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DeepText: Detecting Text from the Wild with
Multi-ASPP-Assembled DeepLab

Abstract—In this paper, we propose to address the issue of
scene text detection in the manner of direct regression and
successfully adopt an effective semantic segmentation model,
DeepLab v3+ [1], for this application. In order to handle texts
with arbitrary orientations and sizes, and improve the recall of
small texts, we propose to extract features from multiple scales by
inserting multiple Atrous Spatial Pyramid Pooling (ASPP) layers
to the DeepLab after the feature maps with different resolutions.
Then, we set multiple auxiliary IoU losses at the decoding stage
and make auxiliary connections from the intermediate encoding
layers to the decoder to assist network training and enhance
the discrimination ability of lower encoding layers. Experiments
conducted on the benchmark scene text dataset ICDAR2015
demonstrate the superior performance of our proposed solution
over the state-of-the-art approaches.

Index Terms—Scene text detection, DeepLab, multiple ASPP,
auxiliary IoU losses, auxiliary connections

I. INTRODUCTION

Scene text detection has attracted intensive attention in the
community of computer vision because it is a primary step
of scene text reading, and has a great application potential.
Scene images are usually captured in wild scenarios under
unconstrained conditions, e.g., with complex background, un-
even illumination, skew, blur, perspective distortion and so
forth, which introduce huge challenges to robust scene text
detection. Moreover, challenges also arise due to arbitrary text
appearances in practice with respect to their sizes, fonts, colors
and orientations.

A scene text detector is used to predict the locations of text
areas in input scene images. The existing solutions have been
through a great revolution since 2015, when deep learning was
introduced to this area, and have since made a great break-
through. Conventional detection methods can be divided into
sliding-window-based approaches and connected-component-
based ones. Among them, a group of detectors based on
Maximally Stable Extremal Regions (MSER) had achieved the
state-of-the-art performance and had become the most popular
solutions by 2015. Most of the conventional methods heavily
depend on handcrafted features and single character classifiers,
which has seriously limited models’ flexibility and adaptabil-
ity. A deep network integrates feature extraction modules and
task processing modules into one unified framework, and trains
both modules simultaneously in an end-to-end way. Therefore,
ever since the deep-learning based models were introduced for
scene text detection, they have surpassed conventional methods
significantly and become the dominant solutions.

Deep learning based approaches usually tackle the scene
text detection task from two perspectives, i.e., object detection

and semantic segmentation. Text can be seen as specific targets
in scene images, so it is reasonable to borrow ideas from
general object detection field. This kind of methods usually
select numerous anchors at the first step, followed by calculat-
ing text confidence and related offsets for individual anchors.
Arbitrary orientations and aspect ratios lead to the bottleneck
of this kind of methods because the amount and pre-defined
configurations of anchors are limited and fixed. By contrast,
the methods based on semantic segmentation are more robust,
because, in these methods, bounding boxes’ offsets and angles
are predicted for individual pixels. It is notable that, in both
categories of methods, the task-tackling layer at the end of
the network usually consists of a classification module and a
regression module. He [2] et al. classified regression methods
into the direct methods, which calculated offsets from a
given point, and the indirect methods, which calculated offsets
for proposals or anchors. Therefore, in the literature, scene
text detectors are also grouped into direct-regression-based
approaches (that most semantic segmentation methods belong
to) or indirect-regression-based approaches (that are mainly
referred to the object-detection-based methods).

According to the literature, VGG [3] and ResNet [4] are
the most widely used backbone at the encoder stage of
the recent state-of-the-arts, no matter if the approaches are
object-detection-based or semantic-segmentation-based. How-
ever, there are many other outstanding structures such as
DeepLab [1], a model proved to be superior for semantic
segmentation tasks, which have not been explored for scene
text detection. Motivated by this, in this work, for the first
time, we introduce DeepLab, and more specifically DeepLab
v3+ [1], into scene text detection and study its limitations.
Finally, we find that the system’s recall is seriously influenced
by the misdetection of small texts. To tackle this limitation,
we modify DeepLab by inserting multiple ASPP layers to it so
that more detailed and richer information can be extracted and
leveraged. Furthermore, we also propose to utilize multiple
auxiliary Intersection-Over-Union (IoU) loss and auxiliary
connections to accelerate the training process and enhance the
discrimination ability of lower encoding layers.

