
Lawrence Berkeley National Laboratory
LBL Publications

Title
Optimizing and Evaluating Algorithms for Replicated Data Concurrency Control

Permalink
https://escholarship.org/uc/item/6dt642j2

Authors
Kumar, A
Segev, A

Publication Date
1989-02-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6dt642j2
https://escholarship.org
http://www.cdlib.org/

/,'•
• J

'•

l
I . •

• I>

UC-/fO~
LBL-25435

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Information and Computing
Sciences Division

To be presented at the Ninth International Conference on
Distributed Computing Systems, Newport Beach, CA,
June 5-9, 1989

Optimizing and Evaluating Algorithms for
Replicated Data Concurrency Control

A. Kumar and A. Segev

February 1989

For Reference

Not to be taken from this room

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

IJ:I
a.

1.0

Ul
0

r
ern
"'i 0
Jlo"tl
"'i'<
'<

r
IJ:I
r
I

ru
Ul
+::

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the.
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL-25435

Optimizing & Evaluating Algorithms
For_ Replicated Data· Concurrency Control

Akhil Kumar and Arie Segev

School of Business Administration
University of California

and

Computing Science Research & Development
Information & Computing Sciences Division

Lawrence Berkeley Laboratory
1 Cyclotron Road

Berkeley, California 94720

February 1989

Proceedings of the 9th International Conference on Distributed Computing
Systems, Newport Beach, June 1989

This work was supported by the Director, Office of Energy Research, Applied Mathematical
Sciences Research Program, of the U.S. Department of Energy under Contract No. DE-AC03-
76SF00098 and by an Arthur Andersen & Company Doctoral Dissertation Fellowship.

OPTIMIZING AND EVALUATING ALGORITHMS FOR
REPLICATED DATA CONCURRENCY CONTROL

Akhil Kumar and Arie Segev

School of Business Administration and
Computer Science Research Dept, Lawrence Berkeley Lab

University of California
Berkeley, Ca., 94720

Abstract
Techniques for optimizing a static voting type algorithm are presented. Our optimi­

zation model is based on minimizing communications cost subject to a given availability
constraint. We describe a semi-exhaustive algorithm for solving this model. This algo­
rithm utilizes a novel signature-based method for identifying equivalent vote combina­
tions, and also an efficient algorithm for computing availability. Static algorithms natur­
ally have the advantage of simplicity; however, votes and quorum sizes are not allowed
to vary. Therefore, the optimized static algorithm was compared against the available
copies method, a dynamic algorithm, to understand the relative performance of the two
types of algorithms. We found that if realistic reconfiguration times are assumed, then
no one type of algorithm is uniformly better. The factors that influence relative perfor­
mance have been identified. The available copies algorithm does better when the update
traffic ratio is small, and the variability in the inter-site communications cost is low.

1. Introduction

A replicated data environment is one in which multiple copies of a file are present.

By replicating data, system reliability may be increased to satisfy the high up-time

requirements in ·several real-time applications,· such as banking and airlines. Clearly, if

copies of a file reside on several computers with independent failure modes, then the file

system would be more reliable. The disadvantage, however, is that the copies must be

This research was supported by the Applied Mathematics Sciences Research Program of the
Office of Energy Research U.S. Department of Energy under contract DE-AC03-76SF00098 and by
an Arthur Andersen & Co. Foundation Doctoral Dissertation Fellowship.

1

LBL-25435

kept mutually consistent by synchronizing transactions at different sites so that a global

serialization order is ensured. For instance, two independent transactions must not be

allowed to simultaneously update different copies of the same file. Hence, the con­

currency control algorithm becomes more complex and also more expensive to imple­

ment. The additional communications and processing cost arises because several rounds

of messages must be exchanged with other sites while implementing the algorithm.

