
Convolutional Neural Networks for Font
Classification

Chris Tensmeyer, Daniel Saunders, and Tony Martinez
Dept. of Computer Science
Brigham Young University

Provo, USA
tensmeyer@byu.edu danielsaunders@byu.edu martinez@cs.byu.edu

Abstract—Classifying pages or text lines into font categories
aids transcription because single font Optical Character Recog-
nition (OCR) is generally more accurate than omni-font OCR.
We present a simple framework based on Convolutional Neural
Networks (CNNs), where a CNN is trained to classify small
patches of text into predefined font classes. To classify page
or line images, we average the CNN predictions over densely
extracted patches. We show that this method achieves state-
of-the-art performance on a challenging dataset of 40 Arabic
computer fonts with 98.8% line level accuracy. This same method
also achieves the highest reported accuracy of 86.6% in predicting
paleographic scribal script classes at the page level on medieval
Latin manuscripts. Finally, we analyze what features are learned
by the CNN on Latin manuscripts and find evidence that the CNN
is learning both the defining morphological differences between
scribal script classes as well as overfitting to class-correlated
nuisance factors. We propose a novel form of data augmentation
that improves robustness to text darkness, further increasing
classification performance.

Keywords-Document Image Classification; Convolutional Neu-
ral Networks; Deep Learning; Preprocessing; Data Augmenta-
tion; Network Architecture

I. INTRODUCTION

Deep Convolutional Neural Networks (CNNs) have been
successfully applied to many problems in Document Image
Analysis. These areas include whole image classification [1],
[2], [3], image preprocessing [4], script identification [5], and
character recognition [6]. The success of CNNs has been
attributed to their ability to learn features in an end-to-end
fashion from large quantities of labeled data.

In this work, we present a simple CNN based framework
for classifying page images or text lines into font classes.
Handling multiple fonts is a challenge in Optical Character
Recognition (OCR), as the OCR system must handle large
variations in character appearance due to differences in font.
If text lines are labeled with a font class, then a specialist OCR
system for that font can potentially achieve higher recognition
rates than an OCR system trained on many fonts [7], [8].

In this framework, a CNN is trained to classify small image
patches into font classes. At prediction time, we densely ex-
tract patches from the test image and average font predictions
over individual patch predictions. Although this method is
simple, we achieve 98.8% text line accuracy on the King
Fahd University Arabic Font Database (KAFD) for 40 type
faces in 4 styles and 10 different sizes [9]. The best previous

result is 96.1% on a subset of 20 type faces [9]. We also
demonstrate state-of-the-art performance with 86.6% accuracy
on the Classification of Latin Medival Manuscripts (CLaMM)
dataset, where the highest previously reported accuracy is
83.9% [10].

In addition to showing that CNNs perform well at font
classification tasks, we perform an in-depth analysis of the
features learned by the CNN. Though CNNs are black box
models, we can gain an understanding of what features are
used for classification by measuring output responses as we
vary characteristics of the input images. Such an analysis can
demonstrate whether the CNN is overfitting to nuisance factors
of the collection of documents it was trained on.

For example, the CLaMM dataset contains 12 scribal script
classes defined by expert paleographers that are handwriting
styles that differ in character allographs and morphological
shape [10]. However, we find that CNNs trained on CLaMM
are sensitive to how dark the text is. This is undesirable
because the CNN may be applied to novel document col-
lections that have a different bias w.r.t. text darkness. We
provide a solution to this problem using a new form of data
augmentation, which also improves performance on CLaMM.
We also find that CNNs can be sensitive to other factors such
as inter-line spacing and presence of non-textual content.

II. RELATED WORKS

We review the literature for two tasks: font classification
and analyzing what features a CNN has learned. Though the
classes in CLaMM are referred to as script classes, we feel
that this task is more akin to font classification than what
is traditionally described as script classification. Traditional
script classification deals with distinguishing different writing
systems or character sets (e.g. Chinese vs Latin vs Arabic),
while script classes in CLaMM are all Latin script. However,
in keeping with the terminology introduced in [10], we use the
term script to refer to a class category in CLaMM. We also
use the term font class to refer to typefaces (e.g. Arial) rather
than combinations of typeface, size, and style (e.g. bold).