The rest of this paper is organized as follows. Section II
summarizes the related works, Section III gives the details
of our proposed network, and Section IV presents our ex-
periments conducted on benchmark datasets. Conclusions are
drawn in Section V.



II. RELATED WORKS

Among the scene text detectors based on traditional ap-
proaches, MSER-based ones have achieved the best perfor-
mance. Yin [5] et al. firstly extracted character candidates by
employing MSER, followed by eliminating non-text areas with
handcrafted features and a distance metric learning model.
In order to deal with text lines with arbitrary orientations, a
backward-forward algorithm was then designed in their work.
This approach was state-of-the-art among traditional methods,
but was surpassed by deep-learning based ones in 2015. Since
2015, almost all of the published scene text detection works
have been deep-learning based. Therefore, in the following, we
review only the scene text detectors based on deep-learning.

EAST proposed in [6] was a direct regression method that
dealt with text detection in the semantic segmentation way.
The network was based on a Fully Convolutional Network
(FCN) and employed VGG as its backbone. For the regression
module, the geometry maps could be either a five-channel
RBOX (i.e., rotated box) representation or an eight-channel
QUAD (i.e., quadrangle) representation. Additionally, to opti-
mize the proposed network, the well-known IoU loss [7] was
employed by EAST. Yao [8] et al. also cast the text detection
task as a semantic segmentation problem and employed an
FCN model to predict text regions, character regions and the
linking orientations of adjacent characters at multiple scales.
A series of post processing operations were then performed to
obtain text lines with arbitrary orientations from the predicted
dense maps. He [2] et al. also regarded text detection as a
segmentation problem and performed a pixel-level prediction.
Different from Yao’s [8] work, direct regression was used in
this work to predict the vertex coordinates of quadrilateral text
regions. The backbone of the network was also FCN, and after
the network prediction, a recalled Non-Maximum Suppression
(NMS) was designed to remove redundant bounding boxes.

On the other hand, text can be seen as specific objects in
images, so it is natural to adopt methods successfully applied
for general object detection to locate text objects in images.
Great efforts have been made in this direction and achieved
promising results, such as TextBoxes [9], TextBoxes++ [10]
and SegLink [11] etc. The object-detection-based methods
usually detect a large amount of text proposals, and then
calculate the offsets for the related text bounding boxes.
Therefore, these methods basically are the indirect-regression
approaches. TextBox [9] predicted the text presence confidence
and offsets of 12 default boxes for individual locations from
six feature maps. The offsets were designed towards the boxes’
top-left coordinates, heights and widths. To deal with text
with arbitrary orientations, TextBox++ [10] further improved
TextBox by predicting the regression of offsets for oriented
bounding boxes. Since the aspect ratios of words or text
lines are usually larger than other objects, using pre-defined
boxes with fixed aspect ratios, as in TextBox and TextBox++,
may miss some long words or text lines. In [11], Shi [11]
proposed the SegLink, where words or text lines were broken
into segments. The SegLink network estimated the confidence

scores and geometric offsets for a set of default boxes with
respect to segments, instead of words or text lines. Meanwhile,
the links of segments were also detected to determine whether
two adjacent segments belonged to the same word or not.
Following the idea of SegLink, Deng et al. [12] proposed
the PixelLink, which also detected links to gather components
of words or text lines. However, Deng et al. [12] held the
idea that the regression of default boxes was not indispensable
in text detection. Therefore, the proposed PixelLink predicted
text confidence for individual pixels instead of segments. Both
PixelLink and SegLink have the same network structure except
that the PixelLink eliminated the regression module at the
output layer.

