
TedEval: A Fair Evaluation Metric for Scene Text Detectors

Chae Young Lee∗, Youngmin Baek∗, and Hwalsuk Lee†

Clova AI Research, NAVER Corp.
{cylee.ai, youngmin.baek, hwalsuk.lee}@navercorp.com

Abstract

Despite the recent success of scene text detection meth-
ods, common evaluation metrics fail to provide a fair and
reliable comparison among detectors. They have obvious
drawbacks in reflecting the inherent characteristic of text
detection tasks, unable to address issues such as granu-
larity, multiline, and character incompleteness. In this pa-
per, we propose a novel evaluation protocol called TedEval
(Text detector Evaluation), which evaluates text detections
by an instance-level matching and a character-level scor-
ing. Based on a firm standard rewarding behaviors that re-
sult in successful recognition, TedEval can act as a reliable
standard for comparing and quantizing the detection qual-
ity throughout all difficulty levels. In this regard, we believe
that TedEval can play a key role in developing state-of-the-
art scene text detectors. The code is publicly available at
https://github.com/clovaai/TedEval.

1. Introduction
Along with the progress of deep learning, the perfor-

mance of scene text detectors have remarkably advanced
over the past few years [13, 15, 12]. However, providing
a fair comparison among such methods is still an ongoing
problem, for common metrics fail to reflect the intrinsic na-
ture of text instances [2, 9]. One example is the IoU (Inter-
section over Union) metric [4]. Adopted from the object de-
tection Pascal VOC, it is designed to detect bounding boxes
containing a single object and thus is not suitable to detect
text instances consisting of multiple characters. Another ap-
proach is DetEval, a metric specifically designed to evaluate
text bounding boxes [14]. However, its unreasonably lenient
criteria accepts incomplete detections that are prone to fail
in the recognition stage. Recently, Liu et al has proposed
a new metric named TIoU (Tightness-aware IoU), which
adds the tightness penalty to the IoU metric [9]. This ap-
proach can be problematic in that it relies on the quality of
the Ground Truth (GT), which is often inconsistent.
∗Authors contributed equally.
†Corresponding author.

(a) Granularity (IoU=0.0) (b) Completeness (DetEval=1.0)

Figure 1: Examples of unfair evaluations. (a) rejected by
IoU but should be accepted. (b) accepted by DetEval but
should be penalized. Red: GT. Blue: detection.

To solve these issues, a fair evaluation metric for text
detectors must account for:

• Granularity Annotation tendencies of public datasets
vary greatly due to the lack of gold standard on bound-
ing box units. Merging and splitting detection results
to match GT should be allowed to a reasonable extent.

• Completeness An instance-level match may accept in-
complete detections that have missing or overlapping
characters. A penalty must be given so that scores re-
flect whether the detection contains all required char-
acters.

In the proposed metric called TedEval (Text detection
Evaluation), we evaluate text detections via an instance-
level matching policy and a character-level scoring policy.
Granularity is addressed by non-exclusively gathering all
possible matches of one-to-one, one-to-many, and many-
to-one. Afterwards, instance-level matches are scored while
penalty is given to missing and overlapping characters. To

1

ar
X

iv
:1

90
7.

01
22

7v
1

 [
cs

.C
V

]
 2

 J
ul

 2
01

9

https://github.com/clovaai/TedEval

this end, we use pseudo character centers made from word
bounding boxes and their word lengths.

The main contributions of TedEval can be summarized
as follows. 1) TedEval is simple, intuitive, and thus easy to
use in a wide-range of tasks. 2) TedEval rewards behaviors
that are favorable to recognition. 3) TedEval is relatively
less affected by the quality of GT annotation. In this regard,
we believe that TedEval can play a key role in developing
state-of-the-art scene text detectors.

2. Methodology

Our evaluation metric performs the matching and the
scoring of detectors through a separate policy. The matching
process follows previous metrics, pairing bounding boxes
of detections and GTs in an instance-level. On the other
hand, the scoring process calculates recall and precision at
the character-level without character annotations.

