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Abstract—European libraries and archives are filled with
enciphered manuscripts from the early modern period. These
include military and diplomatic correspondence, records of
secret societies, private letters, and so on. Although they are en-
ciphered with classical cryptographic algorithms, their contents
are unavailable to working historians. We therefore attack the
problem of automatically converting cipher manuscript images
into plaintext. We develop unsupervised models for character
segmentation, character-image clustering, and decipherment of
cluster sequences. We experiment with both pipelined and joint
models, and we give empirical results for multiple ciphers.

Keywords-decipherment; historical manuscripts; image seg-
mentation; character recognition; unsupervised learning; zero-
shot learning

I. INTRODUCTION

European libraries and book collections are filled with un-
deciphered manuscripts dating from ca 1400 to 1900. These
are often of historical significance, but historians cannot read
them. Over recent years, a large number of ciphers are being
scanned, collected, and put online for experimentation [1]].
Figure (1| shows examples of cipher manuscripts. These ci-
phers are all considerable low-resource datasets from aspects
of using one-off alphabets and glyphs. From the fraction
of manuscripts that have been deciphered, cipher systems
include simple substitution, homophonic substitution (where
there may be many ways to encipher a given plaintext
letter), substitution-transposition, nomenclators (where sym-
bols may stand for whole words), or a combination of those.
Plaintext languages include Latin, English, French, German,
Italian, Portuguese, Spanish, Swedish, and so on.

Manual decipherment requires three major steps (Fig. [2):

« Segmentation. First, we decide where each character
begins and ends. Even though ciphers often employ
novel one-off alphabets, human analysts are quite good
at segmenting lines into individual characters. However,
problems do arise. For example, in the Borg cipher
(Figure [Th), should 4 be segmented as one character
or two?

« Transcription. Next, we convert the written characters
into editable text, suitable for automatic analysis, such
as character frequency counting. As Figure [2| shows,
this may involve inventing nicknames for characters
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that cannot be typed (e.g., zzz for %). A human analyst
can do this quite accurately, though mistakes happen.
For example, in the Copiale cipher, should ¢ and 9 be
transcribed the same way, or are they actually distinct
ciphertext symbols?
o Decipherment. Finally, we guess a cipher key that
(when applied to the transcription) yields sensible plain-
text. This is the hardest step for a human analyst,
requiring intuition, insight, and grunt work.
Segmentation and transcription can be performed either
manually or by semi-automatically, with post-editing. Given
the number of historical encrypted manuscripts, manual
transcription is infeasible, because it is too time-consuming,
expensive, and prone to errors [2].

We would like to automate all of these steps, delivering
a camera-phone decipherment app that a historian could use
directly in the field. Automation efforts to date, however,
have focused primarily on the decipherment step. Therefore,
the problem we attack in this paper is automatic decipher-
ment directly from scanned imagesﬂ

Existing optical-character recognition (OCR) techniques

are challenged by cipher manuscripts. The vast bulk of
modern handwritten OCR requires large supervised datasets
[B]-[5], whereas ciphers often use one-off alphabets for
which no transcribed data exists. Back before supervised
datasets were available, early OCR research proposed unsu-
pervised identification and clustering of characters [6]-[9].
This is the general approach we follow here. Also in the
unsupervised realm, recent work on historical documents
focuses on printed, typeset texts [[10], [[11]. Though these
methods model various types of noise, including ink bleeds
and wandering baselines, they expect general consistency in
font and non-overlapping characters.

The novel contributions of our paper are:

o Automatic algorithms for character segmentation, char-
acter clustering, and decipherment for handwritten ci-
pher manuscripts.

« Evaluation on image data from multiple ciphers, mea-
suring accuracy of individual steps as well as end-to-

10ur code is available at
https://github.com/yinxusen/decipherment-images


https://github.com/yinxusen/decipherment-images
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(d) Zodiac cipher

Figure 1: Pages from four cipher manuscripts.
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Figure 2: Steps in decipherment a cipher manuscript.
Cipher | # pages | # characters | alphabet
size
Courier 1 653 22 -
Arial 1 653 22
Borg 3 1054 23
Copiale 10 6491 79

Table I: Statistics of cipher image datasets used in this paper.

end decipherment accuracy.
« Improved techniques for joint inference, merging tran-
scription and decipherment.