Several popular methods for replicated data concurrency control are based on the

formation of quorums [BERN87, DA VI85J. We refer to such methods as "voting-type"

or quorum consensus (QC) class of algorithms [GIFF79, THOM79]. These algorithms

may be categorized into two broad types: static and dynamic. In the static algorithms

the assignment of votes to 13ites is fixed a priori, while in the dynamic ones, the votes

and quorum sizes are allowed to vary dynamically. Our objective in this paper is to

develop techniques for optimizing the assignment of votes in a static algorithm and com­

pare the relative performance of an optimized static algorithm against a dynamic algo­

rithm. Static algorithms have the advantage of simplicity and ease of implementation,

and consequently, if the performance of the two types of algorithms is comparable, then

static algorithms would be preferred.

In a previous paper [KUMA88], we have introduced failure tolerance as a measure

of reliability and described a model for integrating failure tolerance with communications

cost. The objective function in the model there was to minimize communications cost

subject to a failure tolerance constraint. Here we introduce availability as a more realis­

tic measure of reliability, and incorporate it in an optimization model. Then, we describe

in detail new solution techniques for the model, and finally, compare an optimized static

algorithm against a dynamic algorithm.

2

Availability is defined in probabilistic terms as follows: Given n copies of a file

such that each is up with probability, Pi, the availability, A is the probability that

both a read and a write quorum can be formed. Consider an example where 3 copies of a

file reside at different sites. If each Pi is 0.9, and the size of a quorum is 2, then the

overall availability of the file is computed as:

A = 3X{0.9)2xo.1 + {0.9)3=0.97.

This means that _by replicating a file a.t 3 sites instead of 1, the availability can be

increased from 0.9 to 0.97. One can similarly show that if n is 5, and the quorum size is

3, then A increases to 0.991.

Our optimization model is as follows:

Modell

Minimize Communications Cost

such that:

Availability > cut -off

The common feature in voting-type algorithms [GIFF79] is that each site, i is

assigned a vote, vi, and in order to perform various operations quorums must be formed

by assembling votes. To perform a read (or write) operation, a. transaction must assem­

ble a read (or write) quorum of sites such that the votes of all the sites in the quorum

add up to a predefined threshold, Qr (or Qw). The basic principle behind the algorithm

is that the sum of these two thresholds must exceed the total sum of all votes, i.e.,

Invariant 1:

3

Hence a read and a write operation cannot proceed simultaneously. Moreover, the

write threshold is larger than half the sum of all votes, i.e.,

Invariant 2:

Thus, two write operations are prevented from proceeding simultaneously. It is

important to note that the above two invariants do not enforce unique values upon Qr

and Qw. Furthermore, the v; 's do not have to assume unique values. Hence, several

alternative sets of solutions for these variables exist. The read-one write-all method is a

special case of the quorum consensus method with each v; and Qr equal to 1, and Qw

equal to n (a.sSuming there are n copies of the file). This leads to better performance

for queries at the expense of poorer performance for updates and works well in an

environment where a very large fraction of the transactions are queries.

The basic QC algorithm described above is a static algorithm because the votes and

quorum sizes are fixed a priori. This restriction does not apply to dynamic algorithms,

and in these the votes and quorum sizes are adjusted suitably as sites fail and recover.

Examples of such algorithms are: the Missing Writes method [EAGE81, EAGE83J~

and the Virtual Partition method [ELAB85]. In the Missing Writes method, the

read-one write-all method is implemented when all the sites in the network are up; how­

ever, if any site goes down, the size of the read quorum is increased while that of the

write quorum is reduced. After the failure is repaired it reverts to the old scheme. In

the virtual partition algorithm, each site maintains a view consisting of all the sites that

it can communicate with, and within this view, it implements the read-one write-all

method.

Other quorum based methods of the dynamic type are: the vote reassignment

method [BARB86], the quorum adjustment method [HERL87], and the dynamic

voting algorithm [JAJ087]. In the vote reassignment and the quorum adjustment

methods, sites that are up can change their votes on detecting failures of other sites by

following a certain protocol. In the dynamic voting method, additional information

regarding the number of sites at which the most recent update was performed is stored.

