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Adversarial Generation of Handwritten Text Images Conditioned on Sequences
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Abstract—State-of-the-art offline handwriting text recogni-
tion systems tend to use neural networks and therefore require
a large amount of annotated data to be trained. In order
to partially satisfy this requirement, we propose a system
based on Generative Adversarial Networks (GAN) to produce
synthetic images of handwritten words. We use bidirectional
LSTM recurrent layers to get an embedding of the word to
be rendered, and we feed it to the generator network. We also
modify the standard GAN by adding an auxiliary network for
text recognition. The system is then trained with a balanced
combination of an adversarial loss and a CTC loss. Together,
these extensions to GAN enable to control the textual content
of the generated word images. We obtain realistic images on
both French and Arabic datasets, and we show that integrating
these synthetic images into the existing training data of a text
recognition system can slightly enhance its performance.

I. INTRODUCTION

Having computers able to recognize text from images is
an old problem that has many practical applications, such
as automatic content search on scanned documents. Tran-
scribing printed text is now a reliable technology. However,
automatically recognizing handwritten text is still a hard
and open problem. Unlike printed text, cursive handwriting
cannot be segmented into individual characters, since their
boundaries are ill-defined. Graves et al. [1] introduced
the Connectionist Temporal Classification (CTC), a loss
enabling to train neural networks to recognize sequences
without explicit segmentation. Today, in order to deal with
such a complex problem, state-of-the-art solutions [2], [3]
are all based on deep neural networks and the CTC loss.

The supervised training of these neural networks requires
large amounts of annotated data; in our case, images of
handwritten text with corresponding transcripts. However,
annotating images of text is a costly, time-consuming task.
We therefore propose a system to reverse the annotation
process: starting from a given word, we generate a corre-
sponding image of cursive text. We first tackle the challenge
of generating realistic data, and then address the question of
using such synthetic data to train neural networks in order
to improve the performance of handwritten text recognition.

The problem of generating images of handwritten text has
already been addressed in the past. Many techniques [4]]
are based on a collection of templates of a few characters,
either human-written or built using Bezier curves. These
templates are possibly perturbed and finally concatenated.
However, this class of solutions, that simply concatenates
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Figure 1. Adversarial generation of an image of text, conditioned on the
textual content (“Dimanche”). The differences with a standard GAN are
shown in blue.

character models, cannot faithfully reproduce the distribution
of real-world images. It is also complex to have templates
that are generic enough to result in truly cursive text. Al-
ternatively, following the online approach, we can consider
the handwriting as a trajectory, typically recorded with pen
computing. In this setting, the model aims at producing a
sequence of pen positions to generate a given word. Graves
et al. [5] use a Long Short-Term Memory (LSTM) [6],
[7] recurrent neural network to predict such a sequence,
and let the network condition its prediction on the target
string to synthesize handwriting. However, this method does
not allow to deal with some features useful for offline
recognition, such as background texture or line thickness
variations.

Generative Adversarial Networks (GAN) [8] offer a pow-
erful framework for generative modeling. This architecture
enables the generation of highly realistic and diverse images.
The original GAN does not allow any control over the
generated images, but many works [9]—-[11] proposed a mod-
ified GAN for class-conditional image generation. However,
we want to condition our generation on the sequence of
characters to render, not on a single class. Closer to our
goal, Reed et al. [[12] conditions the generation on a textual
description of the image to be produced. In addition to a
random vector, their generator receives an embedding of the



description text, and their discriminator is trained to classify
as fake a real image with a non-matching description,
to enforce the generator to produce description-matching
images.

To the best of our knowledge, there is only one work [/13]]
on a GAN for text image synthesis. While our generation
process is directly conditioned on a sequence of characters,
this method follows a style transfer approach, resorting to
a CycleGAN [14] to render images of isolated handwritten
Chinese characters from a printed font.

Data augmentation techniques based on distortion and
additive noise do not allow to enlarge the textual contents of
the training data. Moreover, having control of the generated
text enables the creation of training material that covers
even rare sequences of characters, which can be expected to
improve the recognition performance. This, combined with
the intrinsic diversity, provides a strong motivation to use a
conditional GAN for the generation of cursive text images.

In this paper, we make the following contributions:

o We propose an adversarial architecture, schematically
represented in Fig. [I] to generate realistic images of
handwritten words.

— We use bidirectional LSTM recurrent layers to
encode the sequence of characters to be produced.

— We introduce an auxiliary network for text recog-
nition, in order to control the textual content of
the generated images.

« We obtain realistic images on both French and Arabic
datasets.

o Finally, we slightly improve text recognition perfor-
mance on the RIMES dataset [15], using a neural
network trained on a dataset extended with synthetic
images.

