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Abstract

In this work, we propose the combined usage of low- and
high-level blocks of convolutional neural networks (CNNs)
for improving object recognition. While recent research fo-
cused on either propagating the context from all layers, e.g.
ResNet, (including the very low-level layers) or having mul-
tiple loss layers (e.g. GoogLeNet), the importance of the
features close to the higher layers is ignored. This paper
postulates that the use of context closer to the high-level lay-
ers provides the scale and translation invariance and works
better than using the top layer only. In particular, we ex-
tend AlexNet and GoogLeNet by additional connections in
the top n layers. In order to demonstrate the effectiveness
of the proposed approach, we evaluated it on the standard
ImageNet task. The relative reduction of the classification
error is around 1-2% without affecting the computational
cost. Furthermore, we show that this approach is orthogo-
nal to typical test data augmentation techniques, as recently
introduced by Szegedy et al. (leading to a runtime reduction
of 144 during test time).

1. Introduction

While it is quite easy for humans to distinguish between
objects in an image, it can be a very challenging task for a
computer. Not only can objects appear in different sizes and
angles, but also backgrounds and lighting conditions may
vary and many other factors can change the way an object
is displayed [44]. Furthermore, some object classes have a
very low inter-class variance (cf. Fig. 2), while other classes
might have a very high intra-class variance (cf. Fig. 3)
[13, 10]. Consequently, both the details of an image and the
greater context are important for successful classification.
Another factor, that makes image classification hard is the
presence of several objects in one image (cf. Fig. 4). When
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Figure 1: Contribution of this work: Instead of just using
the last CNN layer (Block n), we use connections to more
high-level layers as well in order to include various repre-
sentations in the recognition.

it comes to realistic applications of object recognition mod-
els, the task is exacerbated even further by computational
constraints. Some applications, e.g. in autonomous cars, re-
quire very fast, yet accurate predictions [40, 23], while other
applications, especially those in mobile devices, constrain
the amount of available memory and processing power.

In the last years, neural networks have had great suc-
cess in many tasks related to computer vision. For the task
of object recognition, particularly convolutional neural net-
works (CNNs) have become the state of the art [ 1 1]. Thanks
to now available computational resources and efficient GPU
implementations [ 17, 5], it is also possible to train very deep
CNNs. In 2012, Krizhevsky et al. proposed an eight-layer
deep CNN [19], which, due to its groundbreaking perfor-
mance, laid the foundation of using these networks for im-
age classification. Two years later, 19-layer [38] and 22-
layer networks [39] were presented, which performed even
better. In 2015, He et al. proposed an even deeper network
architecture with 152 layers [14], and most recently the de-
velopment of ever deeper CNNs culminated with PolyNet
with several hundred layers [47] (see Section 2).

While this trend towards deeper networks is evident, the
basic architecture of CNNs has never changed fundamen-
tally. They always consist of a number of stacked convolu-
tional layers with a non-linear squashing function [16, 20,



(a) “Tabby cat” (b) “Tiger cat” (c) “Egyptian cat”

Figure 2: Three similar images from different classes

Figure 3: Even though they look quite different, all three of
these images belong to the class “Tiger cat”

6], optional local response normalization and pooling for
feature extraction [2, 4, 36], followed by a number of fully-
connected layers for classification. As illustrated by Zeiler
and Fergus, the features extracted by the convolutional lay-
ers in the network correspond to more complex patterns
from layer to layer [45]. While the features of the lower
level layers correspond to dots or edges, the higher level fea-
tures correspond to patterns, such as faces or entire objects.
In the case of AlexNet [19], Zeiler and Fergus describe the
features extracted by the two highest level convolutional
layers of the network, as highly “class-specific” [45].

However, to the best of the authors’ knowledge, it has
not yet been tried to make the information from multiple
high-level layers directly available to the classification part
of the network to test, whether or not the additional features
provide complementary information. This is the main idea
of this paper. As such, we hope that providing the classi-
fication part of the network with more data leads to better
classification results while keeping the additional computa-
tional costs for both training and prediction minimal.