A. Font Classification

Zramdini and Ingold presented a font recognition system
based on the statistics of connected components, achiev-
ing 97.35% accuracy over English text lines for 10 font

ar
X

iv
:1

70
8.

03
66

9v
1 

 [
cs

.C
V

] 
 1

1 
A

ug
 2

01
7



classes [11]. Zhu et al. posed font recognition as texture
identification and used Gabor Filters to achieve 99.1% ac-
curacy on text blocks for both English and Chinese text [12].
Fractal Dimension features were introduced in [13] for Arabic
font classification and resulted in 98% accuracy for 10 font
classes. Luqman et al. used log-Gabor filter features extracted
at multiple scales and orientations to obtain 96.1% accuracy
on 20 fonts in the large scale KAFD dataset.

More recently, deep learning techniques based on Con-
volutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN) have been proposed for font classification.
Tao et al. used a combination of CNN and 2D RNN models
to classify single Chinese characters into 7 font classes with
97.77% accuracy [14]. Pengcheng et al. classified handwritten
Chinese characters into 5 calligraphy classes with 95% accu-
racy using deep features extracted from a CNN pretrained on
natural images [15]. Classifying calligraphy classes is similar
to classifying script types in CLaMM, though CLaMM uses
Latin script classes with page-level ground truth.

B. Analysis of Learned Features

There are a variety of techniques used to examine features
learned by CNNs, developed primarily in the context of
natural images. In [16], canonical class images are obtained by
gradient descent over input pixels to maximally excite output
class neurons. Similarly, class sensitivity maps are visualized
by computing via backpropagation the first partial derivative
of the target output class w.r.t. all input pixels. Zeiler and
Fergus proposed a deconv visualization approach where hidden
representations are projected back into the input space [17].
Additionally, they visualize intermediate neurons by finding
the top-N maximally exciting input patches for each neuron.
For quantitative analysis, Zeiler and Fergus measured how
CNN outputs change in response to certain transformations of
the input image (e.g. rotation, translation) [17]. We perform a
similar analysis, specific to the domain of document images,
to see how sensitive CNNs are to noise factors in CLaMM.

III. METHODS

In this work, we classify large document images into script
or font classes using CNNs. Because inputting entire high
resolution images to a CNN is computationally slow, requires
large GPU memory, and requires more training data, we resort
to a patch classification scheme. We train a CNN to classify
individual 227x227 patches into font/script classes. To obtain
a classification for a large test image, we densely extract
overlapping 227x227 patches on a regular square grid with 100
pixels between patch centers. The CNN produces a probability
distribution over the classes for each patch, which distributions
are uniformly averaged to obtain the final classification.

For training data, we extract 256x256 patches at a stride
of 42 pixels from the training images and label patches with
the class of the image it was taken from. During training, a
random 227x227 crops from these patches are inputted to the
CNN. Some training images are set aside as a validation set,
which is used to select the best performing model.

(a) Arabswell (b) Times New Roman (c) Arial

(d) Humanistic (e) Hybrida (f) Uncial

Fig. 1. Example 256x256 patches from KAFD (top) and CLaMM (bottom).
Subcaptions refer to the class label of the patch.

In this work, we compare two CNN architectures. The first
is the AlexNet architecture composed of 5 convolution layers
followed by 3 fully connected layers [18]. Each layer takes as
input the output of the previous layer:

x` = F`(x`−1, θ`) (1)

where x` is the input to the `th layer, F` is a function
to be learned parameterized by θ`. The F` performs ei-
ther a convolution or a matrix multiplication followed by
ReLU(z) = max(z, 0), and sometimes pooling and local
response normalization operations [18].

The other architecture is the state-of-the-art ResNet-50 [19],
which was used to win the 2015 ImageNet Large Scale Visual
Recognition Challenge (ILSVRC). Layers in a ResNet learn a
residual function, where F` is added to the layer input:

x` = F`(x`−1, θ`) + x`−1 (2)

Residual learning enables deeper networks to be trained with
gradient descent optimization as the gradient no longer van-
ishes or explodes exponentially with layer depth due to the
x`−1 term in Equation 2. For ResNet-50, F` is composed of
multiple convolutions, ReLU, BatchNorm [20], and sometimes
pooling operations. See [19] for the exact model specification.