II. DATA

We perform experiments on two historical manuscripts—
Borg (Figure and Copiale (Figure [Ib)—and two syn-
thetic ciphers (see Table [[). All images are black-and-white
in PNG format.

Borg. This is a 408-page manuscript from the 17th cen-
tury, automatically deciphered by [12]. Its plaintext language
is Latin. A few pages of the Borg cipher contain plaintext
Latin fragments, which we remove from the images. In our
experiments, we choose three consecutive pages and trim
margins of each page (872x1416 pixels on average).

Copiale. This is a 105-page cipher from the 18th century,
deciphered by [13]. The plaintext of Copiale is German.
Copiale uses eight nomenclators that map to whole plaintext
words, so we remove them from cipher images. In our
experiments, we use the first 10 pages (1160x1578 pixels
on average).

Courier (synthetic). We encipher a 653-character English
text (simple substitution, no space), print it with fixed-width
Courier font, then scan it into a PNG file (1956x2388 pixels).

Arial (synthetic). We create a similar image using
variable-width Arial font (1976x2680 pixels).

We now turn to automatic methods for segmenting, tran-
scribing, and deciphering.

III. AUTOMATIC SEGMENTATION

We define the upper-left corner of a page image as its
origin, and the upper boundary as x-axis, left boundary as
y-axis.

Figure 3: Vertical, slant, and cubic character-segmentation
curves in solid lines cutting through the same point ;. In
this example, we choose the slant line as our cutting curve,
and the number of intersected black pixels is b; = 0.

(T1) We draw horizontal lines y = c, to split the manuscript
into rows of characters;

(T5) We then draw vertical lines x = ¢, slant lines y = bz,
or cubic curves y = ax® + bx + ¢ in each row of image
to split characters.

Taking Task 7> as an example, for an image row with
m characters, we need to find cutting points c1,ce, - ,Cnm
on the x-axis to draw curves Cutting points and curves we
choose on the x-axis should meet the following (conflicting)
requirements:

(R;1) the number of cutting points should be m.

(R3) the widths of characters should be as similar as possi-
ble.

(R3) curves drawing across cutting points should intersect
with as few black pixels as possible.

We use a generative model to formulate the requirements.
At every point x; on the x-axis of a row image, we use a
set of pre-defined curves to cut through it (see Figure [3)),
and choose one with the minimum intersected black pixels
b;. When curves tie, we choose the simplest curve. If the
row has W total pixel columns, our observed data is the
sequence of black pixel numbers by, bs,--- , by collected
from all cutting points on the x-axis zi,Z2,--- ,zw. Our
goal is to choose m cutting points out of x1,x2,--- , Ty to
meet the requirements.

The generative story is first to choose the number of
characters m of the row image according to a Gaussian dis-
tribution m ~ Pp, 5, (m). Then starting from the beginning
of the row image, we generate the width of the next char-

2The last cutting point c,, is unnecessary, we use it to write clear
equation.



acter from another Gaussian distribution w; ~ Py, o, (wl)
Subsequently we use a geometric distribution p to generate
the “observed” number of black pixels b; ~ P,(b;). We
repeat for all m characters. We manually set parameters of
the three distributions ¢1, 01, 02, p for each cipher.

We use Viterbi decoding to find the sequence
c1,C2,:++ ,Cp, that best satisfies Ry, Rg, and Rg.

m

argmax Py, », (m) H P, (w;)Py(b;)

m,c1eCm i

Figure[d] shows automatic segmentation results on snippets
of manuscripts shown in Figure [Ta] and Figure

We manually create gold segmentations by cropping char-
acters with a mouse. However, we evaluate our segmenter
only as it contributes to accurate transcription.

IV. TRANSCRIPTION

For transcription, we:

1) Scale all character images to 105x105 pixels.

2) Convert each character image into a low-dimensional

feature-vector representation.

3) Cluster feature vectors into similar groups.

4) Output a sequence of cluster IDs.

We implement two methods to transform a character
image x into a fixed-length feature vector g with g = F(x).