II. PROPOSED ADVERSARIAL MODEL

We introduce here our adversarial model for handwritten
word generation. Section gives the general idea and
defines the training objectives of the different parts. We
detail the network architectures in Section and describe
our optimization settings in Section

A. Auxiliary Recognizer Generative Adversarial Networks

A standard GAN [8] comprises a generator (G) and a
discriminator (D) network, shown in gray in Fig. [I] G maps
a random noise z to a sample in the image space. D is
trained to discriminate between real and generated (fake)
images. Adversarially, G is trained to produce images that
D fails to discriminate correctly. These networks hence have
competing objectives.
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Figure 2. Architecture of the networks ¢, G, D and R. For ease of reading,
not all layers are represented (refer to the text for exact details). G receives
a chunk of noise and ¢(s) in each ResBlock (details in Fig. [3). Both G
and D include a self-attention layer. R follows the architecture of [2]] and
is trained with only real data using the CTC loss. We resort to the hinge
version of the adversarial loss for D. When training GG, we balance the
gradients coming from D and R (details in Section [[I-C).

In order to control the textual content of the generated
images, we modify the standard GAN as follows. First,
we use a recurrent network () to encode s, the sequence
of characters to be rendered in an image. G takes this
embedding ¢(s) as a second input. Then, in the vein of
[1O], the generator is asked to carry out a secondary task.
To this end, we introduce an auxiliary network for text
recognition (R). We then train G to produce images that R
is able to recognize correctly, thereby completing its original
adversarial objective with a “collaboration” constraint with



R. We use the hinge version of the adversarial loss [[16] and
the CTC loss [I]] to train this system. Formally, D, R, G
and ¢ are trained to minimize the following objectives:
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with pgqt, the joint distribution of real [image, word]
pairs, p, a prior distribution on input noise and p,, a prior
distribution of words, potentially different from the word
distribution of the real dataset.

B. Networks architecture

Fig. [J] and the text below describe the architecture of
networks ¢, G, D and R. The residual blocks (ResBlocks)
we used are detailed in Fig.

The network ¢ first embeds each character of the sequence
s in R'28 then encodes it with a four-layer bidirectional
LSTM 6], [7] recurrent network (with a hidden state of
size 128). ¢(s) is the output of the last bidirectional LSTM
layer.

The network G is derived from [11]]. The input noise, of
dimension 128, is split into eight equal-sized chunks. The
first one is passed to a fully connected layer of dimension
1024, whose output is reshaped to 256 x 1 x 4 (with the
convention depth x height x width). Each of the seven
remaining chunks is concatenated with the embedding ¢(s),
and fed to an up-sampling ResBlock through Conditional
Batch Normalization (CBN) [17] layers (see Fig. El) The
consecutive ResBlocks have the following number of filters:
256, 128, 128, 64, 32, 16, 16. A self-attention layer [18] is
used between the fourth and the fifth ResBlocks. We add
a final convolutional layer and a tanh activation in order to
obtain a 1 x 128 x 512 image.

The network D is made up of seven down-sampling
ResBlocks (with the following number of filters: 16, 16, 32,
64, 128, 128, 256), a self-attention layer between the third
and the fourth ResBlocks, and a normal ResBlock (with 256
filters). We then sum the output along horizontal and vertical
dimensions and project it on R.

The auxiliary network R is a Gated Convolutional Net-
work, introduced in [2]] (we used the “big architecture”). This
network consists in an encoder of five convolutional layers,
with Tanh activations and convolutional gates, followed by a
max pooling on the vertical dimension and a decoder made
up of two stacked bidirectional LSTM layers.
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Figure 3. Detail of a ResBlock. The base components are shown in gray. In
the ResBlocks of GG, we concatenate a noise chunk with ¢(s) and feed it to
CBN [17] layers (red). The unique hidden layer in CBN has 512 units. We
also perform up-sampling (blue) with nearest neighbor interpolation. The
ResBlocks of D resort to standard Batch Normalization [[19] and operate
down-sampling (green) with an average pooling. The activation is ReLU
[20] in G and LeakyReLU [21]] in D. The 1x1 convolution is only used
when input (in) and output (out) numbers of channels are different. In the
two 3x3 convolutions, the padding and stride are set to 1.

C. Optimization settings

We used spectral normalization [22] in G and D, fol-
lowing recent works [11], [18], [22] that found that it
stabilizes the training. We optimized our system with the
Adam algorithm [23] (for all networks: Ir = 2x 1074, 8, =
0, B2 = 0.999) and we used gradient clipping in D and R.
We trained our model for several hundred thousand iterations
with mini-batches of 64 images of the same type, either real
or generated.