The contributions of this work are three-fold. Firstly,
we perform some initial experiments motivating the idea
of adding connections from multiple levels. Secondly, we
present two novel CNN architectures that explicitly use
the features extracted by multiple convolutional layers, for
classification. These networks do not rely on pre-training,
but provide standalone solutions that can be trained from
scratch. Thirdly, we evaluate both the performance and
computational costs of the novel architectures and compare
them to existing approaches.

The remaining sections are organized as follows. Sec-
tion 2 gives an overview of related work. Section 3 shows
the validity of the approach in a constrained setup. In

Figure 4: An image showing objects of different classes:
miniskirt, Hat with a wide brim, sunglasses, plastic bag,

>

section 4 the novel network architectures and the training
methodology are described in detail and large scale experi-
ments are performed. The results are presented in section 5
which is followed by the discussion in section 6 and con-
clusion in section 7.

2. Related Work

Both Convolutional Neural Networks (CNNs) and Re-
current Neural Networks (RNNs) have been used for solv-
ing key computer vision problems [21]. Some example ar-
eas such as object recognition and detection [19, 39, 14, 47,
42], semantic segmentation [3, 25, 27, 32], describing im-
ages with text [18, 43, 41, 7] and also generating the images
using text [9, 28, 33, 34, 46] show the effectiveness of the
deep learning models for solving challenging tasks. The
RNNS did not receive much attention for object recognition
and the work in this area is rather sparse due to the following
reasons: First by the virtue of their architecture that is suit-
able for temporal data processing. Secondly, due to the tem-
poral dependencies, the processing of RNNs is inefficient in
comparison to CNNs. However, the work of Visin et al. [42]
had signified that contextual processing of pixels can help
to recognize the objects better. Their proposed architecture
was named as ReNet and it was recommended as an alter-
native approach to CNNs. In another work, Biswas et al. [1]
concatenated different variations (degradations) of the same
object and processed it temporally. They used each varia-
tion of the object as one time step for RNNs. However, their
experiments are limited to MNIST [22] and COIL-20 [31]
data sets and the validity and the computational viability
of their approach remains undiscovered for large data sets
e.g., ImageNet [35]. A combination of CNNs and RNNs has
also been reported by Linag et al. [24]. Their proposed ar-
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Figure 5: Building block of the Inception architecture [39].

chitecture relies both on the efficiency of CNNS and power
of contextual processing of RNNs. As our proposed work
aims to extend existing deep CNN architectures, the fol-
lowing paragraphs briefly describe the state-of-the-art deep
CNN architectures for object recognition.

One well-known benchmark for several visual tasks, in-
cluding image classification, is the annual ImageNet Large
Scale Visual Recognition Challenge (ILSRVC) [35]. It al-
lows the participating teams to compare the performance of
their developed models. The data set used for the competi-
tion consists of 1.000 image classes containing 1.2 million
labeled images for training, 50.000 labeled validation im-
ages and 100.000 unlabeled images which are used to com-
pare the performance of the submitted entries.

In 2012, Krizhevsky et al. have, for the first time, used
a deep CNN in the ILSVRC and won the image classifi-
cation with a significant margin, outperforming all tradi-
tional methods [19]. The winning architecture consists of
five convolutional layers which are followed by three fully
connected layers. The first and second layer use local re-
sponse normalizations and max-pooling before passing the
activations to the next layer. The fifth convolutional layer is
again followed by a max-pooling layer which provides the
input to the fully-connected layers. To prevent overfitting,
the fully-connected layers use dropout [16]. Rectified lin-
ear units (ReLU) are used as activation function in all layers
[30]. AlexNet achieves a top-5 error rate of 16.422% on the
ILSVRC test data set.

Since then, many other teams have developed a variety
of different CNN architectures to further reduce the classi-
fication error of these networks [14, 38, 39]. First of all,
Szegedy et al. presented the 22-layer GoogLeNet in 2014,
which achieved a top-5 error rate of 6.656% on the ILSVRC
2014 test data set with an ensemble of 7 networks. The net-
work is using the Inception architecture [39] which is differ-
ent from other approaches, as it employs not stacked con-
volutional layers, but stacked building blocks which them-
selves consist of multiple convolutional layers (cf. Fig. 5).
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Figure 6: Network architecture used for the experiments
presented in section 3. The data layer holds the features
extracted beforehand. The fc8 layer is adjusted in size to
match the number of classes used in the experiments.