Additionally, we train CNNs at 7 image scales from 30-
100%, where 100% is original image size and 50% is down-
sampled by a factor of 2.. This is done by downsampling
training images before extracting 256x256 patches and by
downsampling tests images for classification. For smaller im-
age scales, more characters are available per 256x256 training
patch, but with less detail. For CLaMM experiments, we
ensemble networks by averaging predictions of two CNNs
trained from different random initializations. For training
details, all CNNs are trained with Stochastic Gradient De-
scent (SGD) using 0.9 momentum and L2 weight decay of
0.0005. The number of iterations was 350K-650K based on
architecture and dataset, with mini-batches of size 40-64.



A. Datasets and Evaluation

We use two datasets in this work, Classification of Latin
Medieval Manuscripts (CLaMM) [10] and the King Fahd
University Arabic Font Database (KAFD). Example training
patches from each dataset are shown in Figure 1.

The CLaMM dataset was introduced in the recent
ICFHR2016 Competition on the Classification of Medieval
Handwritings in Latin Script [10]. It is comprised of 2000
training images and 1000 test images (for task 1) in grayscale
format. Each image is approximately 1700x1200 pixels (300
dpi) and is composed of handwritten text, background space,
and graphics. The training and test images are annotated with
a single script class. There are 12 script classes representing
different styles of character shapes used by scribes in produc-
ing handwritten manuscripts in Europe in the years 500 C.E.
to 1600 C.E. For CLaMM, we report model accuracy over the
1000 test images.

KAFD is comprised of 115,068 scanned pages of printed
Arabic text in grayscale format divided among 40 font classes
(e.g. Arial). Each font class contains pages that differ in font
size (8-24 point) and style (regular, bold, italic, bold and italic).
Though KAFD is available in four resolutions, we opted to
use only 300dpi images for computational reasons. We used
the designated train/validation/test split and evaluated model
accuracy on both the page and line formats of the dataset.
Because line images are less than 256 pixels in height, we pad
them with white background to be 256 pixels in height. When
extracting patches, we discard patches with minimum value
> 100 as these patches likely consist of only background.

B. Pretraining on Synthetic Data

For tasks with limited data, pretraining networks on sim-
ilar tasks tends to improve performance [21]. Pretraining is
performed by initializing network weights to those learned on
the pretraining task, except for the classification layer, which is
initialized randomly due to the tasks having different classes.

For CLaMM, we experimented with pretraining on a 27-
class synthetic font recognition task designed to mimic some
character differences between CLaMM classes. We hope that
by pre-conditioning the CNN to examine individual characters,
it will more easily discriminate script classes based on their
defining morphological differences. 23 font classes were based
on the Liberation Serif font and 4 more were based on other
fonts. Each class deviates from the basic font by a random
combination of the following modifications:

• Only capital glyphs.
• Vertical translation of certain glyphs. Some normally de-

scending characters are shifted to be non-descending, and
normally non-descending characters become descenders.

• Substituting glyphs with characters from CLaMM classes.
For example, using the Uncial A, a single compartment
Cursiva a, or long s glyph instead of modern s.

To create training data for a synthetic font class, we
rendered random Latin text and added Gaussian noise to
foreground characters. We then inserted the noised text onto

Train Model Lines Page-Lines Pages
Data Patch Image Patch Image Patch Image

Lines AlexNet 95.3 97.1 95.3 98.7 38.5 90.8
ResNet 97.9 98.8 97.9 99.2 58.0 92.7

Pages AlexNet 86.2 88.4 86.0 91.1 58.2 98.2
ResNet 91.9 93.2 91.7 94.8 60.5 98.5

TABLE I
ACCURACY OF CNNS ON KAFD TEST DATA AT BOTH THE PATCH AND

WHOLE IMAGE LEVEL.

(a) Segore UI

(b) Times New Romans

(c) Arial

(d) Arabic Transparent

Fig. 2. KAFD classes that are easily confused, accounting for approximately
70% of misclassifications in all trained models.

blank background pages taken from real historical documents
using image interpolation. The accuracy on the pretraining task
itself ranged from 50-85% depending on CNN architecture
and image scale, indicating that the task is non-trivial and
that CNNs are able to focus on individual characters to make
classification decisions.

