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Abstract—LSTM and attention mechanism have been widely
used for scene text recognition. However, existing LSTM-based
recognizers usually convert 2D feature maps into 1D space
by flattening or pooling operations, resulting in the neglect of
spatial information of text images. Additionally, the attention
drift problem, where models fail to align targets at proper feature
regions, has a serious impact on the recognition performance of
existing models. To tackle the above problems, in this paper,
we propose a scene text Recognizer with Encoded Location and
Focused Attention, i.e., ReELFA. Our ReELFA utilizes one-hot
encoded coordinates to indicate the spatial relationship of pixels
and character center masks to help focus attention on the right
feature areas. Experiments conducted on benchmark datasets
IIIT5K, SVT, CUTE and IC15 demonstrate that the proposed
method achieves comparable performance on the regular, low-
resolution and noisy text images, and outperforms state-of-the-art
approaches on the more challenging curved text images.

Index Terms—attention LSTM; encoded location; center
masks; attention drift.

I. INTRODUCTION

Text is an important way to convey information and knowl-
edge. Scene text recognition has been studied extensively since
1990s due to its great application potentials, such as image
retrieval, automatic navigation, assistance for the blind and car
plate recognition etc. Challenges of this task mainly arise from
poor image qualities (including low resolution, blur, skew,
uneven illumination, etc.) and unconstrained text appearances
(in terms of sizes, fonts, colors, directions, backgrounds, etc.).
In the past decades, though many efforts have been made,
scene text recognition is still unsolved and attracts numerous
attentions from research community.

Currently, leading solutions to scene text recognition are
all based on deep learning techniques, among which Con-
volutional Neural Network (CNN), Long Short-Term Mem-
ory (LSTM), Connectionist Temporal Classification (CTC)
and attention-based decoders are most widely used [1]–[8].
Specifically, CNN and LSTM are usually employed to extract
deep features from input images and perform encoding or
prediction, while CTC and attention-based decoders are the
most popular sequential transcription models.

However, LSTM is an idea borrowed from speech recogni-
tion and machine translation, where the inputs are 1D vectors,
rather than 2D feature maps. Therefore, to adapt LSTM to
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Fig. 1. Convert 2D feature maps into 1D space to adapt LSTM to scene text
recognition

scene text recognition, 2D feature maps have to be down-
sampled or flattened into 1D space, as shown in Fig. 1, which
severely damages the valuable spatial correlation information
of text images. As claimed in [9], LSTM-based recognizers
can only achieve good performance on horizontal or nearly
horizontal texts. As for curved or skewed text, the performance
is far from being satisfactory. On the other hand, for the se-
quential transcription models, CTC takes the prediction results
of individual frames as input and searches for the optimal
sequential outputs while considering all the possible paths
via a forward-backward algorithm. By contrast, the attention-
based decoder directly produces sequential outputs from in-
put features via auto-regressive connections, and as claimed
in [8], has achieved better performance than CTC. Therefore,
the state-of-the-art approaches usually take attention-Gated
Recurrent Units (attention-GRU) or attention-LSTM as their
decoders. However, as pointed out in [2], the attention-based
decoder suffers from the ‘attention drift’ problem, i.e., models
cannot align targets at proper feature regions due to poor image
quality, complex backgrounds or crowed character appearance.

Showing the contributions of the work in this paper, we
design an efficient scene text recognizer with encoded lo-
cation and focused attention, i.e., ReELFA, to tackle the
aforementioned problems. Inspired by Wojna et al. [8], when
flattening 2D feature maps into 1D space, we attach the
one-hot encoded coordinates for individual pixels to indicate
their spatial relationships. Besides, at the CNN-based feature
extraction stage, we embed a second decoder branch to learn
the character center masks, aiming to assist the subsequent



module to focus their attentions at proper feature areas.
The rest of the paper is organized as follows. Section II

briefly introduces the existing scene text recognizers. Sec-
tion III describes the proposed approach in details. The de-
signed experiments and conclusion are drawn in Sections IV
and V, respectively.

II. RELATED WORKS

Traditional methods usually address the scene text recog-
nition issue from a bottom-up perspective, namely detecting
and recognizing single characters with sliding window-based
or connected component-based techniques, followed by in-
tegrating individual characters into words with consideration
of language models [10], [11]. In these methods, handcrafted
features and classifiers like support vector machine (SVM) are
widely used. Ye et al. [12] performed a comprehensive review
for the methods following this fashion.