2.1. Matching process

Adopted from DetEval, our evaluation protocol mea-
sures area recall and area precision to pair GTs and detec-
tions in the manner of not only one-to-one but also one-to-
many and many-to-one. To prevent side effects of address-
ing granularity, TedEval implements three major changes
including (1) non-exclusive matching, (2) change in the area
recall threshold, and (3) multiline prevention.

The first change directly relates to granularity. Account-
ing for granularity opens the possibility that a single in-
stance (from either GT or detection) may satisfy multiple
matches. DetEval assumes that the first match is the best
match, discarding subsequent matches. This causes mis-
match among one-to-one and many matches. A simple so-
lution is to neither prioritize nor discard redundant matches.
We accept all viable matches, setting Mij of the binary ma-
trix from Table 1 as 1 whenever a match between an in-
stance of GT Gi and detection Dj occurs. When redundant
matches occur, Mij is overwritten not accumulated.

Note that the threshold for area recall changed from 0.8

D1 ... Dj Recall

G1

c11

M11

m1
11

M1j

m1
1j

R1
c21 m2

11 m2
1j

...
c
l1
1 m

l1
11 m

l1
1j

...

Gi

c1i

Mi1

m1
i1

Mij

m1
ij

Ri
c2i m2

i1 m2
ij

...
c
li
i m

li
i1 m

li
ij

Precision P1 ... Pj

Table 1: Visualization of the matching table with notation.

Figure 2: Visualization of multiline computation. The angle
θ satisfies Eq. 2 and thus this match is rejected.

to 0.4. This reflects the interaction between the matching
process and the scoring process introduced in the next sec-
tion. Since the latter penalizes the incompleteness of detec-
tion to the given GT, namely recall, a lenient threshold in
the matching process is fair.

Although our instance matching policy works in a fairly
generous way, there is a case when the match itself should
be prevented. Multiline is a special case of many match in-
volving multiple lines of texts and must be rejected by iden-
tifying it in the matching stage. It involves not only many-
to-one match where one detection contains multiple lines
but also one-to-many match where multiple detections of
different lines are matched to one GT.

As shown in Fig. 2, we use angles to identify multiline.
Firstly, defineB as a set of bounding boxes in the many side
of a many match. Then we compute two pivotal points for
all bounding boxes in B by:

pi1 = mean(vi1, vi4)

pi2 = mean(vi1, vi2, vi3, vi4)
(1)

where vij means the jth vertex (x, y) of Bi. Note that GT
must assume the form of four vertices in a clockwise order
starting from the top left point in regard to the orientation
of the word.

The angle θ between B1 and B2 is then computed by
turning from p11 to p12 around p22. While computing every
possible angle among B, we reject the match when any one
of it is:

|min(θ, 180− θ)| ≥ 45◦. (2)

The threshold is obtained experimentally.
In addition, instead of selecting pivotal points as points

on the edges, pi1 is the point on the left edge and pi2 is
the center point of Bi. This is to make our algorithm robust
against the width difference and distance between bounding
boxes, which can confuse the magnitude of the angle.

2.2. Scoring process

Based on instance-level matches from Section 2.1, we
calculate the recall score ofGi and the precision score ofDj

in a character-level. To overcome the lack of character-level
annotation in most public datasets, we compute Pseudo
Character Centers (PCC) from word-level bounding boxes

Figure 3: An example of computing PCC of Gi. Red dot:
PCC. Red dash: pseudo character box. Grey: Gi.

and their word lengths. As shown in Fig. 3, a set of PCC of
Gi is computed by:

ci = {(xi +
wi

li
(k − 1

2
), yi +

hi
li

(k − 1

2
))}lik=1 (3)

where xi and yi are the x, y coordinates of pi1 from Eq. 1,
wi and hi are ∆x and ∆y between pi1 and the other edge,
and li is the word length. From the matching table in Ta-
ble 1, mij is a binary matrix whose element mk

ij is set to 1
when Dj contains cki .

