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Abstract—We present CloudScan; an invoice analysis system
that requires zero configuration or upfront annotation.

In contrast to previous work, CloudScan does not rely on
templates of invoice layout, instead it learns a single global model
of invoices that naturally generalizes to unseen invoice layouts.

The model is trained using data automatically extracted
from end-user provided feedback. This automatic training data
extraction removes the requirement for users to annotate the
data precisely.

We describe a recurrent neural network model that can
capture long range context and compare it to a baseline logistic
regression model corresponding to the current CloudScan pro-
duction system.

We train and evaluate the system on 8 important fields using
a dataset of 326,471 invoices. The recurrent neural network
and baseline model achieve 0.891 and 0.887 average F1 scores
respectively on seen invoice layouts. For the harder task of unseen
invoice layouts, the recurrent neural network model outperforms
the baseline with 0.840 average F1 compared to 0.788.

I. INTRODUCTION

Invoices, orders, credit notes and similar business docu-
ments carry the information needed for trade to occur between
companies and much of it is on paper or in semi-structured
formats such as PDFs [1]. In order to manage this information
effectively, companies use IT systems to extract and digitize
the relevant information contained in these documents. Tra-
ditionally this has been achieved using humans that manually
extract the relevant information and input it into an IT system.
This is a labor intensive and expensive process [2].

The field of information extraction addresses the challenge
of automatically extracting such information and several com-
mercial solutions exists that assist in this. Here we present
CloudScan, a commercial solution by Tradeshift, free for
small businesses, for extracting structured information from
unstructured invoices.

Powerful information extraction techniques exists given that
we can observe invoices from the same template beforehand,
e.g. rule, keyword or layout based techniques. A template is a
distinct invoice layout, typically unique to each sender. A num-
ber of systems have been proposed that rely on first classifying
the template, e.g. Intellix [3], ITESOFT [4], smartFIX [5] and
others [6], [7], [8]. As these systems rely on having seen the
template beforehand, they cannot accurately handle documents
from unseen templates. Instead they focus on requiring as few
examples from a template as possible.

What is harder, and more useful, is a system that can accu-
rately handle invoices from completely unseen templates, with
no prior annotation, configuration or setup. This is the goal
of CloudScan: to be a simple, configuration and maintenance
free invoice analysis system that can convert documents from
both previously seen and unseen templates with high levels of
accuracy.

CloudScan was built from the ground up with this goal in
mind. There is no notion of template in the system. Instead
every invoice is processed by the same system built around a
single machine learning model. CloudScan does not rely on
any system integration or prior knowledge, e.g. databases of
orders or customer names, meaning there is no setup required
in order to use it.

CloudScan automatically extracts the training data from
end-user provided feedback. The end-user provided feedback
required is the correct value for each field, rather than the map
from words on the page to fields. It is a subtle difference,
but this separates the concerns of reviewing and correcting
values using a graphical user interface from concerns related to
acquiring training data. Automatically extracting the training
data this way also results in a very large dataset which allows
us to use methods that require such large datasets.

In this paper we describe how CloudScan works, and inves-
tigate how well it accomplishes the goal it aims to achieve. We
evaluate CloudScan using a large dataset of 326,471 invoices
and report competitive results on both seen and unseen tem-
plates. We establish two classification baselines using logistic
regression and recurrent neural networks, respectively.

II. RELATED WORK

The most directly related works are Intellix [3] by
DocuWare and the work by ITESOFT [4]. Both systems
require that relevant fields are annotated for a template
manually beforehand, which creates a database of templates,
fields and automatically extracted keywords and positions for
each field. When new documents are received, both systems
classify the template automatically using address lookups or
machine learning classifiers. Once the template is classified
the keywords and positions for each field are used to propose
field candidates which are then scored using heuristics such
as proximity and uniqueness of the keywords. Having scored
the candidates the best one for each field is chosen.
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Fig. 1. The CloudScan graphical user interface. Results before any correction. Disregard the selected sender and recipient as these are limited to companies
connected to the company uploading the invoice. This is an example of a perfect extraction which would give an F1 score of 1.

smartFIX [5] uses manually configured rules for each tem-
plate. Cesarini et al. [6] learns a database of keywords for each
template and fall back to a global database of keywords. Esser
et al. [7] uses a database of absolute positions of fields for each
template. Medvet et al. [8] uses a database of manually created
(field, pattern, parser) triplets for each template, designs a
probabilistic model for finding the most similar pattern in a
template, and extracts the value with the associated parser.