On the other hand, Yang [13] proposed IncepText to detect
text with arbitrary orientations in the view of instance-aware
segmentation. The idea of IncepText was similar to Mask R-
CNN [14], where a mask module was employed together with
the classification and regression parts. Another highlight of this
work was the use of deformable convolution layers [15] and
deformable PSROI pooling layers [15]. A standard convolution
sampled the pixels in a regular grid, while the deformable
convolution shifted the locations of pixels in a regular grid
according to the offsets learned from the input feature maps.
Thus, the problem of arbitrary text orientation was able to
solved to certain extent. The deformable PSROI pooling was
a modification of PSROI pooling, in which the deformable
operation was used for the same purpose as the deformable
convolution.

Although semantic-segmentation-methods are more robust
to text with arbitrary orientations, they may yield lower recalls
due to the sparse features of small texts. The Pixel-Anchor
network proposed in [16] took advantages of both semantic
segmentation and object detection. ResNet-50 was employed
as the backbone in this network, followed by a pixel-based
module and an anchor-based model. The pixel-based module
used ASPP at the feature map with a resolution of 1/16,
and was assembled with a RBOX predictor and an attention
heat map detector. Attention heat maps and the feature maps
produced by ResNet-50 were also fed to the anchor-based
module, together with some adaptive predictor layers that were
used to adapt the anchor module to long anchors. As we all
know, the problem of high false positive is a big challenge
in scene text detection. This problem is often caused by
lack of context information and inaccurate classification. The
SPCNET proposed by Xie et al. [17] utilized a text context
module and a re-scoring mechanism to tackle the high false
positive problem and has improved detection performance
significantly. Their text context module contained a pyramid
attention module and a pyramid fusion module, and produced
text segmentation as outputs. Then, by applying a re-scoring
mechanism, the classification score and instance score were
combined to prevent true positives from being filtered out.

Given the robustness of direct regression to texts with
arbitrary orientations and sizes, in this work, we address
the issue of scene text detection in the way of semantic
segmentation. The well-known DeepLab model is adopted and
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Fig. 1. The structure of the proposed network.

modified to improve the detection performance, especially the
recall of small texts. More details are presented as below.

III. THE PROPOSED METHOD

The overview of proposed network is shown in Fig. 1. As
we can see, the DeepLab v3+ [1] is used as the backbone
with some modifications on the structure and basic configura-
tions. The original output layer is replaced with a regression
module and a classification module, and the decoder branch is
equipped with a smaller upsampling factor. Besides, multiple
ASPP layer is exploited to improve the recall of small texts,
and multiple auxiliary losses and connections are introduced to
assist network training and enhance the discrimination ability
of lower encoding layers.

Structure of Our Proposed Network: DeepLab v3+ [1] is
an efficient semantic segmentation model that was developed
on the base of DeepLab v1 [18], DeepLab v2 [19] and
DeepLab v3 [20]. Advanced techniques such as atrous con-
volution, depthwise separable convolution, and Xception [21]
are used in DeepLab v3+ and have achieved an accurate
pixel-level prediction. Atrous convolution and ASPP are able
to adjust filter’s receptive fields so as to capture multi-scale
information by configuring different atrous rates. Depthwise
separable convolution is a powerful tool to relieve the compu-
tational burden, while Xception is an efficient encoder-decoder
structure that can achieve high performance on both classifi-
cation and semantic segmentation. To take the advantages of
the above mentioned benefits, we adopt DeepLab v3+ as our
base model and make some modifications, as explained below,
to adapt it to the scene text detection task.

Details of the overall structure and related configuration
are described in Fig. 1, where the smallest resolution at

the encoder stage is 32, and the recovered resolution at the
decoder stage is 2. Moreover, a@b#c means the current block
(each block has 3 depthwise separable convolution layers) is
repeated for c times, the kernel size of this block is a×a and
there are b channels at each layer of this block. S=2 means the
stride is 2 at a specific layer or the last layer of specific block.
Note that, due to the limited GPU resource, denser output
feature maps are not considered in our model, and the size of
channel configuration of our model is much smaller compared
to that of [1].