For recall calculation, we perform a row-wise summa-
tion of character matching scores mk

i :

ski =
∑
j

mk
ij . (4)

Since it is critical that each of the characters is detected only
once, the condition of a correct character match is ski = 1.
Contrastingly, mismatch cases include ski = 0 indicating
missing characters and ski > 1 for overlap characters. The
recall RGi

is the number of correct character matches over
the text length li:

RGi =

∣∣∣{ski = 1}lik=1

∣∣∣
li

. (5)

On the other hand, the precision PDj
is the number of cor-

rect character matches over the sum of text lengths of GTs
matched with Dj :

PDj
=

∑
i∈Mj

∑
km

k
ij∑

i∈Mj
li

(6)

where Mj is {x|Mxj = 1}. Finally, Recall and Precision
can be obtained by

Recall =

∑|G|
i=1RGi

|G|
,

P recision =

∑|D|
j=1 PDj

|D|
.

(7)

Examples of our scoring process are in the Appendix.
Since scoring occurs column- and row-wise by instance,

our scoring policy does not score the same instance multi-
ple times even if it is involved in multiple matches. It can

also differentiate a complete match from a partial match by
penalizing missing or overlapping characters. This differs
from instance-based scoring, which gives a binary score that
does not reflect the completeness of detections.

In addition, TedEval automatically penalizes one-to-
many cases, which may abuse the scoring policy by split-
ting a single word with multiple detections. For example, if
a group of detections detect characters of GT once and com-
pletely, the precision score of each detection is the number
of characters each detected over the length of the GT tran-
scription. Then, the overall precision is 1 over the number
of splits. Yet, penalty is not given to many-to-one cases. Ex-
amples of scoring many matches are in the Appendix.

3. Experiments

We compared TedEval with DetEval and IoU on two
public datasets: ICDAR 2013 Focused Scene Text (IC13)
and ICDAR 2015 Incidental Scene Text (IC15). We re-
quested from authors the result file of scene text detectors
that frequently appear and are referenced in the literature.
Results are shown in Table 2.

Fig. 4 shows the frequency of factors that TedEval tack-
les as proportions to the number of successful detections.
Detectors are sorted right to left from the highest score
on TedEval. Granularity counts in average 14% and 14%
and completeness counts in average 10% and 16% in IC13
and IC15, respectively. These proportions considerably in-
fluence the change of H-mean scores ∆ in Table 2 and are
the main causes of qualitative discords in previous metrics.

Delving into some of the peaks in Fig. 4, notice
that CTPN has the highest granularity frequency in both
datasets. As shown in Fig. 5, CTPN has a tendency to detect
a single box for an entire line, namely many-to-one. Since
such behaviors are not penalized by TedEval, CTPN gains a
6.8 increase in the H-mean score in IC15 from IoU, which
does not account for granularity.

Another peak is from FOTS. As shown in Fig. 5, FOTS
often detects a word by splitting it into several parts while
causing overlap between such detections. This causes peaks
for both granularity and completeness and lowers the recall
score. Note that EAST, which proposed the detector archi-
tecture of FOTS, shows similar behaviors.

On the contrary, PixelLink and CRAFT have notice-
ably low completeness counts. They are both segmentation-
based detections, which perform well in finding text re-
gions. However, since they connect text regions using link
information, they often detect multiline in a single box. In
fact, the multiline proportion of PixelLink and CRAFT are
one of the highest, 7% and 3%, respectively.

More examples can be seen in the Appendix.

Detector
ICDAR2013 ICDAR2015

DetEval TedEval
∆

IoU TedEval
∆

R P H R P H R P H R P H
SegLink [12] 60.0 73.9 66.2 65.6 74.9 70.0 3.8 72.9 80.2 76.4 77.1 83.9 80.6 4.2
EAST [15] 70.7 81.6 75.8 77.7 87.1 82.5 6.7 77.2 84.6 80.8 82.5 90.0 86.3 5.5
CTPN [13] 83.0 93.0 87.7 82.1 92.7 87.6 -0.1 51.6 74.2 60.9 85.0 81.1 67.8 6.9

PixelLink [3] 87.5 88.7 88.1 84.0 87.2 86.1 -2.0 83.8 86.7 85.2 85.7 86.1 86.0 0.8
TextBoxes++ [6] 85.6 91.9 88.6 87.4 92.3 90.0 1.4 80.8 89.1 84.8 82.4 90.8 86.5 1.7

WordSup [5] 87.1 92.8 89.9 87.5 92.2 90.2 0.3 77.3 80.5 78.9 83.2 87.1 85.2 6.3
RRPN [11] 87.3 95.2 91.1 89.0 94.2 91.6 0.5 77.1 83.5 80.2 79.5 85.9 82.6 2.4