IV. RESULTS

A. KAFD

On KAFD, we trained 2 ResNets and 2 AlexNet CNNs
each on line images and on page images at 100% image
scale. For each CNN architecture and type of training data, we
selected one model using the provided validation data. Model
accuracies for both patches and images are shown in Table I.
The Page-Lines column shows page level accuracy obtained
by averaging predictions over the pre-segmented line images
for each page. For the Pages column, test patches are densely
extracted from the page image and may contain badly cropped
text, leading to lower patch accuracy for this column.

For all types of data, the more powerful Resnet architec-
tures outperforms AlexNet, providing 19-58% error reduction.
Training and testing on segmented line images leads to the
best page level classification at 99.2% accuracy for ResNet.
When training and testing on densely cropped patches, the best
accuracy is 98.5%, showing that using segmented data leads
to a 47% reduction in error over densely cropped patches. The
best accuracy achieved over line images is 98.8%.

To our knowledge, there are no previously published results
on all 40 fonts. On subsets of 10 and 20 fonts, Luqman et
al. achieved 99.5% and 96.1% accuracy respectively on line
images using log-Gabor features extracted at multiple scales
and orientations [9]. On the same 20 fonts, a single ResNet
model achieves 99.8% accuracy on line images.

The vast majority of misclassifications on all 40 fonts are
made by confusing Times New Roman with either Segore UI,



(a) (b) (c)

Fig. 3. Performance on CLaMM for CNNs trained at difference scales on (a) whole image classification and (b) per-patch classification. -Pre indicates that
CNNs were first pretrained on synthetic data (Section III-B). A pretrained ResNet trained at 50% image scale performs best and outperforms the previous
best result on this task. Subfigure (c) shows the effect of patch extraction stride at test time. Smaller strides are more important for smaller image scales.

Arial, or Arabic Transparent. These classes account for at
least 70% of errors for patches, line images, and page images.
Figure 2 shows example text for these 4 easily confused
classes. The fonts Times New Roman, Arial, and Arabic
Transparent are very similar, and could be grouped together
under a single OCR system. However, Segore UI is visually
distinctive (e.g. larger holes inside characters) and shows that
there is room for improvement in the model.

B. CLaMM

For CLaMM, Figure 3 shows the performance of ensembles
composed of two models, where each ensemble is trained at
a single image scale. On this task, we see the importance
of using the more powerful ResNet architecture. In general,
mid-range image scales perform best, likely because they
balance the trade-off between amount of text on each patch
and resolution of the text. Notably, using 50% image scale
with the ResNet architecture yields 84.5% accuracy, which
outperforms the highest reported result of 83.9% achieved by
the ICFHR 2016 CLaMM competition winner [10].

Pretraining on synthetic data significantly improves perfor-
mance for AlexNet models and shows that this is a viable
approach to improving CNNs based on domain knowledge. For
ResNet, pretraining helps for smaller image scales, though it
causes a slight decrease in performance for some larger scales.
This is likely because overfitting training data is a bigger
problem with smaller scales due to having fewer training
patches. Pretraining on the synthetic data at 50% image scale
leads to an increase of 0.3% absolute accuracy to reach
84.8% on this task. We note that we created only one set
of pretraining data and did not tweak the pretraining classes
to improve results, either on test or validation data.

We also analyzed the stride at which patches are extracted
from test images (Figure 3c). Larger strides require less com-
putation because fewer patches are evaluated, but also result
in lower accuracy. Smaller strides seems to be more important
for smaller image scales, likely because fewer patches are
extracted from smaller images at any given stride.

(a) Background (b) Figure (c) Annotation

Fig. 4. Example of non-textual patches from CLaMM dataset. Though
they do not contain text of the target script class, some of these patches
are discriminative of the script class of the page.

V. ANALYZING LEARNED FEATURES

In this section, we analyze how sensitive a ResNet model
is to noise factors present in the CLaMM dataset. We take
two approaches. In the first approach, we modify the training
data and evaluate the performance of the ResNet on the task
images. In the second, we take the trained ResNet and measure
how changing certain characteristics of input patches affects
the classification decision for the patch.

A. Modified Training Data

Because training and testing patches are densely extracted,
not all patches contain text that can be used to discriminate
the page image’s script class. Such patches may contain only
background, figures, or institutional annotations (see Figure 4).
To measure whether these patches postively or negatively
affect model performance, we manually annotated1 each of
the 2000 training images using the PixLabler Tool [22] and
foreground masks computed using Otsu binarization [23].