First, we propose a pairwise similarity matrix (Sim-
Mat). Given a sequence of character images X =
{x1, 22, -+ ,2,}, SimMat computes the similarity between
every pair of images as s(z;, ;). Image z; is then trans-
formed into a n-dim vector according to the following
equation,

Fsimnmat(zi; X) = [s(wi, 75)]7—4

The similarity function s(z;,x;) is the maximum
of cross correlate matrix of two images. We use the
signal.correlate2d function in Scipy package.

SimMat is a non-parametric feature extractor with a
O(n?) time complexity, which makes it hard to apply to
long ciphers. A sample cluster is shown in Figure [5

Our second strategy exploits Omniglot, a labeled
character-image dataset [|14], containing 50 different alpha-
bets, about 25 unique characters each, and 20 handwritten
instances per.

1) We follow [15]] to train a Siamese Neural Network

(SNN) on pairs of Omniglot images. The SNN outputs
0 if two input images represent the same character.

2) We feed cipher character images into the SNN to extract

feature representations.

The SNN architecture [15] is shown in Figure @ The
SNN has a visual feature extraction part f(-), which is

3Note that according to Rz, given ¢1, we have ¢o = W/¢1. So we can
omit ¢2 in practice.

a convolution neural network, plus a single-layer neural
classifier. Given an input image pair (z1,z2), the output
is

y = sigmoid(w * (f(21) — f(22)) +b).

We turn the classifier into a feature extractor by removing
its classification part:
Fsnn (i) = w* f(;).

For clustering feature vectors, we use a standard Gaussian
mixture model (GMM)E] Finally, as our transcription, we
output a sequence of cluster IDs.

Evaluating Automatic Transcription. We manually cre-
ate gold-standard transcriptions for all our ciphers. To judge
the accuracy of our automatic transcription, we cannot
simply use edit distance, because cluster IDs types do match
human-chosen transcription symbols. Therefore, we map
cluster ID types into human transcription symbols (many
to one), transform the cluster IDs sequence accordingly,
and then compute normalized edit distance. There are many
possible mappings—we choose the one that results in the
minimal edit distance. We have two methods to accomplish
this, one based on integer-linear programming, and one
based on expectation-maximization (EM). We call this Nor-
malized Edit Distance over Alignment (NEDoA). Table
gives an example.

Table [[Ill compares NEDoA transcription accuracies under
the SimMat and SNN feature extractors. SNN outperforms
SimMat. The table also compares transcriptions from gold
segmentation and automatic segmentation. Automatic seg-
mentation on Borg degrades transcription accuracy.

V. DECIPHERMENT FROM TRANSCRIPTION

We can decipher from auto-transcription with the noisy
channel model [16].

This generative model (Figure [/) first creates a sequence
of plaintext characters ¥ = ejes - - - e, with a character n-
gram model, then uses a channel model P(C|FE), transforms
FE into cipher text C' = cjica - - - ¢, character-by-character.
The probability of our observation C' is

P(C) =) P(E)P(C|E)
E

We can find the optimal channel model with the EM
algorithm:

P(C|E) = argmax P(C)
P(C|E)

After we get the trained channel model, we use Viterbi
decoding to find out the plaintext:

E = argmax P(F|C) x argmax P(E)P(C|E)
B B

4“We set GMM covariance type as diagonal, spherical, and fix-
cov={1,0.1,0.01,0.001} and choose the best one for each dataset.
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Figure 4: Results of automatic segmentation for part of Borg (left) and Copiale (right). We first use horizontal lines to
segment rows, then use curves to segment characters in each row.

Gold transcription z o d i
Automatic transcription

cO cl c2 ¢c3 c3 c4 c5 ¢c3 c6 c6 c7 c8

a c¢c k 1 1 1 e r

Best alphabet mapping
Edit distance after mapping
NEDoA

1 (a-c3)

c0-z,¢cl-0,¢c2-d,c3-1,c4-¢c,c5-k,c6-1,¢c7-¢,c8-r

1 / len(zodiackiller) = 1 / 12 = 0.083

Table II: Computing automatic transcription accuracy using the NEDoA metric. We map cluster ID types to gold transcription
symbol types, make substitutions on the automatic transcription, then compute edit distance with gold. We search for the

mapping that leads to the minimum normalized edit distance.