MaskTextSpotter [10] 88.6 95.0 91.7 90.2 95.4 92.9 1.2 79.5 89.0 84.0 82.5 91.8 86.9 2.9
FOTS [8] 90.4 95.4 92.8 91.5 93.0 92.6 -0.2 87.9 91.9 89.8 89.0 93.4 91.2 1.4
PMTD [7] 92.2 95.1 93.6 94.0 95.2 94.7 1.1 87.4 91.3 89.3 89.2 92.8 91.0 1.7
CRAFT [1] 93.1 97.4 95.2 93.6 96.5 95.1 -0.1 84.3 89.8 86.9 88.5 93.1 90.9 4.0

Table 2: Comparison of evaluation metrics for different detectors. R, P, and H refer to recall, precision, and H-mean. Detectors
are sorted from the highest score on DetEval metric. Texts are highlighted in red and blue for rise and fall.

Fr
eq

ue
nc

y

0%

10%

20%

30%

40%

50%

Seg
link EAS

T

Pix
elLi

nk
CTP

N

Tex
tBo

xes
++

Word
sup RRP

N
FOT

S

Mask
Tex

tSp
otte

r
PM

TD
CRA

FT

Granularity Completeness

(a) IC13

Fr
eq

ue
nc

y

0%

10%

20%

30%

40%

50%

CTP
N
Seg

Link RRP
N
Word

sup

Pix
elLi

nk EAS
T

Tex
tBo

xes
++

Mask
Tex

tSp
otte

r
CRA

FT
PM

TD FOT
S

Granularity Completeness

(b) IC15

Figure 4: Frequency of factors that TedEval tackles counted by predictions. Numbers are represented as proportions to the
number of successful detections. Detectors are sorted right to left from the highest score on TedEval.

(a) CTPN (R : 1.00, P : 1.00) (b) FOTS (R : 0.70, P : 0.65) (c) EAST (R : 0.70, P : 0.45) (d) PixelLink (R : 1.00, P : 1.00)

Figure 5: Examples of incomplete detections. Numbers in caption indicate recall and precision scores of ”SUPERKINGS.”
Red dot: PCC. Blue: detection.

4. Conclusion

We have proposed a novel evaluation metric for scene
text detectors called TedEval, which evaluates text detec-
tions by an instance-level matching policy and a character-
level scoring policy. It accounts for granularity by adopting
DetEval but implements a few changes to prevent subse-
quent side effects of many matches. A scoring policy uses
pseudo character centers to reflect the penalty given to miss-
ing and overlapping characters to the final recall and preci-
sion score.

Experiments on two public datasets demonstrated that is-
sues TedEval tackles frequently occur in results from state-

of-the-art detectors and that they caused qualitative dis-
agreements in previous metrics. By reflecting such factors,
TedEval can provide a fair and reliable evaluation on the
state-of-the-art methods in the upper percentile of H-mean
scores.

Our future work involves evaluating polygon annota-
tions, where TedEval’s logics would be more effective, and
making our logic insensitive to the vertex order. This will
make TedEval easier to apply in various tasks and lessen
the burden of annotators.

Acknowledgements. We would like to thank Yuliang Liu,
the author of TIoU, and authors of scene text detectors who
kindly provided result files used in our experiments.

References
[1] Y. Baek, B. Lee, D. Han, S. Yun, and H. Lee. Character

region awareness for text detection. In CVPR, pages 4321–
4330. IEEE, 2019. 4

[2] A. Dangla, E. Puybareau, G. Tochon, and J. Fabrizio. A first
step toward a fair comparison of evaluation protocols for text
detection algorithms. In 2018 13th IAPR International Work-
shop on Document Analysis Systems (DAS), pages 345–350.
IEEE, 2018. 1

[3] D. Deng, H. Liu, X. Li, and D. Cai. Pixellink: Detecting
scene text via instance segmentation. In AAAI, 2018. 4

[4] M. Everingham, S. M. Eslami, L. Gool, C. K. Williams,
J. Winn, and A. Zisserman. The pascal visual object classes
challenge: A retrospective. International Journal of Com-
puter Vision, 111(1):98–136, 2015. 1

