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Abstract—Scene text recognition has attracted a great many
researches due to its importance to various applications.
Existing methods mainly adopt recurrence or convolution
based networks. Though have obtained good performance,
these methods still suffer from two limitations: slow training
speed due to the internal recurrence of RNNs, and high
complexity due to stacked convolutional layers for long-term
feature extraction. This paper, for the first time, proposes
a no-recurrence sequence-to-sequence text recognizer, named
NRTR, that dispenses with recurrences and convolutions en-
tirely. NRTR follows the encoder-decoder paradigm, where the
encoder uses stacked self-attention to extract image features,
and the decoder applies stacked self-attention to recognize texts
based on encoder output. NRTR relies solely on self-attention
mechanism thus could be trained with more parallelization and
less complexity. Considering scene image has large variation in
text and background, we further design a modality-transform
block to effectively transform 2D input images to 1D sequences,
combined with the encoder to extract more discriminative
features. NRTR achieves state-of-the-art or highly competitive
performance on both regular and irregular benchmarks, while
requires only a small fraction of training time compared to the
best model from the literature (at least 8 times faster).

Keywords-No-Recurrence; Self-attention; Modality-
transform block; Faster and better

I. INTRODUCTION

Scene text recognition has drawn increasing interests as
it could extract rich semantic information relevant to scene
and object. Although extensive studies have been carried out,
recognizing scene texts is still challenging due to its high
complexity, e.g., low quality texts, arbitrary orientations,
cluttered backgrounds and complex deformations, see Fig.1.

Current text recognition methods [1], [2], [3], [4], [5], [6]
mainly follow the sequence-to-sequence (seq2seq) paradigm,
where input images and output texts are separately repre-
sented as patch sequences and character sequences. These
methods could be roughly classified into two branches: the
recurrent neural network (RNN) based recognizers and the
convolutional neural network (CNN) based ones.

RNN based text recognizers [1], [3], [2], [6], [7] have

Figure 1: Qualitative results of NRTR. (left) Correct results with texts in
yellow. (right) Incorrect results with labels in yellow and outputs in red.

show great success as they are superior to learn contextual
information and capture strong correlation among different
characters in each text. However, the inherently sequen-
tial nature of RNN precludes computation parallelization,
which brings heavy time and computational burdens when
input image sequence is long, as memory constraints limit
batching across examples. Besides, the training procedure
of RNN is sometimes tricky due to the problem of gradient
vanishing/exploding [8].

Recently, CNN based recognizers [4], [5] are proposed to
accelerate sequential computation. By leveraging CNN in-
stead of RNN, they enable to compute hidden representation
in parallel. However, the number of operations required to
relate two arbitrary signals grows along with their distances.
CNN based methods are difficult to learn dependencies
among distant positions, unless much more convolutional
layers are stacked, which in turn increases the complexity.
Therefore, CNN based methods suffer from the dilemma of
low complexity and satisfactory performance.

In this paper, we propose, for the first time, a no-
recurrence seq2seq scene text recognizer, named NRTR, that
dispenses with recurrences and convolutions entirely. Moti-
vated by recent success of Transformer [9] in natural lan-
guage processing field, NRTR relies solely on self-attention
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mechanism. Specifically, NRTR follows the encoder-decoder
framework, while the encoder uses stacked self-attention
to transform input image sequence to hidden feature rep-
resentation, and the decoder applies stacked self-attention to
output sequence of characters based on the encoder output.
NRTR draws global dependencies between different input
and output positions at once rather than one by one in
RNN, and reduces the whole operation to a constant number
unlike that in CNN. It therefore allows for more computation
parallelization with higher performance.

Besides, unlike [9] that uses 1D sentence as input, scene
text recognizer receives 2D images with large variation in
scales/aspect ratios and backgrounds. We further proposes
a novel modality-transform block as a preprocessing step
before the encoder, to effectively convert 2D image to cor-
responding 1D sequence. Experiments demonstrate that the
specially designed modality-transform block could greatly
influence the whole recognizer performance.