Around 2015, deep learning was introduced to the field
of computer vision and surpassed traditional methods signifi-
cantly in a variety of tasks. Since then, recognizers based on
deep learning techniques have become the dominant solutions
to scene text recognition. At first, CNN was simply used as
character classifier or word classifier [13], [14] in a group
of Deep Convolutional Neural Network (DCNN) recognizers
because of its extraordinary representation ability and conve-
nient end-to-end trainable structure. Afterwards, inspired by
sequence-to-sequence prediction tasks such as machine trans-
lation and speech recognition, the Recurrent Neural Network
(RNN)-based networks emerged and became popular.

For instance, CRNN [4] utilized CNN for deep feature
exaction and bi-LSTM for frame-level prediction. Then, a
CTC-based sequential transcription module was assembled
to produce sequential outputs. R2AM [15] also followed the
same idea, and exploited a combination of recursive CNN
and recurrent CNN to capture longer data dependencies when
extracting deep features with CNN. Though CRNN and R2AM
outperformed DCNN recognizers by a large margin, they were
not capable of handling irregular texts (curved or skewed texts)
well. To tackle this problem, RARE [5] employed a Spatial
Transformer Network (STN) to rectify input images into
more ‘readable’ ones before feeding them into the followed
recognizer. The same as CRNN, CNN and bi-LSTM were
also used in RARE, but instead of frame-level prediction,
the bi-LSTM in RARE was employed to further encode
frames into feature vectors because it leveraged attention-
GRU as its sequential transcription model, which directly
generated sequential predictions from features. Inspired by
RARE, STN-OCR [16] also took advantage of STN, but for
a different purpose, i.e., sampling potential text regions from
input images.

Recently, Cheng et al. [2] raised the problem of ‘attention
drift’ and pointed out that it was the bottleneck of existing
attention-based recognizers. They designed a Focusing Atten-
tion Network (FAN) to address this issue and improved the
recognition performance significantly. Additionally, Cheng et

al. [3] also proposed another recognizer named AON for irreg-
ular text recognition. AON extracted horizontal, vertical and
character placement features from input images, and employed
a filter gate to filter out irrelevant features before feeding
them into the following attention based decoder. SqueezedText
proposed in [17] was a real-time scene text recognizer that
utilized binary convolutional encoder-decoder network (B-
CEDNet) to alleviate the computational burden. Firstly, C
(number of character classes) salience maps was generated by
the B-CEDNet. Then, thresholding and binary morphologic
filtering were performed to obtain character sequences, which
were fed into a Bi-RNN network later to produce sequential
outputs. As we can see, so many recognizers have relied on
LSTM. As aforementioned, these models neglect the spatial
correlation information of 2D text images, so they cannot
handle the irregular text well. To address this issue, Liao et
al. [9] proposed a network named Character Attention Fully
Convolutional Network (CA-FCN), which produced salience
maps from 2D feature maps. Finally, the sequential outputs
were inferred from these salience maps with some empirical
rules. CA-FCN also calculated attention maps to highlight the
foreground and weaken the background to further boost the
recognition performance.

In this work, by considering the drawback of current LSTM-
based and attention-based recognizers, we propose ReELFA,
which sequential transcription module sequentially decodes
the outputs from deep features, one-hot encoded location and
character center masks. More details of the proposed network
are presented next.

III. METHODOLOGY

A. Overview

As illustrated in Fig. 2, our proposed network consists of
two parts, i.e., an encoder-decoder feature extraction module
and an attention-LSTM-based sequence transcription module.
Inspired by [9], the feature extraction module takes VGG-16
as its backbone network and is assembled with two decoder
branches: one is used as normal to extract deep features from
input images, and the other is specially designed to learn
character center masks, which are supposed to help subse-
quent module to focus attentions at proper areas. Afterwards,
together with one-hot encoded coordinates, the extracted deep
features and character center masks are fed into the attention-
LSTM-based decoder to produce final sequential predictions.

B. Structure of the Proposed ReELFA

Since 1D feature vectors are usually with poor representa-
tion ability for non-horizontal texts, in this work, we generate
2D feature maps with a fully convolutional encoder-decoder
network. Motivated by [9], we take the VGG-16 without
pooling layers at the stage-4 and stage-5 as our backbone
network, and embed two deformable convolution layers at
the decoder stage, given their flexible receptive fields [18].
Assuming the size of input images is H ×W × 3, our final
generated feature maps, indicated by F in Fig. 2, are of size
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Fig. 2. The structure of our proposed ReELFA network
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2 × C, where H , W and C denote the height, width

and number of channels of the feature maps, respectively.
Character Center Masks: In [9] and [19], in order to