[5] H. Hu, C. Zhang, Y. Luo, Y. Wang, J. Han, and E. Ding.
Wordsup: Exploiting word annotations for character based
text detection. In ICCV, 2017. 4

[6] M. Liao, B. Shi, and X. Bai. Textboxes++: A single-shot
oriented scene text detector. Image Processing, 27(8):3676–
3690, 2018. 4

[7] J. Liu, X. Liu, J. Sheng, D. Liang, X. Li, and Q. Liu. Pyramid
mask text detector. arXiv preprint arXiv:1903.11800, 2019.
4

[8] X. Liu, D. Liang, S. Yan, D. Chen, Y. Qiao, and J. Yan. Fots:
Fast oriented text spotting with a unified network. In CVPR,
pages 5676–5685, 2018. 4

[9] Y. Liu, L. Jin, Z. Xie, C. Luo, S. Zhang, and L. Xie.
Tightness-aware evaluation protocol for scene text detection.
In CVPR, pages 4321–4330. IEEE, 2019. 1

[10] P. Lyu, M. Liao, C. Yao, W. Wu, and X. Bai. Mask textspot-
ter: An end-to-end trainable neural network for spotting text
with arbitrary shapes. arXiv preprint arXiv:1807.02242,
2018. 4

[11] J. Ma, W. Shao, H. Ye, L. Wang, H. Wang, Y. Zheng, and
X. Xue. Arbitrary-oriented scene text detection via rotation
proposals. IEEE Transactions on Multimedia, 20(11):3111–
3122, 2018. 4

[12] B. Shi, X. Bai, and S. Belongie. Detecting oriented text in
natural images by linking segments. In CVPR, pages 3482–
3490. IEEE, 2017. 1, 4

[13] Z. Tian, W. Huang, T. He, P. He, and Y. Qiao. Detecting text
in natural image with connectionist text proposal network. In
ECCV, pages 56–72. Springer, 2016. 1, 4

[14] C. Wolf and J.-M. Jolion. Object count/area graphs for the
evaluation of object detection and segmentation algorithms.
In ICDAR, pages 1115–1124. IEEE, 2013. 1

[15] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and
J. Liang. East: an efficient and accurate scene text detector.
In CVPR, pages 2642–2651, 2017. 1, 4