We conduct extensive experiments on standard bench-
marks, including both regular (IIIT5K, SVT, ICDAR2003
and ICDAR2013) and irregular datasets (SVT-P, CUTE80,
ICDAR2015). Without the bells and whistles, NRTR
achieves state-of-the-art or highly competitive performance
in both lexicon-free and lexicon-based cases without any
rectification module, while accompanies with a 8 times faster
training speed than the existing best recognizer.

Our contributions are summarized as follows:
• We analysis, for the first time, the deficiency of current

RNN and CNN based recognizers and propose a no-
recurrence seq2seq model based solely on self-attention
mechanism. Our model could be trained with more
computation parallelization and less complexity.

• We design a modality-transform block to efficiently
map input image to corresponding sequence, combined
with encoder, to extract more discriminative features.

• Our model achieves state-of-the-art performance on
various benchmarks and significantly surpasses compet-
itive recognizers on both accuracy and training speed.

II. RELATED WORK

A. Scene Text Recognition

Traditional text recognizers mainly adopt bottom-up
scheme by first detecting individual characters using slid-
ing window [10], then integrating characters into texts by
dynamic programming or lexicon search [10]. Others adopt
top-down scheme by directly recognizing texts from images.

Recent methods regard text recognition as a sequence
recognition problem where images and texts are represented
as patch and character sequences separately. Shi et al.
[3] combine CNN and RNN to learn spatial dependencies
and applies CTC to translate per-slice prediction into a
label sequence. They also develop an attention-based spatial
transformer network to rectify irregular texts [6]. Besides,

Lee et al. [11] and Cheng et al. [2] both construct attention-
based recurrent network to decode feature sequence and
predict labels recurrently. Instead of RNNs, Gao et al. [4]
and Yin et al. [5] leverage stacked CNN for the pursuit of
greater computational parallelism.

B. Our Method Versus Some Related Works

The most related work to NRTR is Transformer, a recent
development in NLP field. Inspired by Transformer, we uses
solely self-attention mechanism as the fundamental module
but has distinct differences indeed. First, Transformer aims
for machine-based English-to-French translation task but
fails to read texts in natural images. As input text images
generally convey much more information than sentences
in machine translation, text recognizers tend to be more
complicated. Our model relies on the specifically designed
encoder/decoder to efficiently solve this problem. Second,
unlike Transformer that receives 1D sentences as input, we
use 2D images with large variation in scales/aspect ratios
and backgrounds. The locations and geometric features of
scene texts lying in images play a more complex role than
the word location in an 1D sentence. To obtain the most
useful sequence for the encoder, we design a novel modality-
transform block to transform each input image effectively.

III. METHODOLOGY

The architecture of NRTR is depicted in Fig.2. NRTR
consists of three sub-networks: the encoder, the decoder and
the modality-transform block served as the preprocessing.
As the encoder and the decoder are both based on the self-
attention mechanism, we first review it and then describe the
three main sub-networks.

A. Self-Attention Mechanism

Self-attention extracts correlation information between
different input and output positions. Here, we use Scaled
Dot-Product Attention, an effective self-attention module
proposed in [9]. It has three inputs: queries and keys of
dimension dk, and values of dimension dv . Dot product
is performed between the query and all keys to obtain
their similarity. A softmax function is applied to obtain the
weights on the values. Given a query q, all keys (packed into
matrices K) and values (packed into V), the output value is
weighted average over input values:

vout = softmax

(
qKt

√
dk

)
V (1)

where t means element numbers of corresponding inputs and
scalar 1√

dk
is used to prevent softmax into regions where

it has extremely small gradients. Therefore, self-attention
could connect all positions with a constant number and allow
parallelization. More details please refer to [9].
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Figure 2: The overall architecture of NRTR.