Therefore, it is a network-in-network approach [26]. As
the network is so deep, it employs two auxiliary loss layers
during training to allow for efficient backpropagation of the
error.

Note that the general idea of adding skip-connections
(so-called residual connections) has been recently intro-
duced by He et al. in [14, 15]. However, the motivation
and effects are fundamentally different. In ResNet, the
skip-connections go through all the layers, letting the lay-
ers mainly pass the information through the network with
minor additive terms. This mainly overcomes the vanish-
ing gradient problem and allows learning architectures with
hundreds of layers. Contrary, the main idea in this paper is
to use the extracted features of multiple layers directly for
classification. The only work which comes close to our idea
is the proposal of Center-Multilayer Features (CMF) as pro-
posed by Seuret et al.[37]. They used stacked convolutional
auto-encoders (SCAE) for classifying an image or the cen-
ter pixel of a patch. This idea is similar to our pre-study
(section 3) where we use multiple feature representations
from fine-tuned networks. However, their network archi-
tecture is shallow and they use features from all the layers.

Apart from novel network architectures, a lot of work has
been done to understand how the networks are learning and
how they can be improved [12, 29]. Especially visualiza-
tion techniques have helped to get an understanding of the



Table 1: Accuracy achieved by networks on validation sets
after training with inputs from conv5 only and inputs from
conv4 (normalized) and conv5.

conv5 conv4 & conv5
10 classes 90.60% 91.60%
20 classes 83.40% 84.10%
50 classes 78.72% 80.12%
100 classes | 68.36% 71.10%

convolutional layers [45]. Despite all the research that has
been done to develop new CNN architectures, novel archi-
tectures typically employ more layers or make use ensem-
bling techniques [48]. However, both approaches typically
require more computational resources at training and infer-
ence time.

3. Pre-study

To investigate, whether it is worth pursuing the idea of
using features from multiple layers, we run a set of small-
scale experiments. We use a publicly available model' of
AlexNet that is pre-trained on ImageNet. This model is used
to extract and store the activations generated by the fourth
and fifth convolutional layers (conv4 and conv5) during a
forward pass of the images. Then, we train a three-layer
fully-connected neural network on these activations which,
except for the last layer, equals the fully-connected part of
AlexNet (cf. Fig. 6). As is common, the last layer is ad-
justed in size to match the number of classes. We repeat the
experiment with several subsets of the ILSVRC data set.
The network is trained and evaluated on the activations of
10, 20, 50 and 100 randomly selected classes of the data set.

To get a baseline, we run a set of experiments, in which
the network is trained solely on the activations from conv5
that were extracted before. In another set of experiments,
we use the same classes, but train the network on the acti-
vations of conv4 concatenated with conv5. It turns out, we
have to L2-normalize the activations of conv4 to get useful
results. With unmodified values, the network fails to learn.

Table 1 shows, that the networks trained on features from
conv4 and conv5 yielded a better performance on the vali-
dation set than the networks which were trained on the fea-
tures from conv5 only.

4. Large Scale Experiments

With the results from section 3 we step the experiments
up and train entire CNNs from scratch on the ILSVRC data
set.

Ihttps://github.com/BVLC/caffe/tree/master/
models/bvlc_alexnet

Table 2: Input size of the layers of AlexNet and AlexNet++

AlexNet AlexNet++
convl | 3 x 227 x 227 | 3 x 227 x 227
pooll | 96 x 55 x 55 | 96 X 55 X 55
conv2 | 96 x 27 x 27 96 x 27 x 27
pool2 | 256 x 27 x 27 | 256 x 27 x 27
conv3 | 256 x 13 x 13 | 256 x 13 x 13
conv4d | 384 x 13 x 13 | 384 x 13 x 13
convd | 384 x 13 x 13 | 384 x 13 x 13
pool5 | 256 x 13 x 13 | 256 x 13 x 13
fc6 256 X 6 X 6 640 X 6 X 6
fc7 4096 4096
fc8 4096 4096
prob 1000 1000

4.1. Network Architectures

We propose two neural network architectures in this sec-
tion. The network architectures are strict extensions of the
existing networks AlexNet and GoogleNet. Unlike most
CNNs, including AlexNet and GoogLeNet, the proposed
networks feed the classification part of the network with
information not only from the highest-level convolutional
layer, but with information from the two highest-level con-
volutional layers. We call the enhanced versions of these
networks AlexNet++ and GooglLeNet++.