This makes it possible to shrink the size of a quorum dyn~mically if site failures or parti­

tions occur. For instance, consider an object replicated at 5 sites designated as A, B, C,

D and E, and further assume that the most recent update to this object was performed

at sites A, B, and C. If a subsequent link failure isolates site A from B and C, the latter

two sites can still continue to perform updates because they contain a majority among

the sites at which the most recent update was performed. Therefore, this method allows

updates to take place even with fewer than a majority of the sites available.

·Another dynamic algorithm is the available copies met~od [BERN84]. In this

method, query transactions can read from any single site while update transactions must

write to all the sites that are up. Moreover, in order for the algorithm to work correctly,

each transaction must perform two additional steps called missing writes validation and

access validation. In the first, a transaction must ensure that all copies it tried to, but

could not, write are still unavailable. In the second step, a transaction must ensure that

all copies it read or wrote are still available. The primary copy algorithm [STON79] is

based on designating one copy as a primary copy, and each transaction must update it

before committing. Later, updates are spooled to the other copies also. If the priinary

copy fails, then a new primary copy is designated.

5

In [GARC84, GARC85], the concept of coteries is introduced as an alternative to

quorums. A coterie is defined as a collection of intersecting minimal subsets of sites. It

is shown that there exist several coteries which do not have a corresponding vote assign­

ment, and therefore, the solution space of vote assignments is a subset of the coterie

solution space. It is also shown that the problems of finding an optimal vote assignment

and an optimal coterie assignment in order to maximize availability have exponential

complexity.

Two types of failures can occur: link failures and site failures. We will assume that

a link failure that does not cause a partition is transparent because every site can con­

tinue to access all other sites. Further, it is assumed that partitions don't occur, i.e., if a

site does not respond within a certain time-out interval, it is down.

The organization of this paper is as follows. In Section 2, we define basic vote

assignment concepts, used later in the paper. Then, in Section 3, we analyze the com­

plexity of the vote assignment problem, while Section 4 turns to a semi-exhaustive algo­

rithm for solving the vote assignment problem. In Section 5, we devise an efficient algo­

rithm for computing availability and illustrate it with an example. Finally, computa­

tional results for the optimized QC algorithm and the available copies algorithm are

presented in Section 6.

2. Vote Assignment Definitions and Concepts

In this section, we shall define some basic concepts in the context of the vote

assignment problem and shall use them through the remainder of the paper.

6

2.1. Vote Assignment versus Vote Combination

At the outset, a distinction must be drawn between a vote assignment and a

vote combination. A vote combination for n sites is an n-tuple consisting of n ele­

ments. It becomes a vote assignment when each element in this combination is

assigned to a specific site. Therefore, if each element in a vote combination is unique,

then there are n! specific assignments for that combination and they may be produced

by enumerating all permutations of the vote combination. On the other hand, if dupli­

cates are present in a vo~e combination, then the number of corresponding assignments

is less than n!. In the extreme case if all elements in the combination are equal, then only

one vote assignment exists. For example, in a 5-site problem, the vote combination

(1,1,1,1,1) is also a vote assignment· because only one permutation exists for this combi­

nation of votes. On the other hand, the combination (5,4,3,2,1) has 5! (or 120) different

assignments.

Without loss of generality, we shall represent a vote combination as a non­

increasing sequence of votes, V = (vi , · · · , vn) where:

v1>v 2> · · · >vj > · · · >vn

Notationally, we shall represent a vote assignment, V, in a similar way; however,

in an assignment V, the i th element of the vector specifically represents the vote given

to site i and therefore, the elements occur in site-number order.

2.2. Quorum· Size

The size of a quorum, q is the minimum number of votes needed to make a major­

ity among all votes. For simplicity, a read and a write quorum are required to be equal

since the system is considered unavailable if either quorum cannot be formed. (Note,

however, that we allow non-equal votes).

7

2.3. Corresponding Assignment for a Vote Combination

A vote combination can also be viewed as an assignment in which the i th element

is assigned to site i. Such an assignment will be called the corresponding assignment

for a vote combination. For example, V =(5,4,2,2,1) is the corresponding assignment for

the combination, V =(5,4,2,2,1). For brevity, the term "availability of a vote combina­

tion" will referto the availability of the corresponding assignment for the vote combina­

tion.