Unfortunately we cannot compare ourselves directly to the
works described as the datasets used are not publicly available

and the evaluation methods are substantially different. How-
ever, the described systems all rely on having an annotated
example from the same template in order to accurately extract
information.

To the best of our knowledge CloudScan is the first invoice
analysis system that is built for and capable of accurately
converting invoices from unseen templates.

The previous works described can be configured to handle
arbitrary document classes, not just invoices, as is the case for
CloudScan. Additionally, they allow the user to define which



set of fields are to be extracted per class or template, whereas
CloudScan assumes a single fixed set of fields to be extracted
from all invoices.

Our automatic training data extraction is closely related to
the idea of distant supervision [9] where relations are extracted
from unstructured text automatically using heuristics.

The field of Natural Language Processing (NLP) offers a
wealth of related work. Named Entity Recognition (NER)
is the task of extracting named entities, usually persons or
locations, from unstructured text. See Nadeau and Sekine [10]
for a survey of NER approaches. Our system can be seen as
a NER system in which we have 8 different entities. In recent
years, neural architectures have been demonstrated to achieve
state-of-the-art performance on NER tasks, e.g. Lample et
al. [11], who combine word and character level RNNs, and
Conditional Random Fields (CRFs).

Slot Filling is another related NLP task in which pre-defined
slots must be filled from natural text. Our system can be seen
as a slot filling task with 8 slots, and the text of a single
invoice as input. Neural architectures are also used here, e.g.
[12] uses bi-directional RNNs and word embedding to achieve
competitive results on the ATIS (Airline Travel Information
Systems) benchmark dataset.

In both NER and Slot Filling tasks, a commonly used
approach is to classify individual tokens with the entities or
slots of interest, an approach that we adopt in our proposed
RNN model.

III. CLOUDSCAN

A. Overview

CloudScan is a cloud based software as a service invoice
analysis system offered by Tradeshift. Users can upload their
unstructured PDF invoices and the CloudScan engine converts
them into structured XML invoices. The CloudScan engine
contains 6 steps. See Figure 2.

1) Text Extractor. Input is a PDF invoice. Extracts words
and their positions from the PDF. If the PDF has embed-
ded text, the text is extracted, otherwise a commercial
OCR engine is used. The output of this step is a
structured representation of words and lines in hOCR
format [13].

2) N-grammer. Creates N-grams of words on the same
line. Output is a list of N-grams up to length 4.

3) Feature Calculator. Calculates features for every N-
gram. Features fall in three categories: text, numeric and
boolean. Examples of text features are the raw text of
the N-gram, and the text after replacing all letters with
”x”, all numbers with ”0” and all other characters with
”.”. Examples of numeric features are the normalized
position on the page, the width and height and number
of words to the left. Boolean features include whether
the N-gram parses as a date or an amount or whether
it matches a known country, city or zip code. These
parsers and small databases of countries, cities and zip
codes are built into the system, and does not require

any configuration on the part of the user. The output is
a feature vector for every N-gram. For a complete list
of features see table V.

4) Classifier. Classifies each N-gram feature vector into 32
fields of interest, e.g. invoice number, total, date, etc. and
one additional field ’undefined’. The undefined field is
used for all N-grams that does not have a corresponding
field in the output document, e.g. terms and conditions.
The output is a vector of 33 probabilities for each N-
gram.