We created three modified training sets with the annotations:
1) CLaMM-Filtered (12 classes) - Non-textual patches are

removed from the training set.
2) CLaMM-Extended (15 classes) - Non-textual patches are

reassigned to one of background, figure, annotation. At
test time, predictions for these classes are not allowed

3) CLaMM-Noise (13 classes) - All textual patches are
removed from the 12 script classes (manually verified),
leaving only non-textual patches as examples of the

1These annotations are available for download at http://axon.cs.byu.edu/
clamm

http://axon.cs.byu.edu/clamm
http://axon.cs.byu.edu/clamm


Average Caroline Cursiva Half-Uncial Humanistic Humanistic Hybrida Praegothica Semihybrida Semitextualis Southern Textualis Uncial
Training Set Cursive Textualis
CLaMM 74.4 97.7 65.1 84.4 89.0 91.1 37.5 94.0 37.3 82.4 64.6 51.8 100
CLaMM-Filtered 77.4 97.7 65.1 91.1 92.7 92.4 34.1 94.0 49.4 88.2 68.3 58.8 100
CLaMM-Extended 77.7 96.5 58.1 95.6 91.5 93.7 31.8 91.7 55.4 85.3 79.3 56.5 100
CLaMM-Noise 21.5 15.1 9.3 15.6 39.0 26.6 18.2 48.8 15.7 22.1 7.3 20.0 21.8

TABLE II
WHOLE IMAGE CLASS ACCURACIES ON CLAMM TEST IMAGES WITH RESNET AT 100% IMAGE SCALE FOR MODIFIED TRAINING SETS.

script classes. An additional Text class is composed of
textual patches drawn from all classes. At test time,
predictions for the Text class are not allowed.

We trained an ensemble of two ResNets at 100% image
scale (test patch stride of 100) on the three modified training
sets and on the unmodified training set. We chose 100% image
scale so that CLaMM-Noise could have a sufficient number
of training patches. The per-class and average accuracies are
shown in Table II.

Interestingly, we see that either filtering or relabling non-
textual patches increases accuracy by 3%, indicating that it is
detrimental to label non-textual patches as examples of script
classes. Because non-textual patches are distinctly labeled in
CLaMM-Extended, the ResNet can minimize their impact at
test time. This data preprocessing outperforms that of CLaMM-
Filtered, where the ResNet at test time must classify non-
textual patches into one of the 12 script classes. The results
on CLaMM-Noise demonstrate that some script classes can
be discriminated based on non-textual content, as the average
accuracy is 21.5%, compared to 8.3% for random predictions.
For example, images containing Praegothica and Humanistic
scripts frequently have large decorated figures, which can be
sufficient to classify the images. Some other reasons for per-
formance above random chance include correlation of figures,
background intensity, presence of noise (e.g. bleed through)
with page level script classes. This shows that CNNs have the
potential to overfit to particular characteristics of the collection
used to train (and evaluate) the model, so caution should be
exercised when applying models to novel collections.

B. Text Darkness

We also examined learned features by varying input patches
and measuring per-patch output accuracy. In preliminary anal-
ysis, we found two nuisance factors that influence classifica-
tion decisions: text darkness and inter-line spacing.

To test the effect of text darkness on patch-accuracy, we
extracted 30 patches of text from each class and computed
reasonable foreground masks using Otsu binarization [23]. For
each patch, we produced a series of 100 patches, where 50
have darker text and 50 have lighter text compared to the
original patch. To make text darker, we subtracted constant
values from all foreground pixels and clipped values at 0. The
value of the constant was linearly varied such that the intensity
of all foreground pixels in the darkest image are uniformly 0.
To make the text lighter, we produced linear combinations of
the original patch and an estimated background image con-
structed by averaging together sampled background patches.
These linear combinations range from 100% original image
to 100% background estimate. We chose interpolation over

Fig. 5. Patch Accuracy as a function of text darkness. Patches with varying
text darkness below are positioned relative to the x-axis of the graph. Some
classes are more or less sensitive to these effects.