highlight the relevant pixels and suppress the irrelevant pixels,
attention maps (character center masks) are generated at the
encoder stage and fused with feature maps with the way
shown in Eq. 1, where A denotes the attention map and ⊗
means pixel-wise multiplication. In fact, this idea can also
be leveraged to tackle the ‘attention drift’ problem because
the centers of characters are exactly where the attentions
should be placed. Towards this end, we produce character
center masks to help focus attentions at proper areas. However,
in contrast to [9] and [19], we generate only one group of
masks, indicated by M in Fig. 2, via a second decoder branch,
rather than multiple groups of masks at the low-level encoder
stage. In addition, in our experiments, we find that directly
concatenating feature maps F and center masks M is able to
achieve better performance and faster convergence speed than
pixel-wise multiplication. Therefore, instead of using Eq. 1,
Eq. 2 is applied to combine F and M in our work, where ⊕
is the concatenation operation.

Fo = F ⊗ (1 +A) (1)

Fo = F ⊕M (2)

One-hot Encoded Location: LSTM takes sequential fea-
ture vectors as input, thus 2D feature maps have to be
flattened into 1D space before proceeding to the LSTM-based
modules, so the spatial relationships of pixels are disturbed.
To retain such important information, inspired by Wojna et
al. [8], we propose to utilize one-hot encoded coordinates
to make the LSTM ‘location aware’. As shown in Fig. 3,
where fk, ck and mk represent the extracted features, one-hot

encoded coordinates and character center masks, respectively,
the encoded coordinates ck of pixel P1 is closer to that of
adjacent pixels P2 and P3 when comparing with P4, who has
longer distance to P1 than other pixels.

Attention-LSTM-based Sequence Transcription: At the
end of our proposed network, an attention-LSTM-based se-
quence transcription model is exploited to generate target
sequential outputs (y1, y2, ..., yN ) from the input feature vec-
tors [f1, f2, ..., fK ], the center masks [m1,m2, ...,mK ] and
the encoded coordinates [c1, c2, ..., cK ], where fk ∈ RL,
mk ∈ RH and ck ∈ RT , and K is the length of sequential
feature vectors. The procedure can be formulated in Eq. 3 as:

ut =

K∑
k=1

αt,k(fk + ck +mk)

xt =Wyyt−1 +Wu1ut−1

(ot, st) = LSTM(xt, st−1)

õt = softmax(Woot +Wu2ut)

ỹt = argmax
y

õt(y),

(3)

where ut and ỹt are the weighted features and prediction
results at time t, and xt, ot and st denote the inputs, outputs
and states of the LSTM at time t. yt−1 is the ground truth
yt−1 at the training stage equals to the prediction result ỹt−1

at the inference stage. The attentions of the kth feature vector
at time t are denoted by αt,k, and can be derived from Eq. 4
by:

at,k = V T
a tanh(Wsst +Wffk +Wcck +Wmmk)

αt = softmaxk(at,k).
(4)

C. Training
From Fig. 2 we can see that the loss function L of our

proposed ReELFA consists of two parts, i.e., the sequence
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Fig. 3. Illustration of one-hot encoded location.

transcription loss Ls and the mask loss Lm, as expressed in
Eq. 5, where ỹ and m̃ are the predicted sequential label and
mask, while ŷ and m are the ground truth label and mask. To
regularize the proposed model and make it more adaptable,
when calculating Ls, the original sequential label yOneHot is
smoothed to ŷ with the method proposed in [20] and described
in Eq. 6, where the label smoothing weight ε is set to 0.1 in
our experiments. As for the mask loss Lm, we calculate it with
Eq. 7 when setting the foreground and background pixels to
be 1 and 0, respectively.

L = Ls(ŷ, ỹ) + Lm(m, m̃), (5)

ŷ = (1.0− ε) ∗ yOneHot + ε ∗ ( 1

Nclass
), (6)

Lm = 0.01 ∗ {1− 2 ∗ [
∑

(m⊗ m̃)∑
m+

∑
m̃
]}. (7)

Additionally, the ground truth of character center masks are
required to optimize the proposed network. Assuming that b =
(x, y, w, h) represents the bounding box of an character, where
(x, y), w and h denote the center coordinate, width and height
of the bounding box, we shrink b to b = (x, y, r × w, r × h)
with a ratio of r (set to 0.25 in our experiments) to obtain the
ground truth of individual masks.

IV. EXPERIMENTS

In this section, we evaluate the performance of our pro-
posed ReELFA on both regular and irregular text. Word-level
accuracy is used as the measurement of performance, just as
other compared approaches did. Related datasets, implemen-
tation details and comparison results with the state-of-the-art
approaches are described in details below.