2.4. Equivalent Vote Assignments and Combinations

Two vote assignments, V 1 and V 2 are equivalent if for every group of sites in V 1

that can form a quorum, the same group of sites in V 2 can also fprm a quorl)m and vice

versa. For example, it is easy to verify that (1,1,1,1,1) and (2,2,2,2,1) are equivalent vote

assignments. In the former case, q is 3, while in the latter it is 5. We define two vote

combinations, V 1 and V 2 to be equivalent if their corresponding assignments are

equivalent.

The following result is derived from our definition of equivalence.

Theorem 1: The availability of two equivalent vote assignments, V 1 and V 2 is always

equal for all sets of Pi's, where Pi is the reliability of site i.

Proof : Given n sites there are exactly 2n alternative states representing all combina­

tions of up and down sites. In any given state, a quorum can be formed if the sum of the

votes of all up sites is at least q . Moreover, the probability that the system is in a

specific state is computed as the product of all Pi's for all up sites i, and of all {1-pj)'s

for all down sites j. Consequently, the availability of a vote assignment may be com­

puted by first identifying those states in which a quorum can be formed, and aggregating

8

the probability that the system is in one of these states.t From the above definition of

equivalence it follows that the collection of states in which a quorum can be formed is

identical for V 1 and V 2, and hence, the availability is equal for both assignments (for all

sets of Pi 's).

Corollary 1: The availability of two equivalent vote combinations, V 1 . and V 2 IS

always equal for all sets of Pi's where Pi is the reliability of site i.

The corollary follows directly from Theorem 1 and Section 2.3. These results are

used in Procedure SE, described in Section 4.1.

2.5. Dominating Vote Assignments

An assignment, V 1 dominates another assignment, V 2 if for each set of sites ·in

V 2 that can form a quorum, a quorum can always be formed by the same or a smaller

set of sites in V 1; however, the converse is not true. This means that V 1. is superior to

V 2 because it would have a greater availability.

It has been shown in [GARC85J that an assignment in which the total number of

votes is even is always dominated by a vote assignment in which the total number of

votes is made odd by assigning 1 extra vote. For example, if n is 4, an "odd" assign­

ment represented by (2,1,1,1) is superior to the "even" assignment (1,1,1,1). We shall,

therefore, consider only those assignments (or combinations) in which the total number

of votes assigned is an odd number.

t A more efficient method for computing availability is discussed in Section 5.

g

2.6. Active Votes

A vote, vi assigned to site j in an assignment, V is said to be an active vote if

there exists at least one quorum of sites which includes site j such that if site j is with­

drawn, the remaining sites do not form a quorum.

In the assignment (4,2,2,2,1), v 6 does not contribute to the formation of any

quorum because all quorums must include at least two of the 4 other sites. Therefore, v 5

is an inactive vote and this assignment is treated as an invalid 5-site assignment. For an

n-site problem, we shall restrict ourselves to those assignments in which each vote is

active.

3. Complexity of the Vote Assignment Problem

In [GARC85] it has been shown by heuristic arguments based on visualizing a

hypercube that an upper bound on the total number of vote assignments for n sites is

2n
2

• Here we give another derivation which is intuitively simpler.

For n sites, there are 2n possible groups corresponding to all possible combinations

involving the inclusion and exclusion of each site. From these 2n groups, we may arbi­

trarily choose any n groups that should form a quorum, and write n simultaneous equa­

tions with n variables. Each system of n equations may then be solved for the v; 's. Of

course, some of the systems of equations m~y not have any solution. However, this

allows us to place an upper bound on the number of vote assignments as (
2~]· This

expression represents the number of ways in which n elements may be chosen from a

universe of 2n elements. The complexity of the above expression is 0(2nl.

Not only does this number include several systems of equations which have no solu­

tion, but it also involves a large number of permutations of a given vote combination.