Fig. 6. Comparing independently varying background and foreground
intensity (-FG/BG) vs varying whole image intensity (-Whole) on CLaMM.

directly lightening text to avoid making any foreground pixels
lighter than the surrounding background.

We ordered these 100 modified patches with the darkest as
the 1st, the original patch as the 50th, and the lightest patch
as the 100th. We classified each modified patch and recorded
the average accuracy for each darkness/lightness level for all
patches and each class (Figure 5). Overall, classification is
robust to small changes, but there are sharp decreases for
larger changes. For example, the training data for Uncial
script has uniformly light text, with an average foreground
intensity of 130 (other classes have average intensity ∼50). We
observe that when Uncial text is darkened or lightened, more
errors are made because such examples are not present in the
training data. However, lightness or darkness of foreground
text is not a defining characteristic of the script, but is an
artifact of writing instrument, ink composition, and document
preservation conditions. The majority of other scripts, such
as SemiHybrida, exhibit similar sensitivities, while Caroline
script appears robust to both darkening and lightening of text.



Fig. 7. Patch accuracy as a function of text line spacing for selected images.
Split into two graphs for clarity.

To make CNNs robust to varying text darkness, we apply
a novel form of data augmentation. While it is common to
randomly brighten or darknen input images on-the-fly during
training (e.g. [18]), we independently lighten or darken fore-
ground and background pixels based on masks computed using
Otsu binarization [23]. Specifically, each time an image is
input to the CNN, we choose either foreground or background
with equal probability. Then, we draw a random value from a
Gaussian distribution with µ = 0, σ = 30 and add that value
to the grayscale pixel values of the selected region.

In Figure 6 we compare this scheme to simply brightening
or darkening the whole image. In general, independently
varying foreground and background leads to significant per-
formance gains for all image scales. In particular, we reach a
new record at 86.6% accuracy on CLaMM, which exceeds the
previous state-of-the-art by an absolute 2.7%.

C. Line Spacing

We also found that CNNs are sensitive to the inter-line
spacing of text for certain classes. For each class, we manually
extracted text lines and backgrounds from two images and
were able to render those text lines at various spacings on the
original backgrounds. We then measured patch-accuracy as a
function of text line spacing for each image.

Patch accuracies of selected examples of sensitive images
are shown in Figure 7. The majority of images examined are
most easily classified at line spacing of 20 pixels. For 4 classes,
accuracies stayed above 95% for line spacings greater than
20 pixels. For 3 of these classes, sharp drops in accuracy
were observed for spacings less than 20 pixels (especially at
0 pixels). Only Praegothica images were completely invariant
to line spacing. Trends are not necessarily tied to the script
class, as we observed that for 5 of 12 classes, the two images
examined had drastically different sensitivities to line spacing.

We note that inter-line spacing is not part of the morpho-
logical definition of CLaMM classes. Therefore it would be
desirable to have predictive models that are not sensitive to line
spacings. Though we have not experimentally verified such,
we hypothesize that data augmentation where line spacings
are stochastically altered (e.g. with seam carving) would give
CNNs more invariance to this nuisance factor and potentially
make them more accurate for application to novel collections.

Additional experiments (omitted for space) suggested CNNs
are sensitive to the line height (i.e. font size) of text lines.

VI. CONCLUSION

We have presented a simple patch based classification
framework for line image and page image font classification.
We have shown that the ResNet architecture in our framework
gives state-of-the-art performance by exceeding previously
published results in Arabic font classification on the KAFD
dataset and in Latin scribal script classification on the CLaMM
dataset. We performed an analysis of the sensitivities of
ResNet to nuisance factors in the CLaMM dataset, such as
non-textual patches, text darkness, and line spacing. In the
case of text darkness, we proposed novel data augmentation
based on independently varying foreground and background
intensities, which leads to improved model robustness and
performance.

REFERENCES

[1] A. W. Harley, A. Ufkes, and K. G. Derpanis, “Evaluation of deep convolutional
nets for document image classification and retrieval,” in Proc. ICDAR 2015. IEEE,
2015, pp. 991–995.

[2] M. Z. Afzal, S. Capobianco, M. I. Malik, S. Marinai, T. M. Breuel, A. Dengel, and
M. Liwicki, “Deepdocclassifier: Document classification with deep convolutional
neural network,” in Proc. ICDAR 2015. IEEE, 2015, pp. 1111–1115.