A. Datasets

We train the proposed ReELFA on the synthetic dataset
SynthText [21] without fine-tuning on individual real-world
datasets, and evaluate the corresponding performance on four

widely used benchmarks named IIIT5K, SVT, IC15 and
CUTE.

• SynthText is a synthetic dataset created by Gupta et
al. [21] for scene text detection. It contains 800,000
training images, from which about 7 million word images
can be cropped for the recognition task. Bounding boxes
and transcriptions are provided for text presented in scene
images of this dataset.

• IIIT5K is provided by Mishra et al. [22]. This dataset
consists of 3,000 test images obtained from the web, and
for individual images, one 50-word lexicon and one 1000-
word lexicon are provided.

• SVT is collected from the Google Street View by Wang
et al. [23]. Totally, 647 low-resolution and noisy images
are included.

• IC15 is short for ICDAR 2015 dataset [24]. 2,077
cropped scene text images, including 200 irregular ones
(arbitrary-oriented, curved or perspective), are included
in this dataset.

• CUTE is proposed in [25] and only contains 288 images,
but most of them are severely curved. Therefore, it is
more challenging when compared with other datasets.

B. Implementation Details

In this work, all the input images are resized to 64 × 256
while preserving the aspect ratio. Adam optimizer is adopted
to optimize the proposed network with an initial learning rate
of 1e-4 and a batch size of 32. The learning rate is decreased
with a decay factor of 0.5 per epoch, and the training will be
terminated once the learning rate is below 1e-6. Additionally,
the number of LSTM units is set to 256 and the LSTM values
are clipped to 10. The maximum length of output sequence
is set to 20, including one Start token and one EOS token.
Totally, we have 39 character classes in our experiments, i.e,
26 alphabets, 10 digitals, 1 Start token, 1 EOS token and 1
special token for other symbols.

C. Evaluation of the Proposed Recognizer

We compare our proposed ReELFA with the state-of-the-art
approaches on the aforementioned regular text dataset IIIT5K,
low-resolution and noisy text dataset SVT and IC15, as well
as the curved text dataset CUTE. Comparison results are listed
in Table I.

Since the existing state-of-the-art networks are trained with
different data, readers should keep in mind that the Synth-
Text [21] dataset learns its text color palette from word images
cropped from IIIT5K. By contrast, another widely used 4
million synthetic text image dataset provided by Jaderberg et
al. [26] is generated with a 50k-word lexicon derived from the
ICDAR and SVT datasets, and blended with cropped word im-
ages randomly sampled from these two datasets. Therefore, the
recognition performance on IIIT5K will benefit from the usage
of SynthText dataset, while Jaderberg’s [26] 4 million training
samples will contribute more to the recognition performance
on ICDAR and SVT datasets.



TABLE I
RESULTS OBTAINED WITH DIFFERENT METHODS ON VARIOUS DATASETS. ‘IIIT5K NONE’ INDICATES THAT NO LEXICON IS USED, WHILE ‘IIIT5K 50’

AND ‘IIIT5K 1K’ MEANS LEXICON WITH 50 AND 1K WORDS ARE USED RESPECTIVELY. ‘OURS NOEL’ AND ‘OURS NOFA’ REPRESENT OUR MODEL
WITHOUT THE ENCODED LOCATION AND FOCUSED ATTENTION RESPECTIVELY. ‘*’ MEANS THE WORD IMAGES CONTAINING NON-ALPHANUMERIC

CHARACTERS ARE REMOVED FROM THE TEST DATASET.

Methods IIIT5K None IIIT5K 50 IIIT5K 1k SVT CUTE IC15
FAN [2] 87.4 99.3 97.5 85.9 63.9 66.2
AON [3] 87.0 99.6 98.1 82.8 76.8 68.2

CRNN [4] 78.2 97.6 94.4 80.8 - -
(Gao et al.)* [1] 83.6 99.1 97.2 83.9 - -
(Gao et al.)* [19] 81.8 99.1 97.9 82.7 - -

RARE [5] 81.9 96.2 93.8 81.9 59.2 -
STN-OCR* [16] 86.0 - - 79.8 - -

SqueezedText(binary) [17] 86.6 96.9 94.3 - - -
SqueezedText(full-precision) [17] 87.0 97.0 94.1 - - -

R2AM [15] 78.4 96.8 94.4 80.7 - -
CA-FCN [9] 92.0 99.8 98.9 82.1 78.1 -
Ours noEL 87.8 99.3 98.1 78.2 75.7 66.6
Ours noFA 89.8 99.2 97.9 79.8 81.6 66.9

ReELFA (proposed) 90.9 99.2 98.1 82.7 82.3 68.5

Comparison with Attention-LSTM-based Models:
Among the methods listed in Table I, RARE [5], AON [3]
and FAN [2] use the combination of bi-LSTM and attention
mechanism in the sequence transcription module. FAN and
AON are more recent works than RARE, while RARE and
AON are specially designed for irregular text recognition.
Additionally, a focusing network is designed in FAN to tackle
the problem of ‘attention drift’. Moreover, our ReELFA and
RARE [5] are trained with only SynthText dataset, while
FAN and AON are trained with both SynthText dataset and
Jaderberg’s dataset [26].