5) Post Processor. Decides which N-grams are to be used
for the fields in the output document. For all fields,
we first filter out N-gram candidates that does not fit
the syntax of the field after parsing with the associated
parser. E.g. the N-gram ”Foo Bar” would not fit the
Total field after parsing with the associated parser since
no amount could be extracted. The parsers can handle
simple OCR errors and various formats, e.g. ”100,0o”
would be parsed to ”100.00”. The parsers are based on
regular expressions.
For fields with no semantic connection to other fields,
e.g. the invoice number, date, etc. we use the Hungarian
algorithm [14]. The Hungarian algorithm solves the as-
signment problem, in which N agents are to be assigned
to M tasks, such that each task has exactly one agent
assigned and no agent is assigned to more than one task.
Given that each assignment has a cost, the Hungarian
algorithm finds the assignments that minimizes the total
cost. We use 1 minus the probability of an N-gram being
a field as the cost.
For the assignment of the Total, Line Total, Tax Total
and Tax Percentage we define and minimize a cost
function based on the field probabilities and whether the
candidate totals adds up.
The output is a mapping from the fields of interest to
the chosen N-grams.

6) Document Builder. Builds a Universal Business Lan-
guage (UBL) [15] invoice with the fields having the
values of the found N-grams. UBL is a XML based
invoice file format. Output is a UBL invoice.

B. Extracting training data from end-user provided feedback

The UBL invoice produced by the engine is presented to
the user along with the original PDF invoice in a graphical
user interface (GUI). The user can correct any field in the
UBL invoice, either by copy and pasting from the PDF, or by
directly typing in the correction. See figure 1.

Once the user has corrected any mistakes and accepted the
invoice we add the resulting UBL to our data collection. We
will extract training data from these validated UBL documents,
even though they might deviate from the PDF content due to
OCR error, user error or the user intentionally deviating from
the PDF content. We discuss these issues later.

The classifier is trained on N-grams and their labels, which
are automatically extracted from the validated UBL invoices
and the corresponding PDFs. For each field in the validated



Fig. 2. The CloudScan engine.

UBL document we consider all N-grams in the PDF and check
whether the text content, after parsing, matches the field value.
If it does, we extract it as a single training example of N-gram
and label equal to the field. If an N-gram does not match
any fields we assign the ’undefined’ label. For N-grams that
match multiple fields, we assign all matched fields as labels.
This ambiguity turns the multi-class problem into a multi-label
problem. See Algorithm 1 for details.

input : UBL and PDF document
output: All labeled N-grams
result ← {};
foreach field ∈ fields do

parser ← GetParser(field);
value ← GetValue(UBL, field);
maxN ← Length(value) + 2;
nGrams ← CreateNgrams(PDF, maxN);
foreach nGram ∈ nGrams do

if value = Parse(nGram, parser) then
Add(result, nGram, field);

end
end

end
nGrams ← CreateNgrams(PDF, 4);
foreach nGram ∈ nGrams do

if nGram /∈ result then
Add(result, nGram, undefined);

end
end
return result

Algorithm 1: Automatic training data extraction

Using automatically extracted pairs like this results in a
noisy, but big data set of millions of pairs. Most importantly,
however, it introduces no limitations on how users correct
potential errors, and requires no training. For instance, we
could have required users to select the word matching a
field, which would result in much higher quality training
data. However in a high volume enterprise setup, this could
reduce throughput significantly. Our automatic training data
generation decouples the concerns of reviewing and correcting
fields from creating training data, allowing the GUI to focus
solely on reviewing and correcting fields. The user would
need to review the field values and correct potential errors
regardless, so as long as we do not limit how the user does
it, we are not imposing any additional burdens. In short, the
machine learning demands have lower priority than the user
experience in this regard.

As long as we get a PDF and a corresponding UBL invoice
we can extract training data, and the system should learn and
improve for the next invoice.

IV. EXPERIMENTS

We perform two experiments meant to test 1) the expected
performance on the next invoice, and 2) the harder task of

expected performance on the next invoice from an unseen
template. These are two different measures of generalization
performance.

The data set consists of 326,471 pairs of validated UBL
invoices and corresponding PDFs from 8911 senders to 1013
receivers obtained from use of CloudScan. We assume each
sender corresponds to a distinct template.

For the first experiment we split the invoices into a training,
validation and test set randomly, using 70%, 10% and 20%
respectively. For the second experiment we split the senders
into a training, validation and test set randomly, using 70%,
10% and 20% respectively. All the invoices from the senders
in a set then comprise the documents of that set. This split
ensures that there are no invoices sharing templates between
the three sets for the second experiment.