[3] L. Kang, J. Kumar, P. Ye, Y. Li, and D. Doermann, “Convolutional neural networks
for document image classification,” in Proc. ICPR 2014. IEEE, 2014, pp. 3168–
3172.

[4] J. Pastor-Pellicer, S. España-Boquera, F. Zamora-Martı́nez, M. Z. Afzal, and
M. J. Castro-Bleda, “Insights on the use of convolutional neural networks for
document image binarization,” in International Work-Conference on Artificial
Neural Networks. Springer, 2015, pp. 115–126.

[5] B. Shi, X. Bai, and C. Yao, “Script identification in the wild via discriminative
convolutional neural network,” Pattern Recognition, vol. 52, pp. 448–458, 2016.

[6] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices for convolutional neural
networks applied to visual document analysis.” in Proc. ICDAR 2003, vol. 3, 2003,
pp. 958–962.

[7] H. Shi and T. Pavlidis, “Font recognition and contextual processing for more
accurate text recognition,” in Proc. ICDAR 1997, vol. 1. IEEE, 1997, pp. 39–44.

[8] H. S. Baird and G. Nagy, “Self-correcting 100-font classifier,” in IS&T/SPIE
1994 International Symposium on Electronic Imaging: Science and Technology.
International Society for Optics and Photonics, 1994, pp. 106–115.

[9] H. Luqman, S. A. Mahmoud, and S. Awaida, “Kafd arabic font database,” Pattern
Recognition, vol. 47, no. 6, pp. 2231–2240, 2014.

[10] F. Cloppet, V. Eglin, V. Kieu, D. Stutzmann, and N. Vincent, “Icfhr2016 competi-
tion on the classification of medieval handwritings in latin script,” in Proc. ICFHR
2016, 2016.

[11] A. Zramdini and R. Ingold, “Optical font recognition using typographical features,”
IEEE Transactions on pattern analysis and machine intelligence, vol. 20, no. 8,
pp. 877–882, 1998.

[12] Y. Zhu, T. Tan, and Y. Wang, “Font recognition based on global texture analysis,”
IEEE Transactions on pattern analysis and machine intelligence, vol. 23, no. 10,
pp. 1192–1200, 2001.

[13] S. B. Moussa, A. Zahour, A. Benabdelhafid, and A. M. Alimi, “New features
using fractal multi-dimensions for generalized arabic font recognition,” Pattern
Recognition Letters, vol. 31, no. 5, pp. 361–371, 2010.

[14] D. Tao, X. Lin, L. Jin, and X. Li, “Principal component 2-d long short-term
memory for font recognition on single chinese characters,” IEEE transactions on
cybernetics, vol. 46, no. 3, pp. 756–765, 2016.

[15] G. Pengcheng, G. Gang, W. Jiangqin, and W. Baogang, “Chinese calligraphic style
representation for recognition,” International Journal on Document Analysis and
Recognition (IJDAR), vol. 20, no. 1, pp. 59–68, 2017.

[16] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional net-
works: Visualising image classification models and saliency maps,” arXiv preprint
arXiv:1312.6034, 2013.

[17] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-
works,” in European conference on computer vision. Springer, 2014, pp. 818–
833.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing
systems, 2012, pp. 1097–1105.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR 2016, 2016, pp. 770–778.

[20] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.



[21] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features off-
the-shelf: an astounding baseline for recognition,” in Proc. CVPR Workshops 2014,
2014, pp. 806–813.

[22] E. Saund, J. Lin, and P. Sarkar, “Pixlabeler: User interface for pixel-level labeling
of elements in document images,” in Proc. ICDAR 2009. IEEE, 2009, pp. 646–
650.

[23] N. Otsu, “A threshold selection method from gray-level histograms,” Automatica,
vol. 11, no. 285-296, pp. 23–27, 1975.


	I Introduction
	II Related Works
	II-A Font Classification
	II-B Analysis of Learned Features

	III Methods
	III-A Datasets and Evaluation
	III-B Pretraining on Synthetic Data

	IV Results
	IV-A KAFD
	IV-B CLaMM

	V Analyzing Learned Features
	V-A Modified Training Data
	V-B Text Darkness
	V-C Line Spacing

	VI Conclusion
	References