10

For instance, (5,3,3,1,1), (3,1,1,5,5), (1,1,3,3,5), etc., are examples of permutations of the

vote combination, (5,3,3,1,1), and each such permutation is included in the upper bound

above. For these two reasons, it is possible that a tighter upper bound may exist for the

total number of unique combinations, but has not yet been found. In the next section,

we develop an algorithm that enumerates a very large number of vote combinations, and

also implement this algorithm to show the number of assignments that exist for n < 9.

4. A Semi-Exhaustive (SE) Algorithm

In this section we shall describe a procedure (Procedure SE) to generate non-

equivalent vote combinations, and then use it to develop an algorithm (Algorithm SE-A)

to solve model 1. Algorithm SE-A produces alternative assignments for each vote combi-

nation generated by· Procedure SE. For each assignment, the algorithm evaluates the

cost and availability, and selects the minimum cost assignment which meets the reliabil-

ity criterion.

4.1. Procedure SE

This procedure starts with an initial vote combination, and further new combina-

tions are generated by incrementing the votes in the current combination. To make the

procedure more efficient, we devise a method to identify and discard a combination

which is equivalent to one already produced. Thus, only non-equivalent vote combina-

tions are generated.

The initial combination is:

For odd n : vi 's = 1 for all i,
For even n: v 1 = 2, vi's = 1 for i = 2, · · · ,n

11

Since each vi must be a positive integer strictly greater than 0, this is obviously the

combination with the smallest odd sum of votes.

Next, we generate new combinations by considering all ways in which 2 votes may

be added to the current combination. (A combination is new if it is not equivalent to a

combination which has already been produced). This will give us a set of vi's which add

up to n +2 or n +3 depending on whether n is odd or even, respectively. At each subse­

quent stage, we consider only the new combinations produced in the previous stage and

use them to produce further combinations. For example, say n is 5, and the starting

combination is (1,1,1,1,1). At the next step, the total number of votes must be increased

by 2, and the alternative combinations that result are (3,1,1,1,1), and (2,2,1,1,1). Each

of these combinations will have to be checked for equivalence against the combination

(1,1,1,1,1). If found to be new, then it is added to the existing list of combinations.

Each successive iteration of the while-loop in the main section of Procedure SE

(described below) corresponds to finding new combinations by adding r more votes to

each current N vote combination. Ordinarily N is incremented by 2 in each successive

iteration and r remains at 2; however, if at any iteration no new combination is found,

then in subsequent iterations r is incremented by 2 and N is kept fixed until a new com­

bination is realized. At this point, N is incremented by the current value of r. There are

two stopping rules. The first rule is that the total sum of votes becomes greater than a

pre-specified maximum, while the second rule is that r becomes larger than 25. The

second rule corresponds to a situation in which no new combination is found for a gap of

25 votes, a reasonably large interval. Such a gap would arise if no new combination is

found even after 12 successive iterations.

12

The availability of each prospective new combination is computed by applying

Algorithm AVAIL (to be described in Section 5) to its corresponding assignment. The

value of availability so computed is called the signature for the combination. Since, as

shown in Section 2.4, two equivalent combinations will always have the same availabil-

ity, this gives us a convenient way of eliminating redundant vote combinations. Each

new signature is checked against an array of signatures, and if not found in it, it is

added to this array. A collision occurs if the signature already exists in the array, and in

this case the combination is discarded. Since Procedure SE is used only to generate non-

equivalent combinations, an ~rbitrary set of Pi's can be used for this purpose (the actual

Pi's are, however, required in Algorithm SE-A to compute the real availability, as

described in Section 4.3). Although the converse of Theorem 1, i.e., if two assignments

have the same availability then they must be equivalent has not been proven, it has

been verified experimentally that false collisions are prevented by choosing site reliabili-

ties such that no two Pi 's are equal. Therefore, this rule should be observed while select-

ing Pi's for use in Procedure SE.

The main steps are as follows:

Procedure SE

1. (Initialization). The starting combination is V = (v 1, · · · , vn) such that:

For odd n : vi 's = 1 for all i; Sum of votes, N = n.
For even n: v 1 = 2, vi 's·= 1 fori = 2, · · · ,n; N = n+l.