A. Matching matrix

Missing characters

R 0.5 P 0.5 H 0.5

Many-to-one

R 1.0 P 1.0 H 1.0

Overlap characters

R 0.75 P 0.75 H 0.75

Multiline

R 0.0 P 0.0 H 0.0

One-to-one

R 1.0 P 1.0 H 1.0

𝑫𝟏 𝑫𝟐 𝒔𝒊𝒌 𝑹𝒆𝒄𝒂𝒍𝒍

𝑮𝟏

𝒄𝟏𝟏

𝟏

𝟏

𝟎

𝟎 𝟏

𝟒/𝟒
𝒄𝟏𝟐 𝟏 𝟎 𝟏

𝒄𝟏𝟑 𝟏 𝟎 𝟏

𝒄𝟏𝟒 𝟏 𝟎 𝟏

𝑮𝟐

𝒄𝟐𝟏

𝟎

𝟎

𝟏

𝟏 𝟏

𝟒/𝟒
𝒄𝟐𝟐 𝟎 𝟏 𝟏

𝒄𝟐𝟑 𝟎 𝟏 𝟏

𝒄𝟐𝟒 𝟎 𝟏 𝟏

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝟒/𝟒 𝟒/𝟒

𝑫𝟏 𝒔𝒊𝒌 𝑹𝒆𝒄𝒂𝒍𝒍

𝑮𝟏

𝒄𝟏𝟏

𝟏

𝟏 𝟏

𝟒/𝟒
𝒄𝟏𝟐 𝟏 𝟏

𝒄𝟏𝟑 𝟏 𝟏

𝒄𝟏𝟒 𝟏 𝟏

𝑮𝟐

𝒄𝟐𝟏

𝟏

𝟏 𝟏

𝟒/𝟒
𝒄𝟐𝟐 𝟏 𝟏

𝒄𝟐𝟑 𝟏 𝟏

𝒄𝟐𝟒 𝟏 𝟏

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝟖/𝟖

One-to-many

R 1.0 P 0.5 H 0.66

𝑫𝟏 𝑫𝟐 𝒔𝒊𝒌 𝑹𝒆𝒄𝒂𝒍𝒍

G1

𝒄𝟏𝟏

𝟏

𝟏

𝟏

𝟎 𝟏

𝟖/𝟖

𝒄𝟏𝟐 𝟏 𝟎 𝟏

𝒄𝟏𝟑 𝟏 𝟎 𝟏

𝒄𝟏𝟒 𝟏 𝟎 𝟏

𝒄𝟏𝟓 𝟎 𝟏 𝟏

𝒄𝟏𝟔 𝟎 𝟏 𝟏

𝒄𝟏𝟕 𝟎 𝟏 𝟏

𝒄𝟏𝟖 𝟎 𝟏 𝟏

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝟒/𝟖 𝟒/𝟖

𝑫𝟏 𝑫𝟐 𝒔𝒊𝒌 𝑹𝒆𝒄𝒂𝒍𝒍

𝑮𝟏

𝒄𝟏𝟏

𝟏

𝟏

𝟏

𝟎 𝟏

6/𝟖

𝒄𝟏𝟐 𝟏 𝟎 𝟏

𝒄𝟏𝟑 𝟏 𝟎 𝟏

𝒄𝟏𝟒 𝟏 𝟏 𝟐

𝒄𝟏𝟓 𝟏 𝟏 𝟐

𝒄𝟏𝟔 𝟎 𝟏 𝟏

𝒄𝟏𝟕 𝟎 𝟏 𝟏

𝒄𝟏𝟖 𝟎 𝟏 𝟏

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝟔/𝟖 𝟔/𝟖

𝑫𝟏 𝒔𝒊𝒌 𝑹𝒆𝒄𝒂𝒍𝒍

𝑮𝟏

𝒄𝟏𝟏

𝟏

𝟎 𝟎

𝟒/𝟖

𝒄𝟏𝟐 𝟎 𝟎

𝒄𝟏𝟑 𝟏 𝟏

𝒄𝟏𝟒 𝟏 𝟏

𝒄𝟏𝟓 𝟏 𝟏

𝒄𝟏𝟔 𝟏 𝟏

𝒄𝟏𝟕 𝟎 𝟎

𝒄𝟏𝟖 𝟎 𝟎

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝟒/𝟖

𝑫𝟏 𝒔𝒊𝒌 𝑹𝒆𝒄𝒂𝒍𝒍

𝑮𝟏

𝒄𝟏𝟏

𝟎

𝟎 𝟎

0/𝟒
𝒄𝟏𝟐 𝟎 𝟎

𝒄𝟏𝟑 𝟎 𝟎

𝒄𝟏𝟒 𝟎 𝟎

𝑮𝟐

𝒄𝟐𝟏

𝟎

𝟎 𝟎

0/𝟒
𝒄𝟐𝟐 𝟎 𝟎

𝒄𝟐𝟑 𝟎 𝟎

𝒄𝟐𝟒 𝟎 𝟎

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝟎/𝟖

Figure 6: Examples of scoring in various cases.

B. Detection results

(a) PixelLink (R : 1.00, P : 0.80) (b) WordSup (R : 1.00, P : 1.00) (c) TB++ (R : 1.00, P : 0.86) (d) PMTD (R : 1.00, P : 1.00)

Figure 7: Granularity

(a) CTPN (R : 0.75, P : 1.00) (b) PixelLink (R : 0.90, P : 0.90) (c) WordSup (R : 0.25, P : 0.50) (d) MaskTS (R : 1.00, P : 1.00)

Figure 8: Completeness

(a) CTPN (R : 0.83, P : 1.00) (b) PixelLink (R : 0.83, P : 0.83) (c) MaskTS (R : 1.00, P : 1.00) (d) CRAFT (R : 0.83, P : 1.00)

Figure 9: Multiline

(a) TB++ (R : 0.97, P : 0.97) (b) WordSup (R : 0.80, P : 1.00) (c) FOTS (R : 0.92, P : 0.83) (d) CRAFT (R : 1.00, P : 1.00)

Figure 10: Text-in-text