B. Modality-Transform Block

Modality-transform block consists of several convolu-
tional layers. For each layer, the stride is set to 2 and channel
number is increased progressively by 2×. The product of
the height and channel number of each layer therefore
remains constant and equal to dmodel, the dimension used
in our encoder-decoder model. More specifically, for each
image with (w0, h0), at the n-th layer, we get (w, h, c) =(
w0/2n,

h0/2n,
(
dmodel/h0

)
× 2n

)
, where c means channel

number. After the final layer, a concatenate operation is
applied to reshape features from different channels into an
input sequence (input step, dim) =

(w0/2n, dmodel

)
, each

element of which has dmodel dimensions. We design various
block architectures to observe their influences on the whole
model. More information is detailed in the experiment part.

Additionally, as NRTR contains no recurrences, we use
positional encoding to indicate each position in sequence:

PE(pos,i) =

{
sin(pos/100002i/dmodel) 0 ≤ i ≤ dmodel/2

cos(pos/100002i/dmodel) dmodel/2 ≤ i ≤ dmodel

(2)
where pos indicates the position in input image sequence and
i indicates the i-th dimension. We choose this function since
for arbitrary fixed offset k, PEpos+k can be represented as a
linear function of PEpos. We get the final input sequence by
adding the positional encoding to the above input sequence.

C. Encoder

The encoder consists of Ne number of connected identi-
cal encoder-blocks (green block in Fig.2), each of which
contains two sub-layers: a multi-head scaled dot-product
attention and a position-wise fully connected network.

The multi-head scaled dot-product attention allows the
encoder to jointly attend to information from different
representation subspaces at different positions. Similar to a

convolutional layer that applies a set of filters to extract var-
ious features, multi-head attention stacks h times scaled dot-
product attention, where h is called the head number. The
entire process of the multi-head scaled dot-product attention
includes three operations. Firstly, each scaled dot-product
attention goes through three different linear projections to
project the queries, keys, and values from the input sequence
to more discriminative representations. Then, the stacked h
times scaled dot-product attentions are performed in parallel,
and finally, their outputs are concatenated and undergo a
linear layer to get the final dmodel-dimensional outputs:

MultiHead (Q,K,V) = Concat (head1, . . . ,headh)W
O

(3)
where,headi = Attention

(
QWQ

i ,KWK
i ,VWV

i

)
(4)

Since Q,K,V have the same dimension of dmodel, the pre-
dictions are parameter matrices WQ

i ∈ <dmodel×dq , WK
i ∈

<dmodel×dk , WV
i ∈ <dmodel×dv and WO

i ∈ <dc×dmodel ,
where dc = h× dv , and we set dq = dk = dv = dmodel.

The position-wise fully connected network consists of two
linear transformations with a RELU activation in between.

FFN (x) = max (0, xW1 + b1)W2 + b2 (5)

where the weights are W1 ∈ <dmodel×dff and W2 ∈
<dff×dmodel , and the bias are b1 ∈ <dff and b2 ∈ <dmodel .
The linear transformations are the same across different
positions, but use different parameters from layer to layer.

Meanwhile, layer normalization and residual connection
are introduced into each sub-layer for effective training.
Given each sub-layer x, the corresponding outputs are:

LayerNorm (x+ Sublayer (x)) (6)

D. Decoder

The decoder generate text sequence based on encoder
outputs and input labels. For each input label, we apply a
learnable character-level embedding to convert per character



to a dmodel-dimensional vector. The resulted vectors com-
bines with the positional encoding to form the decoder input.

The decoder consists of Nd number of connected iden-
tical decoder-blocks (orange block in Fig.2). Similar to the
encoder, the decoder-block is based on the multi-head scaled
dot-product attention and the position-wise fully connected
network, but has two differences. Firstly, due to the auto-
regressive property, a masked multi-head attention is added
to each decoder-block to ensure that the predictions for
position j can only depend on the known outputs prior to
j. We implement this by masking out (setting to −∞) all
values in the input of the softmax which correspond to illegal
connections. Second, the multi-head attention has keys and
values coming from the encoder outputs, and queries coming
from the previous decoder block outputs.