Also, initialize:

the final solution set, S = 0,
the solution set for a total of N votes, SN = { V}
the Pi values from input data,
the signature array, SA=O.

13

2. (Main section)

r = 2.
while (N+r < N max and r < 25){

for each combination, V in SN {
add r more votes to V to create combination,
compute availability, Atemp for V1emp.

If Atemp nomem SA array{
add Vtemp to S N +r .

add A temp to SA array.
}
}

If (SN +r :f: 0) ,
r = 2. N = N + 2.

else
r = r + 2.

}

3. The final solution set, S is obtained by concatenating all non-empty sets, Si.

4.2. Implementing Procedure SE

We implemented this algorithm and Table 1 shows the number of unique vote com-

binations that were found for various values of n. For n equal to 7, no vote combina-

tions were found for N max between 44 and 69, at which point the program terminated.

When n was 8 and 9, the program was interrupted at N max equal to 50 and 45 respec-

tively. We repeated this experiment for two different sets of probability values and found

the same result ·in each case. This was done to eliminate the possibility of two non-

equivalent combinations having the same signature.

It should be reemphasized that the numbers in Table 1 represent vote combinations

and not specific vote assignments. For each combination, there are potentially n! assign-

ments if each vote is unique. An exhaustive algorithm to solve the problem must con-

sider all the specific assignments corresponding to each vote combination, and therefore,

multiplying the numbers in Table 1 by n! gives a better appreciation for the real

14

complexity of the problem.

4.3. A Vote Assignment Algorithm

We shall now describe Algorithm SE-A to solve model 1. Procedure SE is used

within this algorithm to generate a set of vote combinations, and then all possible

assignments of each combination are evaluated to find the best solution.

Algorithm SE-A

1. Produce Set S of vote combinations from Procedure SE.

2. Produce set P of vote assignments by permuting all combinations in S.

3. (Main section)

min -cost = oo
For each assignment, V in set P

if (AVAIL (V) >cut-off and COMPUTE_COST (V) <min-cost){
min -cost = cost.
min -assignment -:- V.

}

of Sites(n) Maximum Sum of Votes #of Combinations

1 - 1
2 - 1
3 - 1
4 - 1
5 - 4
6 - 19
7 - 133
8 50 >2071
9 45 >7603

Table 1: Number of unique vote combinations for various n

15

4. The best solution is given by min -assignment.

COMPUTE_COST(V)

1. For each site i, determine the set of other sites to be included m i's quorum, Q;

by:

c ..
(a) first ordering all other sites j in ascending order of!L, and

tl· .)

(b) then choosing the first k sites from this sequence such that:

2. The cost of assignment, V is:

3. return (cost)

The above algorithm is conceptually straightforward but computationally intensive.

It utilizes procedures COMPUTE_COST and AVAIL to compute respectively the cost

and availability of an assignment.

The COMPUTE_COST procedure is required to determine the total communica-

tions cost for assignment V, given the query and update volumes (q; and u; respec-

tively) of each site in addition to the c;i 's. The major step is to determine the set of

sites, Q; which site i must communicate with in order to form a quorum. This sub-

problem can be formulated as a knapsack problem [BUDN77] and the technique

described in step 1 is a heuristic solution method for it. Once the Q; 's are known, the

total cost is computed as in step 2. Now we shall turn to describe Procedure AVAIL.

16

5. Computing Availability

In this section, we devise an algorithm for computing availability when several

copies of a file exist, and the vote assigned to each site, vi and its reliability, Pi are

known. This algorithm is used by Algorithm SE-A described above. One simple method

for computing availability is by enumerating all possible combinations of up and down

sites, identifying those combinations in which a quorum can be formed, and computing

the aggregate probability ,of all such combinations. This is clearly an inefficient scheme.

Here we describe a more efficient algorithm and show that it is considerably less expen-

sive than complete enumeration. A formal problem definition and the details of our algo-

rithm are given in the following section. Subsequently, an example will be given to

demonstrate the algorithm.