P A (Y A S A S G G

Figure 5: Part of a cluster from the Borg dataset using
SimMat features. Here, two different cipher symbols are
conflated into a single cluster.

____________________________

diff

Xq | w— Conv NN £(+)

X, | - Conv NN £(+)

Figure 6: The architecture of Siamese Neural Network. x;
and x4 are a pair of character image inputs. Output y = 0
means z; and x5 represent the same character type.

Gold segmentation Auto-

segmentation

Feature | i Mat | SNN SNN

extractor

Courier 0.03 0.03 0.03

Arial 0.03 0.04 0.08

Borg 0.63 0.22 0.57

Copiale 0.87 0.37 0.44

Table IIl: Automatic transcription error rates (using NE-

DoA).

P(E)

A»@—-P(EW) —»@

Figure 7: Noisy channel model for decipherment. P(FE) is a
character language model and P(E|C) is a channel model.

We call the first step deciphering, and the second step
decoding. Combining segmentation, transcription, and deci-
pherment, we create a pipeline to decipher from a scanned
image, which we call 3-stage decipherment.

Results for 3-stage Decipherment. We build pre-trained
bigram character language models of English, Latin, and
German. Since our cipher datasets have been deciphered,
for each dataset we generate gold plaintext from gold
transcription. We evaluate decipherment with normalized
edit distance (NED).

Table [TV] compares decipherment error rates under gold
segmentation and automatic segmentation. We also study
decipherment under gold transcription. Our fully automatic
system deciphers Copiale at 0.51 character error. While high,
this is actually remarkable given that our transcription has
0.44 error. It seems that our fully-connected noisy channel
decipherment model is able to overcome transcription mis-
takes by mapping the same cluster ID onto different plaintext
symbols, depending on context.

Even so, we notice substantial degradation along the
pipeline. Human analysts also revise transcriptions once
decipherments are found.

VI. DECIPHERMENT FROM CHARACTER IMAGES

We propose 2-stage decipherment, which models tran-
scription and decipherment as a single integrated step.



Auto-transcription Gold

Gold seg | Auto-seg | transcription
Courier 0.08 0.08 0.08
Arial 0.07 0.16 0.08
Borg 0.35 0.76 0.01
Copiale 0.46 0.51 0.20

Table IV: Error rates of 3-stage decipherment (NED) based
on gold segmentation and auto-segmentation, compared with
deciphering from gold transcription.

%@%P(Gﬁ) —-@

Figure 8: GMM. P(Z) is a multinomial distribution over
cluster IDs, and P(G|Z) is a mixture of Gaussian distribu-
tions.

P(2)

A. Language Model Constrained Gaussian Mixture Model
(LM-GMM)

GMM. Given a sequence of feature vectors G =
{91,92,- -+ ,gn} generated by the SNN feature extractor,
GMM generates G by first using a multinomial distribution
P(Z) to choose cluster assignments, then uses the mixture of
Gaussian distributions P(G|Z) to generate feature vectors.
, as shown in Figure [§]

ZP P(G|Z)

LM-GMM. Instead of using the multinomial distribution
P(Z) to choose clusters, LM-GMM uses the decipherment
language model to choose appropriate character sequences.
Since we do not have cipher language model, we use the
noisy channel model as the cipher language model as
shown in Figure [0

G)=> P(E
E

Simplified LM-GMM. LM-GMM can be simplified for
simple substitution ciphers. Since simple substitution ciphers
use one-to-one and onto mappings between plaintext alpha-
bet and cipher alphabet, the channel model P(C|E) is not
necessary. We imagine, for example, that Borg is written in
Latin, but the author writes Latin characters strangely. The
simplified model is

ZP (C|E)P(G|C)

ZP

B. LM-GMM Model Error

LM-GMM is a combination of discrete distributions (LM,
channel) and a continuous one (GMM). Figure (left)
shows results of 5,000 random restarts (+). The x-axis

P(G|C)

Gold seg Auto-seg

3-stage | 2-stage | 3-stage | 2-stage
Courier 0.08 0.06 0.08 | 0.06
Arial 0.07 0.04 0.16 | 0.11
Borg 0.35 0.20 0.76 | 0.69
Copiale 0.46 0.41 0.51 | 0.50

Table V: Error rates of 2-stage decipherment (NED) on both
gold segmentation and auto-segmentation, compared with 3-
stage decipherment.

