 86.00 84.41 78.18 58.04 76.99
i, Tree-Left 86.84 77.93 75.98 68.18 52.24 65.68

i, Tree-0 89.22 79.56 77.98 69.54 59.63 62.06
i, Merge3 93.39 87.46 85.95 80.49 69.52 74.92

ii, Tree-Time 95.10 90.47 87.53 83.27 65.06 83.18
ii, Tree-Left 89.34 82.17 78.90 72.57 56.13 73.21

ii, Tree-0 90.15 81.39 80.09 72.31 55.53 68.05
ii, Merge3 95.59 91.46 89.02 85.17 74.29 81.33

system CROHME 2014 participant results (Top 4)
III 98.42 98.13 93.91 93.63 94.26 94.01
I 93.31 90.72 86.59 84.18 84.23 81.96

VII 89.43 86.13 76.53 73.71 71.77 71.65
V 88.23 84.20 78.45 74.87 61.38 72.70

TABLE II
THE EXPRESSION LEVEL EVALUATION RESULTS ON CROHME 2014 TEST

SET, INCLUDING THE EXPERIMENT RESULTS IN THIS WORK AND

CROHME 2014 PARTICIPANT RESULTS (TOP 4)

Network, model correct (%) ≤ 1 error ≤ 2 errors ≤ 3 errors
i, Tree-Time 11.20 18.43 26.07 31.16
i, Tree-Left 7.33 13.95 18.64 22.51

i, Tree-0 8.45 15.99 21.49 26.27
i, Merge3 17.11 25.46 32.28 38.19

ii, Tree-Time 16.09 25.46 32.28 37.27
ii, Tree-Left 9.16 17.11 21.59 25.66

ii, Tree-0 9.67 15.99 21.69 27.49
ii, Merge3 21.59 30.96 37.88 43.99

system CROHME 2014 participant results (Top 4)
III 62.68 72.31 75.15 76.88
I 37.22 44.22 47.26 50.20

VII 26.06 33.87 38.54 39.96
VI 25.66 33.16 35.90 37.32

data. With regard to the symbol classification and recognition

rates, our system (ii) performs better than the second-ranked

system in CROHME 2014. For relationship classification rate,

our system (ii) reaches the level between the second-ranked

and the third-ranked systems in CROHME 2014. And it should

be improved continually as we consider more trees in future

work. The global expression recognition rate is 21.59%. When

we compute the recognition rate with ≤ 3 errors, our result

is 43.99%, higher than the third-ranked system (39.96%). The

top ranked system is from a company and they use a much

larger training data set which is not available to the public. Fur-

thermore, as we know, all the top 4 systems in the CROHME

2014 competition are grammar driven solutions which need

a large amount of manual work and a high computational

complexity. Considering that there is no grammar constraint

included in our system, the results are quite promising.

VI. CONCLUSION

We proposed a tree-based BLSTM system for online ME

recognition. One major difference with the traditional ap-

proaches is that there is no explicit segmentation, recognition

and layout extraction steps but a unique trainable system that

produces directly a SLG describing a ME. The current system,

without any grammar, achieves competitive results on symbol

level. With regard to the recognition rate on global expression

level, there is still room for improvement. In future, we will

consider more trees with the aim to catch more relationships

between strokes. Another direction is to extend the tree-based

BLSTM to DAG structure, avoiding the problem of merging

the results from several trees.

ACKNOWLEDGMENT

We would like to thank the China Scholarship Council for

supporting PhD studentship at Nantes university.

REFERENCES

[1] H. Mouchère, R. Zanibbi, U. Garain, C. Viard-Gaudin. Advancing the
state of the art for handwritten math recognition: the CROHME compe-
titions, 2011-2014. IJDAR, 19(2): 173-189, 2016.

[2] R. Zanibbi, D. Blostein. Recognition and retrieval of mathematical
expressions. IJDAR, 15(4): 331-357, 2012.

[3] A. M. Awal, H. Mouchère, C. Viard-Gaudin. A global learning approach
for an online handwritten mathematical expression recognition system.
PRL, 35: 68-77, 2014.

[4] F. Álvaro, J. A. Sánchez, J. M. Benedı́. An integrated grammar-based
approach for mathematical expression recognition. PR, 35: 135-147,
2016.

[5] T. Zhang, H. Mouchère, C. Viard-Gaudin. Online Handwritten Mathe-
matical Expressions Recognition by Merging Multiple 1D Interpretations.
ICFHR, 2016.

[6] A. Graves, M. Liwicki, S. Fernández, et al. A novel connectionist system
for unconstrained handwriting recognition. IEEE Transactions on PAMI,
31(5): 855-868, 2009.

[7] F. Álvaro, J. A. Sánchez, J. M. Benedı́. Classification of on-line math-
ematical symbols with hybrid features and recurrent neural networks.
2013 12th ICDAR. IEEE, 1012-1016, 2013.

[8] K. S. Tai, R. Socher, and C. D. Manning. Improved semantic represen-
tations from tree-structured long short-term memory networks. arXiv
preprint arXiv: 1503.00075, 2015.

[9] X. Zhu, P. Sobhani, and H. Guo. Long Short-Term Memory Over
Recursive Structures. ICML, 1604-1612, 2015.

[10] X. Zhu, P. Sobhani, and H. Guo. Dag-structured long short-term memory
for semantic compositionality. Proceedings of NAACL-HLT, 917-926,
2016.

[11] A. Graves. Supervised sequence labelling with recurrent neural net-
works. Heidelberg: Springer, 2012.

[12] S. Hochreiter, J. Schmidhuber. Long short-term memory. Neural
computation, 9(8): 1735-1780, 1997.

[13] R. Zanibbi, H. Mouchère, C. Viard-Gaudin. Evaluating structural
pattern recognition for handwritten math via primitive label graphs.
Document Recognition and Retrieval XX, Feb 2013, Burlingame, United
States. 8658, pp.865817-865817-11, 2013.

[14] S. Hochreiter, Y. Bengio, P. Frasconi, et al. Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies. 2001.

[15] A. Graves, S. Fernández, J. Schmidhuber. Bidirectional LSTM networks
for improved phoneme classification and recognition. ICANN, Springer
Berlin Heidelberg, 2005: 799-804.

[16] A. Graves, N. Jaitly, A. Mohamed. Hybrid speech recognition with deep
bidirectional LSTM. Automatic Speech Recognition and Understanding
(ASRU), 2013 IEEE Workshop on. IEEE, 2013: 273-278.

[17] T. Bluche, H. Ney, J. Louradour, et al. Framewise and ctc training of
neural networks for handwriting recognition. ICDAR, 2015: 81-85.

[18] T. Zhang, H. Mouchère, C. Viard-Gaudin. Using BLSTM for inter-
pretation of 2-D languages. Document numérique, 2016, DOI :
10.3166/DN.19.2-3.135-157.

[19] H. Mouchère, C. Viard-Gaudin, R. Zanibbi, et al. ICFHR 2014 Compe-
tition on Recognition of On-line Handwritten Mathematical Expressions
(CROHME 2014). ICFHR, 2014.

919919919919919