4.1.1 AlexNet++

The original AlexNet is an eight-layer deep CNN in which
each layer processes the features extracted by the subjacent
layer only. As already said, the proposed AlexNet++ dif-
fers from the original AlexNet in the way, that the first fully
connected layer (fc6) is not only presented with the activa-
tions from conv), but also with activations from conv4 (cf.
Fig. 7). Since after max-pooling, the conv5 layer has only
256 x 6 x 6 values, but conv4 has 384 x 13 x 13 values, we
have to balance the number of activations passed to the fc6
layer. Therefore, we add a max-pooling of conv4, before
concatenating the values with the conv5 values. Further-
more, to resemble the normalization that was done in the
small scale experiments (cf. Section 3), we use fanh after
the pooling to compress the activations. A detailed compar-
ison of the layer sizes of AlexNet and AlexNet++ is given
in table 2.

4.1.2 GoogLeNet++

GoogLeNet is the 22-layer network architecture, that won
the ILSVRC2014 [39]. Unlike AlexNet, the architecture
consists of stacked building blocks which consist of con-
volutional layers (cf. Fig. 5). Due to its depth, the original
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Figure 7: AlexNet++ architecture with unchanged AlexNet
part in gray and the new part colored.
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Figure 8: Top part of the GoogleNet++ architecture. The
new connection is marked red. The lower layers of the net-
work are built as proposed by Szegedy et al. [39].

architecture employs three softmax classifiers for efficient
error backpropagation during training. At inference time,
only the main classifier is used. This classifier gets its input
from one fully connected layer, which in turn processes the
input from the highest level building block.

The proposed GoogleNet++ architecture concatenates
the activations of the two highest level building blocks, be-
fore they are passed to the fully connected layer (cf. Fig. 8).
Table 3 gives a detailed comparison of the layer sizes of
GooglLeNet and GoogLeNet++.

4.2. Training Details

We train a version of AlexNet++ and GooglLeNet++
from scratch on the ILSVRC training data. To allow for
a fair comparison, the unchanged versions of AlexNet and
GoogLeNet are also trained on the same training data and
setup. All networks are trained on a single NVidia Tesla
K20X using the Caffe framework [17].

AlexNet and AlexNet++ are trained for 90 epochs using
stochastic gradient descent with an initial learning rate of
0.01 which is divided by 10 after 30 and 60 epochs. The
momentum is set to 0.9 and the weight decay is 0.0005 as
proposed by Krizhevsky et al. [19]. Both networks use a
batch size of 256 images to speed up the training. As pro-
posed in the original architecture, we initialize the weights
with a gaussian distribution with a mean of zero and a stan-
dard deviation of 0.01. The biases are initialized differently
from the original approach. While Krizhevsky et al. set the



Table 3: Input size of the layers of GooglLeNet and

GooglLeNet++

GoogLeNet GoogLeNet++

convl | 3x224 x224 | 3 x224 x 224
pooll | 64 x 112 x 112 | 64 x 112 x 112
conv2 | 64 x 56 x 56 64 x 56 x 56
pool2 | 192 x 56 x 56 | 192 x 56 x 56
inception3a | 192 x 28 x 28 | 192 x 28 x 28
inception3b | 256 x 28 x 28 | 256 x 28 x 28
pool3 | 480 x 28 x 28 | 480 x 28 x 28
inceptionda | 480 x 14 x 14 | 480 x 14 x 14
inception4b | 512 x 14 x 14 | 512 x 14 x 14
inceptiondc | 512 x 14 x 14 | 512 x 14 x 14
inception4dd | 512 x 14 x 14 | 512 x 14 x 14
inceptionde | 528 x 14 x 14 | 528 x 14 x 14
poold | 832 x 14 x 14 832 x 14 x 14

inception5a 832 xT7TxT7 832 xTxT7

inception5b 832 x T xT7 832X 7T x 7
pool5 | 1024 x 7 x 7 1856 x 7 x 7

fc 1024 x 1 x 1 1856 x 1 x 1

prob 1000 1000

biases of the second, fourth, and fifth convolutional layers
and the biases of the fully-connected layers to 1, we set
them to 0.1, as the network fails to learn with biases set
to 12,