Output Layer: The DeepLab v3+ [1] originally proposed
for semantic segmentation has a pixel-level prediction module
in its output layer, where confidence maps with respect to
individual object classes are produced. This prediction layer
works well for the semantic segmentation purpose, but is
not suitable for our scene text detection task. In order to
locate text in images, we also need to predict the offsets from
individual pixels to the related bounding boxes. Therefore,
in this work, we replace the original output layer with a
classification module and a regression module.

Concretely, a score map is generated to evaluate pixels’
confidence of being text, and five RBOX geometry maps are
generated to perform a direct regression, as shown in Fig. 2.
For an individual location (X,Y ), the values at the five RBOX
geometry maps represent the distance to the four boundaries
of the corresponding rotated box and the rotation angle of
the corresponding box, respectively. During the testing stage,
we restore the corresponding bounding box according to the
prediction results, and eliminate the redundant boxes with the
NMS algorithm.

Smaller Upsampling Factor: In [20], the features are
bilinearly upsampled with a factor of 16 in the decoder stage,
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Fig. 2. Output feature maps of proposed network

which is claimed [1] to have failed when recovering segmen-
tation details. Therefore, in DeepLab v3+ [1], the upsampling
operation is performed with a factor of 4. In our case, detecting
small text areas requires more detailed information and more
refined features recovered, so we upsample feature maps with
a smaller factor of 2 at the decoder stage, and then concatenate
them with the low-level features from the encoder stage.

Multiple ASPP Layers: Small texts present frequently in
scene images and detection accuracy of such texts has a great
impact on the overall performance. To better deal with these
text objects, we further improve the network architecture by
inserting multiple ASPP layers to our network after the feature
maps with different resolutions.

The original DeepLab v3+ [1] assembles only one ASPP
layer after the feature maps with the smallest resolution (at the
end of the encoder). As shown in Fig. 3, this operation is help-
ful for extracting wide range contextual information for large
texts. However, when it comes to small texts, the extracted
features become too coarse, and much detailed information is
missed. By contrast, if a ASPP layer with the same atrous
rates is applied on the feature maps with a large resolution,
the extracted features would be more refined for small texts,
but the contextual information contained might be too little
for large texts. To take both small texts and large texts into
consideration, we propose to insert multiple ASPP layers to
the DeepLab after the feature maps with different resolutions.
As shown in Fig. 1, we assemble three ASPP layers after
the feature maps with resolutions of 4, 8, 16, respectively.
In an individual ASPP layer, a traditional convolution layer
with 1 × 1 kernel and three atrous convolutional layers with
atrous rates of 6, 12 and 18 are assembled in parallel. Then,
outputs of these four layers are concatenated, followed by a
1× 1 traditional convolutional layer that is used to reduce the
overall channels of feature maps.

Multiple Auxiliary Losses and Connections: To optimize
our proposed network, the IoU loss [7], as defined in 1, is
employed in our work. The IoU loss is originally proposed for
object detection. Compared with the widely used L2 loss that
optimizes the four values of distance independently, the IoU
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Fig. 3. Feature extraction by ASPP with the same atrous rates for text with
various scales
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Fig. 4. Back propagation after using auxiliary losses and connections. The
yellow arrows indicate back propagation paths without auxiliary losses and
connections, while the green arrows represent additional paths after using
auxiliary losses and connections.

loss is invariant against different scales of objects. Given the
predicted bounding boxes R∗ and the ground truth bounding
boxes R (their related orientations are denoted by θ∗ and θ,
respectively), the IoU loss minimizes the difference between
their intersection area and their union area. In our case, the
IoU loss is calculated for individual pixels, and the predicted
bounding box R∗ is derived from the five geometry maps
produced by the output layer.