While the system captures 32 fields we only report on eight
of them: Invoice number, Issue Date, Currency, Order ID,
Total, Line Total, Tax Total and Tax Percent. We only report
on these eight fields as they are the ones we have primarily
designed the system for. A large part of the remaining fields
are related to the sender and receiver of the invoice and used
for identifying these. We plan to remove these fields entirely
and approach the problem of sender and receiver identification
as a document classification problem instead. Preliminary
experiments based on a simple bag-of-words model show
promising results. The last remaining fields are related to
the line items and used for extracting these. Table extraction
is a challenging research question in itself, and we are not
yet ready to discuss our solution. Also, while not directly
comparable, related work [3], [4], [6] also restricts evaluation
to header fields.

Performance is measured by comparing the fields of the
generated and validated UBL. Note we are not only measuring
the classifier performance, but rather the performance of
the entire system. The end-to-end performance is what is
interesting to the user after all. Furthermore, this is the strictest
possible way to measure performance, as it will penalize errors
from any source, e.g. OCR errors and inconsistencies between
the validated UBL and the PDF. For instance, the date in the
validated UBL might not correspond to the date on the PDF.
In this case, even if the date on the PDF is found, it will
be counted as an error, as it does not match the date in the
validated UBL.

In order to show the upper limit of the system under
this measure we include a ceiling analysis where we replace
the classifier output with the correct labels directly. This
corresponds to using an oracle classifier. We use the MUC-5
definitions of recall, precision and F1, without partial matches
[16].

We perform experiments with two classifiers 1) The produc-



tion baseline system using a logistic regression classifier, and
2) a Recurrent Neural Network (RNN) model. We hypothesize
the RNN model can capture context better.

A. Baseline

The baseline is the current production system, which uses a
logistic regression classifier to classify each N-gram individ-
ually.

In order to capture some context, we concatenate the feature
vectors for the closest N-grams in the top, bottom, left and
right directions to the normal feature vectors. So if the feature
vector for an N-gram had M entries, after this it would have
5M entries.

All 5M features are then mapped to a binary vector of size
222 using the hashing trick [17]. To be specific, for each feature
we concatenate the feature name and value, hash it, take the
remainder with respect to the binary vector size and set that
index in the binary vector to 1.

The logistic regression classifier is trained using stochastic
gradient descent for 10 epochs after which we see little
improvement. This baseline system is derived from the heavily
optimized winning solution of a competition Tradeshift held1.

B. LSTM model

In order to accurately classify N-grams the context is
critical, however when classifying each N-gram in isolation, as
in the baseline model, we have to engineer features to capture
this context, and deciding how much and which context to
capture is not trivial.

A Recurrent Neural Network (RNN) can model the entire
invoice and we hypothesize that this ability to take the entire
invoice into account in a principled manner will improve the
performance significantly. Further, it frees us from having to
explicitly engineer features that capture context. As such we
only use the original M features, not the 5M features of the
baseline model. In general terms, a RNN can be described as
follows.

ht = f(ht−1, xt)

yt = g(ht)

Where ht is the hidden state at step t, f is a neural network
that maps the previous hidden state ht−1, and the input xt

to ht and g is a neural network that maps the hidden state
ht to the output of the model yt. Several variants have been
proposed, most notably the Long Short Term Memory (LSTM)
[18] which is good at modeling long term dependencies.

A RNN models a sequence, i.e. x and y are ordered and as
such we need to impose an ordering on the invoice. We chose
to model the words instead of N-grams, as they fit the RNN
sequence model more naturally and we use the standard left-
to-right reading order as the ordering. Since the labels can span
multiple words we re-label the words using the IOB labeling

1https://www.kaggle.com/c/tradeshift-text-classification

scheme [19]. The sequence of words ”Total Amount: 12 200
USD” would be labeled ”O O B-Total I-Total B-Currency”.

We hash the text of the word into a binary vector of size 218

which is embedded in a trainable 500 dimensional distributed
representation using an embedding layer [20]. Using hashing
instead of a fixed size dictionary is somewhat unorthodox but
we did not observe any difference from using a dictionary, and
hashing was easier to implement. It is possible we could have
gotten better results using more advanced techniques like byte
pair encoding [21].