From Table I we can see that RARE [5] is significantly
surpassed by FAN [2], AON [3] and our proposed ReELFA
on all datasets, and FAN [2] achieves the best performance
on the SVT dataset. However, on the regular and curved text
datasets IIIT5K and CUTE, our proposed ReELFA achieves
the best performance, even without assistance from Jaderberg’s
dataset [26]. Especially, on the CUTE dataset, we get an
accuracy of 82.3%, which is 17.4% and 5.5% higher than FAN
and AON, respectively. Therefore, our proposed ReELFA is
more robust to curved text recognition. As for the IC15 dataset,
AON [3] has obtained the best performance of 68.2%, which
is slightly better than our 67.6%. But it is notable that FAN
and AON has taken the advantage of the prior knowledge of
ICDAR and SVT datasets by leveraging Jaderberg’s 4 million
samples [26].

Comparison with Other Models: Methods without using
attention-LSTM also achieve promising performance in the
field of scene text recognition, as shown in Table I. In these
methods, R2AM [15], CRNN [4], CA-FCN [9] and both Gao’s
methods [1], [19] are trained with SynthText dataset, while
SqueezedText [17] and STN-OCR [16] are trained with text
images generated by new rending engines.

Apparently, CA-FCN [9] and our proposed ReELFA are on
the first and second places on the IIIT5K dataset with accu-
racies of 92.0% and 90.9%, respectively, which outperform
other methods significantly. For the low-resolution and noisy

dataset SVT, even though Gao et al. [1] reported a higher
accuracy of 83.9%, we cannot say their model is more robust
than CA-FCN [9] and ours because their model is evaluated
on an incomplete dataset, where word images containing non-
alphanumeric characters or with less than three characters
are removed. Finally, on the challenging curved text dataset
CUTE, our ReELFA achieves the best performance of 82.3%,
which is 4.2% higher than CA-FCN [9].

The Importance of EL and FA: To highlight the impor-
tance of our proposed encoded location and focused attention
modules, we also conduct ablation experiments on two base-
line models. The first one named ‘Ours noEL’ in Table I is the
version without encoded location module and the second one
named ‘Ours noFA’ is the version without focused attention
module. The rest of these two baseline models’ configurations
are just the same as our ReELFA.

From Table I, we can see that when the one-hot encoded
location module is removed, the accuracies on IIIT5K, SVT,
CUTE and IC15 datasets have decreased by 3.1% (from 90.9%
to 87.8%), 4.5% (from 82.7% to 78.2%), 6.6% (from 82.3%
to 75.7%) and 1.9% (from 68.5% to 66.6%), respectively. The
significant performance degradation evidences the importance
of spatial correlation information to scene text recognition,
especially to curved text recognition, and the effectiveness of
our proposed strategy.

Moreover, when the attention focusing module is removed,
the performance on IIIT5K, SVT, CUTE and IC15 datasets
has dropped by 1.1% (from 90.9% to 89.8%), 2.9% (from
82.7% to 79.8%), 0.7% (from 82.3% to 81.6%) and 1.6%
(from 68.5% to 66.9), respectively. Although the performance
gap between ‘Ours noFA’ and our proposed ReELFA is not
as large as that between ‘Ours noEL’ and ReELFA, the
recognition accuracies on both regular and irregular texts are
improved to certain degrees when the focused attention module
is deployed. Therefore, the current attention-based models
do suffer from the ‘attention drift’ problem, which can be
alleviated by focusing attentions on the centers of characters.



V. CONCLUSION

LSTM and attention mechanism have been widely used in
scene text recognition. However, existing LSTM-based models
have often neglected the spatial correlation information of 2D
text images, and the attention-based models suffer from the
‘attention drift’ problem. In this paper, we have proposed a
focused attention module and an encoded location module
to tackle these problems. Our proposed model, named as
ReELFA, has been evaluated on both regular and irregular
datasets, i.e., IIIT5K, SVT, IC15 and CUTE. The experimental
results have demonstrated that the proposed recognizer is
able to achieve comparable performance on the regular, low-
resolution and noisy text datasets, and outperforms the state-
of-the-art approaches significantly on the more challenging
curved text dataset.
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