While D processes one real batch and one generated batch
per training step, R is trained with real data only, to prevent
it from learning how to recognize generated (and potentially
false) images of text. To train the networks G and ¢, we first
produce a batch of “fake” images Zfake = G(z,(8)),
and then pass it through D and R. (G, ) learn from the
gradients V p : % and Vg w
coming from these two networks. Smce R and D have
different architectures and losses, the norms of Vp and Vg
can differ by several orders of magnitudes (we observed that
||V r||2 is typically 102 to 10? times greater than ||V p||2).
To have (G, ¢) learn from both D and R, we found it useful
to balance the two gradients before propagating them to G.
Therefore, we apply the following affine transformation to
v R
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With pe and o, being the mean and the standard deviation
of Ve, € {D, R}. a controls the relative importance of R
with respect to D and is set to 1 in our model. The concrete
impact of this transformation is discussed in Section [[II-BT]

III. RESULTS
A. Experimental setup

In our experiments, we use 128 x 512 images of hand-
written words obtained with the following preprocessing:
we isometrically resize the images to a height of 128 pixels,
then remove the images of width greater than 512 pixels and
finally, pad them with white to reach a width of 512 pixels
for all the images (right-padding for French, left-padding for
Arabic). Table [] summarizes the meaningful characteristics
of the two datasets we work with, namely the RIMES [15]]
and the OpenHaRT [24]] datasets, while Fig. 4] shows some
images from these two datasets.

Table I: Characteristics of the subsets of RIMES and OpenHaRT.

Dataset Language | Images | Words | Characters
RIMES French 129414 6780 86
OpenHaRT Arabic 710892 | 65575 77
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Figure 4. Images after preprocessing. First line: RIMES. Second line:
OpenHaRT.

To reflect the distribution found in natural language, the
words to be generated are sampled from a large list of words
(French Wikipedia for French, OpenHaRT for Arabic). For
the text recognition experiments on the RIMES dataset
(Section [III-D)), we use a separate validation dataset of 6060
images.

We evaluate the performance with Fréchet Inception Dis-
tance (FID) [25] and Geometry Score (GS) [26]. FID is
widely used and gives a distance between real and generated
data. GS compares the topology of the underlying real and
generated manifolds and provides a way to measure the
mode collapse. For these two indicators, lower is better. In
general, we observed that FID correlates with visual impres-
sion better than GS. For each experiment, we computed FID
(with 25k real and 25k generated images) and GS (with Sk
real and 5k generated images, 100 repetitions and default
settings for the other parameters) every 10000 iterations
and trained the system with different random seeds. We
then chose independently the best FID and the best GS
among the different runs. To verify the textual content, we
relied on visual inspection. To measure the impact of data
augmentation on the text recognition performance, we used

Levenshtein distance at the character level (Edit Distance)
and Word Error Rate.

B. Ablation study

For all the experiments in this section, we used the RIMES
database described in Section

1) Gradient balancing: When training the networks
(G, p), the norms of the gradients coming from D and R
may differ by several orders of magnitudes. As mentioned in
Section [, we found it useful to balance these two gradients.
Table [l reports FID, GS and a generated image for different
gradient balancing settings.

Table II: FID, GS and a generated image of the word “réparer”, for four
settings: no gradient balancing, o = 0.1, & = 1 (our model) and o = 10.

a FID GS
None || 14135 | 2.44 x 1073

0.1 72.93 4.23 x 1072

10 22247 | 2.92 x 1073

1 23.94 | 858 x 1074 R{(_\_Q,\w

Without gradient balancing, we observed that ||V g||2 was
typically 10% to 10% times greater than ||V p||2, meaning
that the learning signal for (G, ) is biased toward satisfying
R. As aresult, the word “réparer” is clearly readable, but the
FID is high (141.35) and the generated image is not realistic
(the background is noisy, the letters are too far apart).

With o = 0.1, ||V g||2 is much smaller than ||V pl||2,
meaning that G and ¢ take little account of the auxiliary
recognition task. As illustrated by the second image in Table
we lose control of the textual content of the generated
image. FID is better than before, but still high (72.93).
In a way, the generated image is quite realistic, since the
background is whiter and the writing more cursive.

On the contrary, when setting « to 10, G and ¢ mostly
learn from the feedback of R and the generation is thus
successfully conditioned on the textual content. In fact,
we can distinguish the letters of “réparer” in the third
generated image in Table [lI} However, as we are focusing on
optimizing the generation process to have a minimal CTC
cost, we observe strong visual artifacts that remind of the
one obtained by Deep Dream generators [27]]. FID is much
higher (222.47) and the resulting images are very noisy, as
demonstrated by the third image in Table

The best compromise corresponds to o = 1. We obtain
the best FID of 23.94 and GS of 8.58 x 10~*, while the
generated image is both readable and realistic. For all other
experiments, we set « to 1.

2) Adversarial loss: Using the network architecture de-
scribed in Section we test three different adversarial
training procedures: the “vanilla” GAN [8]] (GAN), the Least




Squares GAN [28]] (LSGAN) and the Geometric GAN [11],
[16], [18], used in our model. FID and GS are reported in
Table [

Table III: FID and GS for different adversarial losses.