The outputs are transformed to the probabilities for char-
acter classes by a linear projection and a softmax function.

IV. EXPERIMENT

In this section, we describe the standard benchmarks, the
detailed experimental settings and results with comparisons.

A. Benchmark Datasets

IIIT5K [12] contains 3000 text images in test set. Each is
accompanied with a 50-word and a 1k-word lexicons.
SVT [10] is collected from Google Street View and most
images are severely corrupted by noise and blur. It contains
647 text images, each of which has a 50-word lexicon.
ICDAR 2003 (IC03) contains 1065 cropped text images
after data filtering as in [10]. Each image is associated with
a 50-word and a full lexicon as defined in [10].
ICDAR 2013 (IC13) includes texts on sign boards and
objects with large variations. After filtered as done in IC03,
it finally contains 1015 cropped text images in test set.
ICDAR 2015 (IC15) is taken from Google Glasses and
contains plenty of irregular texts. For fair comparison, we
discard the images that contain non-alphanumeric characters
and finally obtain 1922 ones. No lexicon is specified.
SVT-P [13] contains 645 cropped text images captured from
the side-view angles in Google Street View. Each image is
specified with a 50 words lexicon and a full lexicon.
CUTE80 [14] is specially collected for evaluating the per-
formance of curved text recognition. It contains 287 cropped
text images in test set. No lexicon is provided.

B. Implementation Details

NRTR is trained purely on Synth90k [15] and evaluated
on standard benchmarks without any finetuning. In both
training and inference, heights of input images are set to 32
and widths are proportionally scaled. The output consists
of 38 classes, including 26 lowercase letters, 10 digital
numbers, 1 space and 1 end-of-sequence token.

Model Ne Nd dff IIIT5K SVT IC03 IC13

6enc6dec (base) 6 6 1024 85.4 86.8 93.5 92.8
12enc6dec-4096 (big) 12 6 4096 86.5 88.3 95.4 94.7

8enc4dec 8 4 1024 85.7 86.6 93.7 93.9
4enc8dec 4 8 1024 85.2 86.5 93.0 93.2
10enc5dec 10 5 1024 85.9 87.2 93.9 94.2
12enc6dec 12 6 1024 86.2 87.7 94.5 94.2

6enc6dec-2048 6 6 2048 85.9 87.4 94.2 93.9
6enc6dec-4096 6 6 4096 86.3 87.5 95.1 93.9

base model with 2Conv 6 6 1024 85.4 86.8 93.5 92.8
base model with 3Conv 6 6 1024 84.2 86.6 93.7 92.8
base model with 7Conv 6 6 1024 77.4 80.7 89.1 89.5
base model with 2CNNLSTM 6 6 1024 85.5 86.1 94.4 94.9

big model with 2Conv 6 6 1024 86.5 88.3 95.4 94.7
big model with 2CNNLSTM 6 6 1024 84.7 84.8 94.1 93.4

Table I: Exploration of the encoder, the decoder and the modality-transform
blocks on lexicon-free benchmarks.

At training, samples are batched together by approximate
image widths. We use Adam with β1 = 0.9, β2 = 0.98,
ε = 10−9, and vary learning rate according to the formula:

lrate = d−0.5model ·min
(
n−0.5, n · warmup n−1.5

)
(7)

where n represents current step and warmup n (set to
16000) controls over the learning rate first increase then
decrease. In order to prevent over-fitting, we set residual
dropout to 0.1. We train NRTR for about 6 epochs before
convergence and average the last 10 checkpoints for infer-
ence. All the experiments are implemented in Tensorflow
with one Titan X GPU.

C. Ablation Study

We first investigate the configuration of three sub-
networks in NRTR. All experiments are executed with same
training strategy and evaluated under the lexicon-free case.