The GoogleNet and GoogleNet++ networks are trained
for five million iterations with a batch size of 32, i.e. for
133 epochs. We train the networks with stochastic gradient
descent with a polynomial update of the learning rate, as
proposed by Sergio Guadarrama®. This means, the learning
rate is updated at every iteration to

iter power
) (1)

lr = initial _lr (1 — .
max_iter

In our case, the initial learning rate is set to 0.01 and
power is 0.5. The momentum is 0.9, weight decay is set
to 0.0002. To initialize the network, we use normalized ini-
tialization [8].

4.2.1 Data Augmentation

The four networks described above are trained on the
ILSVRC training data set with no additional data. To ar-
tificially enlarge the data set, we use a rather simple data
augmentation technique. Namely, we resize all images to
256 x 256 pixels, subtract the mean pixel value in a pre-
processing step and then randomly crop patches in the size

2https://github.com/BVLC/caffe/tree/master/
models/bvlc_alexnet

3https://github.com/BVLC/caffe/tree/master/
models/bvlc_googlenet

(a) ILSVRC image
(2848 x 2144 pixels)

(b) Preprocessed image
(256 x 256 pixels)

Figure 9: Images are scaled to 256 x 256 pixels, the mean
pixel value is subtracted and the image is randomly cropped
to the network’s input size.

of the network input from these, i.e. 227 x 227 pixels for
AlexNet, 224 x 224 pixels for GoogLeNet. Finally, we ran-
domly mirror the images horizontally. An example is given
in Fig. 9.

Note, that Krizhevsky et al. and Szegedy et al. use more
aggressive data augmentation techniques. However, in the
case of GoogLeNet, the given details are very vague and not
described in a reproducible way. In the case of the original
AlexNet approach, the rectangular images are preprocessed
by scaling them such that the shorter edge measures 256
pixels and then a 256 x 256 patch is cropped from the center.
This scaling preserves the aspect ratio, but does not use the
outer regions of an image at all. We decided to not perform
more aggressive data augmentation techniques as our idea
is orthogonal to the augmentation ideas, i.e., even if more
data augmentation is performed, it is still possible to use
the Multilevel Context representation.

5. Benchmarking and Results

To compare our extended versions of AlexNet and
GoogleNet with the original ones, we use the labeled
ILSVRC validation data set. Remember, we not only set
out to improve the classification performance of the exist-
ing networks, but also, to keep the additional computational
costs low. Therefore, this section covers both, the classifi-
cation accuracy of the models and the time needed for clas-
sification and training.

We use two evaluation methods to measure the accuracy
of the networks. First, we classify the validation images us-
ing a single-crop technique, i.e., we resize them to 256 x 256
pixels and use the center crop. Secondly, the networks
are tested with the multi-crop technique proposed in [39].
Specifically, the images are resized such that the shorter
dimension is 256, 288, 320 and 352 pixels long. Then 3
square crops are taken from each of these images, i.e., the
left, center and right part for landscape pictures or the top,
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Table 4: Accuracy achieved by networks on validation sets using center crops only and averaging over 144 crops as described

by Szegedy et al. [39]

Top-1 Top-5
center crop | 144 crops || center crop | 144 crops
AlexNet 58.17% 58.54% 80.82% 81.18%
AlexNet++ 58.47% 58.93% 81.25% 81.47%
GoogLeNet 68.89% 68.86% 88.97% 89.26%
GoogLeNet++ 69.42% 69.05% 89.25% 89.35%

Table 5: Time needed for passing one batch through the network. The batch size for AlexNet and AlexNet++ is 256, the

batch size for GoogLeNet and GooglLeNet++ is 32.

Forward Backward by
AlexNet 254.87ms | 654.04 ms | 909.01 ms
AlexNet++ 271.29ms | 686.76 ms | 958.16 ms
GooglLeNet 112.26 ms | 283.31 ms | 395.71 ms
GoogLeNet++ | 112.51 ms | 284.76 ms | 397.42 ms

center and bottom part for portrait pictures. For each of
these square images the 4 corner crops, the center crop and
a resized image with the shape of the network input is pro-
duced. Finally, all of these images are mirrored as well. In
sum, this multi-crop technique produces 4 x 3 x 6 x 2 = 144
crops. To evaluate the network performance with this ap-
proach, we average over the probability vectors of the 144
predictions.