We normalize the numerical and boolean features to have
zero mean and unit variance and form the final feature vector
for each word by concatenating the word embedding and the
normalized numerical features.

From input to output, the model has: two dense layers with
600 rectified linear units each, a single bidirectional LSTM
layer with 400 units, and two more dense layers with 600
rectified linear units each, and a final dense output layer with
65 logistic units (32 classes that can each be ’beginning’ or
’inside’ plus the ’outside’ class).

Fig. 3. The LSTM model.

Following Gal [22], we apply dropout on the recurrent units
and on the word embedding using a dropout fraction of 0.5
for both. Without this dropout the model severely overfits.

The model is trained with the Adam optimizer [23] using
minibatches of size 96 until the validation performance has
not improved on the validation set for 5 epochs. Model
architecture and hyper-parameters were chosen based on the
performance on the validation set. For computational reasons
we do not train on invoices with more than 1000 words, which
constitutes approximately 5% of the training set, although
we do test on them. The LSTM model was implemented in
Theano [24] and Lasagne [25].

After classification we assign each word the IOB label
with highest classification probability, and chunk the IOB
labeled words back into labeled N-grams. During chunking,
words with I labels without matching B labels are ignored.
For example, the sequence of IOB labels [B-Currency, O, B-
Total, I-Total, O, I-Total, O] would be chunked into [Currency,
O, Total, O, O]. The labeled N-grams are used as input for
the Post Processor and further processing is identical to the
baseline system.

V. RESULTS

The results of the ceiling analysis seen in Table I show that
we can achieve very competitive results with CloudScan using
an oracle classifier. This validates the overall system design,



TABLE I
CEILING ANALYSIS RESULTS. MEASURED ON ALL DOCUMENTS.

EXPECTED PERFORMANCE GIVEN AN ORACLE CLASSIFIER.

Field F1 Precision Recall

Number 0.918 0.967 0.873
Date 0.899 1.000 0.817
Currency 0.884 1.000 0.793
Order ID 0.820 0.979 0.706
Total 0.966 0.981 0.952
Line Total 0.976 0.991 0.961
Tax Total 0.959 0.961 0.957
Tax Percent 0.901 0.928 0.876

Micro avg. 0.925 0.974 0.881

including the use of automatically generated training data, and
leaves us with the challenge of constructing a good classifier.

The attentive reader might wonder why the precision is not
1 exactly for all fields, when using the oracle classifier. For the
’Number’ and ’Order ID’ fields this is due to the automatic
training data generation algorithm disregarding spaces when
finding matching N-grams, whereas the comparison during
evaluation is strict. For instance the automatic training data
generator might generate the N-gram (”16 2054”: Invoice
Number) from (Invoice Number: ”162054”) in the validated
UBL. When the oracle classifier classifies the N-gram ”16
2054” as Invoice Number the produced UBL will be (Invoice
Number: ”16 2054”). When this is compared to the expected
UBL of (Invoice Number: ”162054”) it is counted as incorrect.
This is an annoying artifact of the evaluation method and
training data generation. We could disregard spaces when com-
paring strings during evaluation, but we would risk regarding
some actual errors as correct then. For the total fields and
the tax percent, the post processor will attempt to calculate
missing numbers from found numbers, which might result in
errors.

As it stands the recall rate is the limiting factor of the
system. The low recall rate can have two explanations: 1) The
information is present in the PDF but we cannot read or parse
it, e.g. it might be an OCR error or a strange date format, in
which case the OCR engine or parsing should be improved,
or 2) the information is legitimately not present in the PDF, in
which case there is nothing to do, except change the validated
UBL to match the PDF.

Table II shows the results of experiment 1 measuring the
expected performance on the next received invoice for the
baseline and LSTM model. The LSTM model is slightly better
than the baseline system with an average F1 of 0.891 compared
to 0.887. In general the performance of the models is very
similar, and close to the theoretical maximum performance
given by the ceiling analysis. This means the classifiers both
perform close to optimally for this experiment. The gains that
can be had from improving upon the LSTM model further are
just 0.034 average F1.

More interesting are the results in Table III which measures

TABLE II
EXPECTED PERFORMANCE ON NEXT RECEIVED INVOICE. BEST RESULTS

IN BOLD.