3-stage 2-stage

decipherment | decipherment

Bigram 0.35 0.20
Trigram 0.24 0.16

Table VI: Decipherment error rates (NED) with bigram and
trigram language models for Borg, using gold segmentation.

is the log-likelihood of observed feature vectors. The y-
axis is decipherment NED. We also plot the gold model
by generating the Gaussian Mixture P(G|C) with gold
plaintext, as the solid dot. Training from the gold model,
we can reach the solid square.

The gold model does not receive the highest model
score. This modeling error is caused by the strong GMM
multiplying with the character language model—we tend to
choose the result satisfying the GMM part. To fix this, we
use P(G) = " P(E)3*P(G|C) to highlight the importance
of the language model during deciphering phase, leading to
a result shown in Figure [1 1] (right).

C. LM-GMM Search Error

Now we observe that even after many EM restarts, we
cannot reach a model that scores as well as the gold model.

To fix this search problem, we randomly restart our
EM training from a GMM model computed from plaintext
from 3-stage training. We illustrate the initialization method
on the Borg dataset (Figure [I2). The initialization point
comes from 3-stage decipherment (NED=0.35), which 2-
stage decipherment improves to NED=0.20. This approaches
the retrained gold model (NED=0.15), with only 50 restarts.

D. Evaluation of 2-stage Decipherment

Decipherment results are shown in Table [V| which com-
pares 2- and 3-stage decipherment under auto- and gold
segmentation. All results are trained with bigram character
language model. Results of 2-stage decipherment use the
initialization method described above. From the results we
can see that 2-stage decipherment outperforms 3-stage de-
cipherment, especially for Borg and Copiale.

Instead of using bigram language model, we also use a
trigram language model on Borg, as shown in Table Both
3-stage and 2-stage decipherment get better results.
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Figure 9: LM-GMM. P(FE) is character language model, P(C|FE) is a channel model, and P(G|C') is a mixture of Gaussian

distributions.
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Figure 10: Simplified LM-GMM for simple substitution
ciphers.

VII. CONCLUSION AND FUTURE WORK

In this paper, we build an end-to-end system to decipher
from manuscript images. We show that the SNN feature
extractor with a Gaussian mixture model can be good for
unseen character clustering. We fix our EM search problem
for LM-GMM by using a better initialization method.

Interesting future work can include 1-stage decipherment.
Can we use our cipher language model to improve the image
segmentation? Can we merge image segmentation into the
whole EM training framework? How much benefit can we
get?

Finally, to realize a fully-automatic camera-phone deci-
pherment app, we need to lift several assumptions we made
in the paper. These include knowing the plaintext language
and cipher system [12], [[17], [18]], pre-processing images
to remove margins and non-cipher text, knowing the cipher
alphabet size, and cipher-specific setting of segmentation
parameters.

ACKNOWLEDGMENTS

The authors thank all people who have deciphered these
manuscripts to make this work possible. This work was
sponsored by DARPA (grant HR0011-15-C-0115), by the
Swedish Research Council (grant E0067801), by the USC
Annenberg Graduate Fellowship, and by a gift from Google,
Inc.

REFERENCES

[1] E. Pettersson and B. Megyesi, “The histcorp collection of
historical corpora and resources,” in Proceedings of the Third
Conference on Digital Humanities in the Nordic Countries,
2018.

[2] A. Fornés, B. Megyesi, and J. Mas, “Transcription of encoded
manuscripts with image processing techniques,” in Proceed-
ings of Digital Humanities, 2017.

[3] R. Smith, “An overview of the tesseract OCR engine,” in Pro-
ceedings of the Ninth International Conference on Document
Analysis and Recognition, 2007, pp. 629-633.

[4] A. Kae, G. Huang, C. Doersch, and E. Learned-Miller,
“Improving state-of-the-art OCR through high-precision
document-specific modeling,” in IEEE Conference on Com-
puter Vision and Pattern Recognition, June 2010, pp. 1935-
1942.