Table 4 presents the accuracy on the validation data set
which is achieved by the four trained networks. As can be
seen, the extended networks outperform the original ver-
sions with all evaluation techniques. Furthermore, the ac-
curacy achieved by the new models with only one crop is
at least comparable to the accuracy achieved by the origi-
nal models using 144 crops. In the case of GoogLeNet, the
Top-1 accuracy of the new network using only one crop is
even more than 0.5% higher than the accuracy of the origi-
nal network using 144 crops (this corresponds to around 2%
relative error reduction).

Table 5 shows the time needed for forward and back-
ward passes through the different networks. Obviously, the
timings are specific to hardware and software. In our case,
all timings are made using caffe 1.0rc3 and a NVidia Tesla
K20X. AlexNet++ takes about 5% longer for training, i.e.,
combined forward and backward pass. However, the ac-
curacy achieved by AlexNet++ using just center crops is
comparable and in the case of top-5 accuracy even higher
than what AlexNet achieves using 144 crops (see Table 4).
Given this result, it is actually reasonable to say AlexNet++
is more than 100 times faster to reach a comparable accu-
racy.

For GooglLeNet++, the difference in runtime for both
forward and backward pass is negligibly small. This is
due to the fact, that the GoogleNet architecture already
has a concatenation layer before the fully connected layer
and thus, no new layers have to be added to combine the
two highest level building blocks (cf. Fig. 8). A combined
forward- backward pass with GoogLeNet++ is only 0.4%
slower than with the original Googl.eNet. Therefore, train-
ing the extended network takes only marginally longer. At
inference time, the difference decreases to a mere 0.2%
which makes the GoogLeNet++ very well-suited for pro-
ductive usage.

6. Discussion

Our approach postulates that the higher level layers are
useful for achieving better performance both in terms of
recognition accuracy and computational cost. In order to
demonstrate the validity of the claim, we performed a sim-
ple experiment using AlexNet. In this experiment, the fea-
tures from all of the convolutional layers were concatenated.
Two observations were made: first, the training took signif-
icantly longer (almost 3 times) and secondly, the accuracy
was suboptimal (almost 2% less in terms of absolute error).
The best performance was achieved by concatenating the
features of the top 2 layers.

The networks trained in this work could not reproduce
the drastic error reduction that Szegedy et al. have reported
[39] by using the 144 image crops at test time. The main
reason for this is that we have used less aggressive data
augmentation during training or due to different weight ini-
tializations. Unfortunately, Szegedy et al. do not report the



details on how the GoogleNet model was initialized. Also,
they report error reduction by ensembling multiple trained
networks. However, this is not in the scope of this paper.
The main purpose of this paper is to show that features from
lower level convolutional layers that are close to the high-
est level provide useful and complementary information for
classification.

Noteworthy, as shown in this paper, when training our
networks with the same data augmentation and hyper-
parameters, the extended architectures presented in this
work outperform the original ones. This applies to both
networks (AlexNet and GoogLeNet) in both evaluation sce-
narios (no data augmentation during testing or using 144
test samples).

7. Conclusion

In this paper, we presented a successful approach for ex-
tending existing CNN architectures in order to boost their
classification performance. We have demonstrated the ef-
fectiveness of this approach by enhancing the network ar-
chitectures of AlexNet and GoogLeNet and training them
from scratch on the ILSVRC data set. We consider net-
works that are totally different in nature to prove the gen-
erality of the proposed approach. Also, it is shown that at
almost no additional cost, the relative error rates of the orig-
inal networks decrease by up to 2%. This fact makes the ex-
tended networks a very well suited choice for usage in pro-
duction environments. The quantitative evaluation signifies
that the new approach could be, at inference time, 144 times
more efficient than the current approaches while maintain-
ing comparable performance. The proposed approach is not
limited to any one of the architectures. We plan to extend
the experiments for recurrent and convolutional-recurrent
neural networks.
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