LossIoU = Lossarea + Lossangle

Lossarea = −logIoU(R,R∗) = −log |R ∩R
∗|

|R ∪R∗|
Lossangle = λ ∗ (1− cos(θ − θ∗))

(1)

where
|R ∪R∗| = |R|+ |R∗| − |R ∩R∗| (2)

Subsequently, to assist the training of the proposed network
and promote the convergence speed, we propose to employ
multiple auxiliary IoU losses and connections at the decoder
module, which is expected to be able to enhance the gradient
signals during the back propagation procedure. The existing
scene text detectors usually calculate the loss once on the
final decoded feature maps. For example, EAST [6] calcu-
lated the loss on the feature maps with 1/4 resolution and



TABLE I
COMPARISON WITH PRIOR ARTS ON ICDAR2015

Methods Additional data Recall Precision F-measure
EAST [6] ImageNet 73.47 83.57 78.20

SegLink [11] SynthText 76.80 73.10 75.00
RRPN [22] ImageNet, SVT 73.23 82.17 77.44

R2CNN [23] ImageNet etc. 74.29 76.42 75.34
TextBoxes++ [10] SynthText 76.70 87.20 81.70

PixelLink [12] 7 82.00 85.50 83.70
TextSpotter [24] SynthText 81.20 85.80 83.40
DeepLab small 7 77.03 86.21 81.36

DeepLab 7 77.80 87.49 82.36
DeepLab MASPP 7 81.08 87.57 84.20

Ours 7 81.13 88.27 84.55

PixelLink [12] did on the feature maps with 1/2 resolution.
Moreover, in these models, up-sampled features of the decoder
module are often concatenated with the low level feature maps
that have the same resolution from only one layer. These
strategies make the learning of low level weights slow and the
learned features less discriminative. In this work, to enhance
the discrimination power of low encoder layers and speed up
the convergence, we calculate the IoU loss three times on the
feature maps with resolution 1/2, 1/4 and 1/8, respectively,
and make auxiliary connections from multiple intermediate
encoder layers, as shown in Fig. 1. Note that, in the inference
stage, we only perform prediction at the feature maps of 1/4
resolution to save time. Fig. 4 describes the back propagation
details. As we can see, the gradients are enhanced by the
auxiliary losses and connections.

IV. EXPERIMENTS

To demonstrate the effectiveness of our proposed detector,
we test our proposed solution on the benchmark dataset IC-
DAR2015 and compare it with the state-of-the-art approaches.

A. Datasets

The ICDAR2015 dataset was proposed for the Incidental
Scene Text Reading Competition of ICDAR 2015 [25]. Images
in this dataset are taken by Google Glasses without limitation
on text position, image quality and view point. This dataset
is very challenging because text instances could be small,
blur and multi-oriented. There are 1000 training images and
500 test images in this dataset, and all of the text regions
are labeled with word level quadrangles. We also include
229 training images from the ICDAR2013 dataset in our
training set. Therefore, in our experiments, we totally have
1229 training images. Performance of the proposed method is
evaluated on the 500 ICDAR2015 test samples.

B. Implementation Details

To optimize the proposed network, the Adam optimizer with
an initial learning rate of 1e-4 is used. The learning rate is
decayed exponentially with a decay rate of 0.94 and a decay
step of 10000. The proposed model is implemented with the
Tensorflow framework, and our batch size is set to 4 due to the
limitation of GPU memory, instead of 8 used in some other
literatures.

C. Evaluation of the Proposed Detector

To demonstrate the effectiveness of our proposed detector,
we compare the performance with those of state-of-the-arts.
Table I gives details of the comparison results.