F1 Precision Recall
Field Baseline LSTM Baseline LSTM Baseline LSTM

Number 0.863 0.860 0.883 0.877 0.844 0.843
Date 0.821 0.828 0.876 0.893 0.773 0.772
Currency 0.869 0.874 0.974 0.992 0.784 0.781
Order ID 0.776 0.760 0.936 0.930 0.663 0.642
Total 0.927 0.932 0.940 0.942 0.915 0.924
Line Total 0.923 0.936 0.936 0.945 0.911 0.927
Tax Total 0.931 0.939 0.933 0.941 0.929 0.937
Tax Percent 0.901 0.903 0.927 0.930 0.876 0.878

Micro avg. 0.887 0.891 0.924 0.930 0.852 0.855

TABLE III
EXPECTED PERFORMANCE ON NEXT INVOICE FROM UNSEEN TEMPLATE.

BEST RESULTS IN BOLD.

F1 Precision Recall
Field Baseline LSTM Baseline LSTM Baseline LSTM

Number 0.711 0.760 0.761 0.789 0.668 0.733
Date 0.693 0.774 0.759 0.847 0.637 0.712
Currency 0.907 0.905 0.977 0.983 0.847 0.838
Order ID 0.433 0.523 0.822 0.737 0.294 0.406
Total 0.840 0.896 0.864 0.907 0.818 0.884
Line Total 0.803 0.880 0.826 0.891 0.781 0.869
Tax Total 0.832 0.878 0.835 0.881 0.829 0.874
Tax Percent 0.812 0.869 0.828 0.887 0.796 0.853

Micro avg. 0.788 0.840 0.836 0.879 0.746 0.804

the expected performance on the next invoice from an unseen
template. This measures the generalization performance of the
system across templates which is a much harder task due to the
plurality of invoice layouts and reflects the experience a new
user will have the first time they use the system. On this harder
task the LSTM model clearly outperform the baseline system
with an average F1 of 0.840 compared to 0.788. Notably
the 0.840 average F1 of the LSTM model is getting close
to the 0.891 average F1 of experiment 1, indicating that the
LSTM model is largely learning a template invariant model of
invoices, i.e. it is picking up on general patterns rather than
just memorizing specific templates.

We hypothesized that it is the ability of LSTMs to model
context directly that leads to increased performance, although
there are several other possibilities given the differences be-
tween the two models. For instance, it could simply be that
the LSTM model has more parameters, the non-linear feature
combinations, or the word embedding.

To test our hypothesis we trained a third model that is
identical to the LSTM model, except that the bidirectional
LSTM layer was replaced with a feedforward layer with an
equivalent number of parameters. We trained the network



with and without dropout, with all other hyper parameters
kept equal. The best model got an average F1 of 0.702
on the experiment 2 split, which is markedly worse than
both the LSTM and baseline model. Given that the only
difference between this model and the LSTM model is the
lack of recurrent connections we feel fairly confident that our
hypothesis is true. The feedforward model is likely worse than
the baseline model because it does not have the additional
context features of the baseline model.

TABLE IV
WORD EMBEDDING EXAMPLES.

EUR GBP DKK
$ USD DKK
Total Betrag TOTAL
Number No number
Number: No Rechnung-Nr.
London LONDON Bremen
Brutto Ldm ex.Vat
Phone: code: Tel:

Table IV shows examples of words and the two closest
words in the learned word embedding. It shows that the learned
embeddings are language agnostic, e.g. the closest word to
”Total” is ”Betrag” which is German for ”Sum” or ”Amount”.
The embedding also captures common abbreviations, capital-
ization, currency symbols and even semantic similarities such
as cities. Learning these similarities versus encoding them by
hand is a major advantage as it happens automatically as it
is needed. If a new abbreviation, language, currency, etc. is
encountered it will automatically be learned.

VI. DISCUSSION

We have presented our goals for CloudScan and described
how it works. We hypothesized that the ability of a LSTM
to model context directly would improve performance. We
carried out experiments to test our hypothesis and evaluated
CloudScan’s performance on a large realistic dataset. We
validated our hypothesis and showed competitive results of
0.891 average F1 on documents from seen templates, and
0.840 on documents from unseen templates using a single
LSTM model. These numbers should be compared to a ceiling
of F1=0.925 for an ideal system baseline where an oracle
classifier is used.