Adversarial Loss FID GS
GAN 36.32 5.29 x 10~3
LSGAN 116.09 | 3.78 x 10—3
Geometric GAN 2394 | 858 x 10~4

As shown in Table [l Geometric GAN leads to the
best performance in terms of FID and GS. LSGAN fails
to produce text-like outputs in three out of five trials. The
low FID for vanilla GAN indicates that it produces realistic
images. The high GS in Table [[I] shows that both GAN
and LSGAN suffer from a style collapse, and we observed
that the textual content was not controlled. The trends given
by FID and GS have been successfully confirmed by visual
inspection of the generated samples.

3) Self-attention: We use a self-attention layer [18], in
both the generator and the discriminator, as it may help to
keep coherence across the full image. We trained our model
with and without this module to measure its impact.

Table IV: Impact of self-attention.

FID GS
Without self-attention 67.86 4.51 x 10~3
With self-attention 2394 | 8.58 x 104

Without self-attention, we still obtain realistic samples
with correct textual content, but using self-attention im-

proves performance both in terms of FID and GS, as shown
in Table [[VI

4) Conditional Batch Normalization: As described in
Section [, G is provided a noise chunk and ¢(s) through
each CBN layer. Another reasonable option, closer to [10],
is to concatenate the whole noise z with ¢(s), and feed it to
the first linear layer of G (in this scenario, CBN is replaced
with standard Batch Normalization). Table [V] reports FID
and GS for these two solutions.

Table V: Generator input via the first linear layer or via CBN layers.

FID GS
First linear layer || 4223 | 1.81 x 10~3
CBN layers 2394 | 858 x 104

FID and GS in Table [V] indicates that feeding the
generator inputs through CBN layers improves realism
and reduces mode collapse. The visual inspection of the
generated samples confirmed these trends and showed that
the other solution prevents from correctly conditioning on
the textual content.
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Figure 5. Images generated with our system trained on RIMES. Targets:
olibrius, Dimanche, inventif, réparer, bonjour, famille, ionique, gorille,
malade, certes, golf, des, ski, le.

S
Uss
Ol g5

> \=1 | g

A

)y o\
Figure 6. Images generated with our system trained on OpenHaRT. Targets:
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C. Generation of handwritten text images

We trained the model detailed in Section [l on the two
datasets described in Section [[TI-A] RIMES and OpenHaRT.

Fig. [5] and Fig. [6] display some randomly generated (not
cherry-picked) samples in French and Arabic respectively.
For these two languages, we observe that our model is
able to produce images of cursive handwriting, successfully
conditioned on variable-length words (even if some words
remain barely readable, e.g. le and olibrius in Fig. [3)). The
typography of the individual characters is varied, but we can
detect a slight collapse of writing style among the images.
For French, as we trained the generator to produce words
from all Wikipedia, we are able to successfully synthesize
words that are not present in the training dataset. In Fig.
E] for instance, the words olibrius, inventif, ionique, gorille
and ski are not in RIMES, while Dimanche, bonjour, malade
and golf appear in the corpus but with a different case.



D. Data augmentation for handwritten text recognition

We aim at evaluating the benefits of generated data to
train a model for handwritten text recognition. To this end,
we trained from scratch a Gated Convolutional Network [2]]
(identical to the network R described in Section with
the CTC loss, RMSprop optimizer [29] and a learning rate
of 10~*. We used the validation data described in for
early stopping.

Table VI: Extending the RIMES dataset with 100k generated images.
Impact on the text recognition performance in terms of Edit Distance (ED)
and Word Error Rate (WER) on the validation set.

Data ED | WER
RIMES only 4.34 12.1
RIMES + 100k | 4.03 11.9

Table shows that extending the RIMES dataset with
data generated with our adversarial model brings a slight
improvement in terms of Edit Distance and Word Error Rate.
Note that using only GAN-made synthetic images for train-
ing the text recognition model does not yield competitive
results.

IV. CONCLUSION

We presented an adversarial model to produce synthetic
images of handwritten word images, conditioned on the se-
quence of characters to render. Beyond the classical use of a
generator and a discriminator to create plausible images, we
employ recurrent layers to embed the word to condition on,
and add an auxiliary recognition network in order to generate
an image with legible text. Another crucial component of
our model lies in balancing the gradients coming from the
discriminator and from the recognizer when training the
generator.

We obtained realistic word images in both French and
Arabic. Our experiments showed a slight reduction in error
rate for the French model trained on combined data.

An immediate continuation of our experiments would be
to train the described model on more challenging datasets,
with textured background for instance. Furthermore, deeper
investigation to reduce the observed phenomenon of style
collapse would be a significant improvement. Another im-
portant line of work is to extend this system to the generation
of line images of varying size.
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