As we all know, training data has a great impact on
detection performance, so we include additional training sets
when other training samples in the datasets are used in
addition to the ICDAR2013 and ICDAR2015 datasets. The
results tested on multiple scales can always be better than
those tested on a single scale. Since many methods only
report their results on a single scale, to be fair, we only
list single scale results for all of the methods in Tabel I.
When multiple settings are tested for certain models, we report
their best ones. For example, the model named EAST tests
seven settings in [6], but we only take their best perfor-
mance achieved by PVANET2x on a single scale. Addition-
ally, if the compared method is an end-to-end method, we
take their detection-branch-only results in Table I, such as
Mask TextSpotter. ICDAR 2015 does not provide any offline
evaluation tool or ground truth for the test set. Therefore,
we directly submit our prediction results to the online plat-
form (http://rrc.cvc.uab.es/?ch=4com=evaluationtask=1) and
take the platform’s evaluation results.

From Table I, we can see that the proposed method achieves
the best performance among all of the listed detectors with a
F-measure of 84.55%. Notably, all of the listed detectors pre-
train their models using additional datasets such as ImageNet,
SynthText etc., except for PixelLink and ours. To demon-
strate the effectiveness of our modification, we also carry
out experiments with the original DeepLapv3+ [1] structure,
indicated by DeepLab in Table I. DeepLab small has the
same structure and layer setting as DeepLab, but the channels
in each layer is shrunk from 256 to 128 (layers with 256
channels in Fig. 1) and from 512 to 256 (layers with 512
channels in Fig. 1). DeepLab and DeepLab small use the
same loss function, data pre-processing strategies, learning rate
and optimizer as EAST. The only difference is that EAST
uses VGG as the backbone. Clearly, DeepLabv3+ is a better
backbone than VGG because the performance is elevated from
78.20% to 82.36%(for DeepLab). Even we use a smaller
setting for DeepLab small, the F-measure is 3.16% higher.
Furthermore, the performance of DeepLab small is 1% lower



than that of DeepLab, so we can conclude that greater setting is
good for the improvement of model’s performance. Therefore,
when compared the performances of different models, both
of the structure and the network scale should be taken into
consideration. Unfortunately, due to the limitation of our GPU
memory, we cannot implement our model with a bigger setting
and compare the performance with the methods like IncepText,
which has 1024, 2048 and 1024 channels in convolution stage-
4, convolution stage-5 and decoder stage respectively, and
achieves a performance of 85.3% when a single scale is used.

The method named as DeepLab MASPP in Table I has the
same settings (number of layers and channels in each layer)
as the one named as DeepLab, except that DeepLab MASPP
utilizes multiple ASPP layers in the encoder stage and up-
samples feature maps with a factor of 2 at the decoder stage.
Apparently, when MASPP and smaller up-sample factors are
used, the performance can be significantly improved because
more smaller text regions are recalled (the recall is improved
from 77.80% to 81.08%). Finally, after employing multiple
auxiliary IoU losses and auxiliary connections, we obtain a
detection performance of 84.55%, which is slight better than
that of DeepLab MASPP. However, DeepLab MASPP gets
the best results of 84.20% at the iteration of 1154k (batch size
is set to 4), while after using auxiliary losses and connections,
the best results of 84.55% is obtained at the iteration of 734k
(batch size is also set to 4). It is evidenced that auxiliary losses
and connections are able to greatly assist the training of deep
networks in the text detection task, and the discrimination of
lower encoding layers can also be enhanced.

V. CONCLUSION

A powerful backbone is essential to deep networks in
the field of computer vision. In this paper, we have firstly
introduced the well-known DeepLab structure for the scene
text detection task, and achieved promising performance.
When detecting text from scene images, encoding the wider
range contextual information and detailed information from
different scales is able to improve models’ robustness to
arbitrary text sizes and orientations. Toward this end, we have
modified the original DeepLab structure by inserting multiple
ASPP layers to the network after feature maps with different
resolutions. Additionally, multiple auxiliary IoU losses and
connections have been employed to assist the network training
and enhance the discrimination ability of lower encoder layers.
Experimental results on ICDAR2015 have shown that the
performance has been significantly improved by applying
proposed modifications.
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