Unfortunately it is hard to compare to other vendors di-
rectly as no large publicly available datasets exists due to
the sensitive nature of invoices. We sincerely wish such a
dataset existed and believe it would drive the field forward
significantly, as seen in other fields, e.g. the large effect
ImageNet [26] had on the computer vision field. Unfortunately
we are not able to release our own dataset due to privacy
restrictions.

A drawback of the LSTM model is that we have to decide
upon an ordering of the words, when there is none naturally.
We chose the left to right reading order which worked well, but

in line with the general theme of CloudScan we would prefer
a model which could learn this ordering or did not require
one.

CloudScan works only on the word level, meaning it does
not take any image features into account, e.g. the lines, logos,
background, etc. We could likely improve the performance if
we included these image features in the model.

With the improved results from the LSTM model we are
getting close to the theoretical maximum given by the ceiling
analysis. For unseen templates we can at maximum improve
the average F1 by 0.085 by improving the classifier. This
corresponds roughly to the 0.075 average F1 that can at
maximum be gained from fixing the errors made under the
ceiling analysis. An informal review of the errors made by
the system under the ceiling analysis indicates the greatest
source of errors are OCR errors and discrepancies between
the validated UBL and the PDF.

As such, in order to substantially improve CloudScan we
believe a two pronged strategy is required: 1) improve the
classifier and 2) correct discrepancies between the validated
UBL and PDF. Importantly, the second does not delay the
turnaround time for the users, can be done at our own pace
and only needs to be done for the cases where the automatic
training data generation fails. As for the OCR errors we will
rely on further advances in OCR technology.
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TABLE V
N-GRAM FEATURES.

Name Description

RawText The raw text.
RawTextLastWord The raw text of the last word in the N-gram.
TextOfTwoWordsLeft The raw text of the word two places to the

left of the N-gram.
TextPatterns The raw text, after replacing uppercase char-

acters with X, lowercase with x, numbers
with 0, repeating whitespace with single
whitespace and the rest with ?.

bottomMargin Vertical coordinate of the bottom margin of
the N-gram normalized to the page height.

topMargin Same as above, but for the top margin.
rightMargin Horizontal coordinate of the right margin of

the N-gram normalized to the page width.
leftMargin Same as above but for the left margin.
bottomMarginRelative The vertical distance to the nearest word be-

low this N-gram, normalized to page height.
topMarginRelative The vertical distance to the nearest word

above this N-gram, normalized to page
height.

rightMarginRelative The horizontal distance to the nearest word to
the right of this N-gram, normalized to page
width.

leftMarginRelative The horizontal distance to the nearest word
to the left of this N-gram, normalized to page
width.

horizontalPosition The horizontal distance between this N-gram
and the word to the left, normalized to the
horizontal distance between the word to the
left and the word to the right.

verticalPosition Same as above but vertical.
hasDigits Whether there are any digits 0-9 in the N-

gram.
isKnownCity Whether the N-gram is found in a small

database of known cities.
isKnownCountry Same as above, but for countries.
isKnownZip Same as above but for zip codes.
leftAlignment Number of words on the same page which

left margin is within 5 pixels of this N-grams
left margin.

length Number of characters in the N-gram.
pageHeight The height of the page of this N-gram.
pageWidth The width of the page of this N-gram.
positionOnLine Count of words to the left of this N-gram

normalized to the count of total words on this
line

lineSize The number of words on this line.
lineWhiteSpace The area occupied by whitespace on the line

of this N-gram normalized to the total area
of the line.

parsesAsAmount Whether the N-gram parses as a fractional
amount.

parsesAsDate Same as above but for dates.
parsesAsNumber Same as above but for integers.
LineMathFeatures.isFactor Whether this N-gram, after parsing, can take

part in an equation such that it is one of two
factors on the same line that when multiplied
equals another amount on the same line.

LineMathFeatures.isProduct Same as above, except this N-gram is the
product of the two factors.
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