1) Exploration of the encoder and the decoder: We
explore the encoder-block number Ne, the decoder-block
number Nd and the fully connected inner dimension dff . We
set dmodel = 512, h = 8 and the modality-transform block
with two convolutional layers during these experiments. As
listed in Tab.I, we take the 6enc6dec model as our baseline.
We first keep total block number identical and find that
more encoder blocks achieve better accuracy (8enc4dec vs
6enc6dec, 4enc8dec). Then, we add more blocks and see
that deeper model obtains higher accuracy (12enc6dec vs
8enc4dec, 10enc5dec). We no longer increase Ne and Nd

considering time and memory costs. These two compar-
isons indicate that deeper encoder/decoder could extract
more representation, while image information is tend to be
more complex than target ones (8enc4dec vs 4enc8dec).
We further test different dff and observe that wider inner
dimension is more beneficial to NRTR (6enc6dec-4096 vs
6enc6dec-2048,6enc6dec). Based on the above analysis, we
take the 12enc6dec-4096 as our big model.

2) Exploration of the modality-transform block: We in-
vestigate various architectures and depict two examples in
Fig.3. As listed in Tab.I, more convolutional layers (2Conv
vs 3Conv, 7Conv) lead to a decline in performance, even
a seven-layer convnet used in CRNN [3] and RARE [6].
We conjecture that the loss of detailed information due



Figure 3: Examples of the proposed modality-transform block. (left) The
general CNN block. (right) The CNNLSTM block.

to resolution subsampling outweighs the gain of high-level
semantics. Since the encoder itself has strong feature extrac-
tion ability, we prefer to apply a two-layer convolution in
the block and combine it with the encoder to draw more
discriminative features. Besides, as the newly CNNLSTM
[16] could captures more temporal information by recurrent
connections, we replace CNN with it. Results show an
accuracy boost in our base model, but a little reduction
in our big model. The reason we guess is the redundant
extraction of image information when associates CNNLSTM
with excessive encoder components.

D. Comparisons with the State-of-the-arts

Based on the above analysis, we construct the final NRTR
by setting Ne = 12, Nd = 6, dff = 4096 and the modality-
transform block with two convolutional layers. Since recent
methods are trained with both Synth90k [15] and SynthText
[17], for fair comparison, we further train NRTR on two
synthetic datasets. Quantitative results are listed in Tab.II.

1) Accuracy: For regular benchmarks, NRTR shows an
accuracy boost and averagely beats previous best recognizers
[2], [1] in both lexicon-free and lexicon-based cases. Specifi-
cally, NRTR obtains 0.9% on IIIT5K with 1k lexicon, 1.5%
on SVT and 0.2% on IC03 with Full lexicon, only litter
decline on IIIT5K (0.3%) with50 lexicons. In the lexicon-
free case, NRTR surpasses [1] on all benchmarks.

Moreover, we test NRTR on irregular benchmarks and
show results in Tab.III. Note that comparative models are
all designed specially for irregular texts. NRTR does not
perform any special operation but still shows great tolerance
on handling irregular texts, which further illustrates its strong
ability in text feature extraction.

2) Speed: We give training speed of these approaches in
Tab.II. Only a few methods report their training time. For
each epoch, Shi et al.[6] costs 16 hours/Titan X and Cheng
et al.[2] needs 40 hours/Tesla M40. Both need 3 epochs
before converging. The best previous method Bai et al.[1]
takes more time (41 hours per epoch on P40). NRTR takes
merely 5.0 hours per epoch and therefore is at least 8 times
faster than the existing best recognizer. The inference speed