[5] V. Kluzner, A. Tzadok, D. Chevion, and E. Walach, “Hybrid
approach to adaptive OCR for historical books,” in IEEE
International Conference on Document Analysis and Recog-
nition, Sept 2011, pp. 900-904.

[6] G. Nagy, S. C. Seth, and K. Einspahr, “Decoding substitution
ciphers by means of word matching with application to
OCR,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 9, no. 5, pp. 710-715, May 1987. [Online].
Available: http://dx.doi.org/10.1109/TPAMI.1987.4767969

[7] T. K. Ho and G. Nagy, “OCR with no shape training,”
in Proceedings of 15th International Conference on Pattern
Recognition, vol. 4, 2000, pp. 27-30.

[8] T. M. Breuel, “Modeling the sample distribution for clustering
OCR,” in Proc. SPIE, Document Recognition and Retrieval
VIII, vol. 4307, 12 2000, pp. 193-200.

[9] G. Huang, E. Learned-Miller, and A. McCallum, “Cryp-
togram decoding for ocr using numerization strings,” in
Ninth International Conference on Document Analysis and
Recognition, vol. 1, Sept 2007, pp. 208-212.

[10] T. Berg-Kirkpatrick, G. Durrett, and D. Klein, “Unsupervised
transcription of historical documents.” in Proceedings of the
51st Annual Meeting of the Association for Computational
Linguistics, 2013, pp. 207-217.

[11] T. Berg-Kirkpatrick and D. Klein, “Improved typesetting
models for historical OCR,” in Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics, 2014, pp. 118-123. [Online]. Available: http:
/laclweb.org/anthology/P/P14/P14-2020.pdf

[12] N. Aldarrab, “Decipherment of historical manuscripts,” Mas-
ter’s thesis, University of Southern California, Los Angeles,
California, 2017.

[13] K. Knight, B. Megyesi, and C. Schaefer, “The copiale
cipher,” in Proceedings of the 4th Workshop on Building
and Using Comparable Corpora: Comparable Corpora
and the Web, 2011, pp. 2-9. [Online]. Available: http:
//dl.acm.org/citation.cfm?1d=2024236.2024239

[14] B. M. Lake, R. Salakhutdinov, J. Gross, and J. B.
Tenenbaum, “One shot learning of simple visual concepts,”
in Proceedings of the 33th Annual Meeting of the
Cognitive Science Society, 2011. [Online]. Available: |https:
//mindmodeling.org/cogsci2011/papers/0601/index.html


http://dx.doi.org/10.1109/TPAMI.1987.4767969
http://aclweb.org/anthology/P/P14/P14-2020.pdf
http://aclweb.org/anthology/P/P14/P14-2020.pdf
http://dl.acm.org/citation.cfm?id=2024236.2024239
http://dl.acm.org/citation.cfm?id=2024236.2024239
https://mindmodeling.org/cogsci2011/papers/0601/index.html
https://mindmodeling.org/cogsci2011/papers/0601/index.html

0.8 -

0.6 [ i
a
w
z
04 B
0.2 |
random restart  +
gold e
qqld retrain' - ‘ ‘ . =
O O O O O O QL O
Q N O N N N S O
» » & & I3 3 & F

NED

0.8 B
06 [ 4
04 B
0.2 i
random restart ~ +
gold e
0 gold refrain_= . . e "
O QL O O O QL O
& & A D N & &
log p(G)

Figure 11: 5000 random restarts of training LM-GMM (left), and LM-GMM with cubic LM (right) on Courier dataset marked
with plus (+). X-axis is the likelihood of the Courier dataset according to LM-GMM, y-axis is NED between deciphered
text and gold plaintext. The solid dot is the gold model, and the solid square is the LM-GMM training result initialized

from the gold model.
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Figure 12: 50 restarts of LM-GMM on Borg dataset initial-
ized from 3-stage decipherment with random noise (+). The
x-axis is the log-likelihood of Borg vectors according to LM-
GMM, and the y-axis is NED between deciphered text and
gold plaintext. The hollow circle is the 3-stage decipherment
result mapped onto this plot, and the hollow square is the
LM-GMM training result initialized from the hollow circle.
The solid dot is the gold model, and the solid square is the
LM-GMM training result starting from the solid dot.
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