Methods
Regular Text Training Time

IIIT5K SVT IC03 IC13
h/GPU

50 1k None 50 None 50 Full None None

ABBYY[10] 24.3 - - 35.0 - 56.0 55.0 - - -
Wang et al.[10] - - - 57.0 - 76.0 62.0 - - -
Mishra et al.[12] 64.1 57.5 - 73.2 - 81.8 67.8 - - -
Goel et al.[18] - - - 77.3 - 89.7 - - - -
Bissacco et al.[19] - - - 90.4 78.0 - - - 87.6 -
Alsharif et al.[20] - - - 74.3 - 93.1 88.6 - - -
Almázan et al.[21] 91.2 82.1 - 89.2 - - - - - -
Yao et al.[22] 80.2 69.3 - 75.9 - 88.5 80.3 - - -
Jaderberg et al.[23] - - - 86.1 - 96.2 91.5 - - -
Su and Lu et al.[24] - - - 83.0 - 92.0 82.0 - - -
Jaderberg et al.[25] 97.1 92.7 - 95.4 80.7 98.7 98.6 93.1 90.8 -
Lee et al.[11] 96.8 94.4 - 96.3 80.7 97.9 97.0 88.7 90.0 -
Shi et al.[6] 96.2 93.8 81.9 95.5 81.9 98.3 96.2 90.1 88.6 16/Titan X
Shi et al.[3] 97.6 94.4 78.2 96.4 80.8 98.7 97.6 89.4 86.7 -
Ghosh et al.[26] - - - 95.2 80.4 95.7 94.1 92.6 - -
Yin et al.[5] 98.9 96.7 81.6 95.1 76.5 97.7 96.4 84.5 85.2 -
Gao et al.[4] 99.1 97.9 - 97.4 82.7 98.7 96.7 89.2 88.0 -
Cheng et al.∗[2] 99.3 97.5 87.4 97.1 85.9 99.2 97.3 94.2 93.3 40/M40
Bai et al.∗[1] 99.5 97.9 88.3 96.6 87.5 98.7 97.9 94.6 94.4 41/P40

Our proposed NRTR 99.2 98.4 86.5 98.0 88.3 98.9 97.9 95.4 94.7 2.8/Titan X
Our proposed NRTR∗ 99.2 98.8 90.1 98.1 91.5 98.9 98.0 94.7 95.8 5.0/Titan X

Table II: Accuracies (%) on regular benchmarks. ”50”, ”1k” and ”Full”
are lexicon sizes. ”None” means the lexicon-free case. ’h/GPU’ indicates
training time cost per epoch on their GPUs. Note that the FLOPS is P40 >
M40 ≈ T itanX . ∗ means training with both Synth90k and SynthText.

Methods
Irregular Text

IC15 SVT-P CUTE80

None 50 None None

AON∗[27] 68.2 94.0 73.0 76.8
Aster∗[28] 76.1 - 78.5 79.5
Liao et al.∗[29] - - - 79.9
SAR[30] 78.8 95.8 86.4 89.6

Our proposed NRTR∗ 79.4 94.9 86.6 80.9

Table III: Accuracies (%) on irregular benchmarks. ∗ means training with
both Synth90k and SynthText.

of NRTR is approximately 0.03s per image, compared to
0.11s in [1] and 0.2s in [6].

3) Visualization: We show both correct and incorrect
examples of NRTR in Fig.1. As can be seen, NRTR could
recognize extremely challenging scene images, e.g., low
resolution, complex geometric deformations and cluttered
background. Some are even hard to human. We carefully
analyze incorrect results and split them into three types
according to caused reasons. First, texts are severely oc-
cluded by other objects, e.g., tree or barrier in example of
’redwood’. Second, characters that look similar are mixed,
like ’i’ in image of ’valerie’ and its fault result ’l’. Third, text
orientation are seriously curved, e.g, nearly ninety degrees
to the horizontal plane. These failed examples also highlight
future research directions of the proposed NRTR.

V. CONCLUSIONS

This paper points out two problems lying in current
RNN/CNN-based scene text recognizers and proposes a no-
recurrence model aiming at increasing computation par-
allelization and performance. Experiments demonstrate its
superiority on accuracy and training speed. We intend to
extend the idea to end-to-end text spotting system.
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