5.1. Algorithm Description

Problem Definition: Compute the availability for a vote assignment represented

by the vector V = { v 11 v 2, · · · , Vn), and a quorum of size q . The reliability, or the

probability that site i is up, is denoted by Pi. Without loss of generality, it is assumed

that:

v1>v 2> · · · >v· > · · · >v -- -J- _n

Our Algorithm AVAIL for computing availability is based on first constructing a

tree which we call the quorum subset tree. Each branch in this tree corresponds to the

inclusion and exclusion of a certain site in a quorum and by following the path from a

leaf node to the root one can generate alternative subsets. The procedure for construct-

ing this tree is called BUIT...D-TREE. We shall describe this procedure first, and then

use it as a subroutine in Algorithm AVAIL.

17

The root of the tree is labeled a.s level 1, and nodes at lower levels are numbered

successively. An information triple is maintained at each node a.s follows:

(votes included, votes excluded, votes remaining)

where:

votes included (VI): total votes of sites included so far

votes excluded (VE): total votes of sites excluded so far

votes remaining (VR): total votes still to be assigned

Based on this (VI, VE, VR) triple, a decision is made as to whether a particular

node is "fathomed". If a node is fathomed, then no further branching is done from there.

Otherwise, the branching process is repeated. At an unfathomed level i node, we con­

sider the effect of including or excluding· site i by constructing two branches: one

corresponding to including site i and the other corresponding to excluding site i. The

main steps of procedure BUILD_TREE are described below. Figure 1 shows a tree ~hat

has been constructed from this algorithm for V = (5,3,3,1,1).

BUll..D_TREE

1. (initialization)

i=1

The root is marked by the triple (O,O,W), where W is the sum of all votes. Next,

two branches are constructed from the root: one corresponding to the inclusion of

site i (the "include 1" branch) and the other corresponding to excluding site 1 (the

"exclude 1" ~:?ranch). The nodes at the end of these two branches represent level 2

of the tree.

2. At each level i + 1 node, the triple at the node is computed from the i th level

parent node in the following manner. If the branch leading to the node is an inclu-

18

sion branch, then:

VI= (VI)p + Vj

VE = (VE)p

VR = (VR)p - vi

(The subscript p denotes the parent node values while the unsubscripted VI, VR,

and VE represent the child node values).

On the other hand, if the branch is an exclusion branch, then the new values are

computed as:

VI= (VI)P

VE = (VE)p + Vj

VR = (VR)p - vi

3. (Fathoming Step) This step is repeated for all nodes at level i +1.

We consider 4 cases:

CASE 1: VI > q

If VI for a new node is greater than or equal to q , then this node is marked as

"fathomed - type 1 ".

CASE 2: VI < q and VI+ VR =q

If VI+ VR for the new node is equal to q, then this means that all the remaining

sites must be included in order to create. a quorum. In this case, we put a note on

the node to indicate that sites i +1, i +2, · · · , n must be included, and mark the

node as "fathomed - type 1 ".

CASE 3: VE > W -q

This means· that enough sites have been excluded already to preclude the formation

of a quorum from the remaining sites. Hence, this node is marked as "fathomed -

19

type 2".

CASE 4: VI < q and VI+ VR > q

This node cannot be fathomed.

4. If all nodes at level i +1 have been fathomed, then the tree construction lS com-

plete, and the algorithm stops, else

{
i=i+l.
At each unfathomed level i node, construct

an "include i" and an "exclude i" branch
go to step 2.

}

Now we list the steps of Algorithm AVAIL and a detailed description follows.

Algorithm A VAn.

1. First construct a tree from procedure BUIT..D_TREE described above.

2. Set Availability, A= 0.

3. Next, for each "fathomed ~ type 1" node, do {

P=l.
Traverse tree upwards from the node and

Do Until root is reached {
If there is an "include i" in the path,

P--:-- P X Pi,
else

If there is an "exclude i" in the path,
P = P(1- Pi).

If current node is not the root, traverse the next higher path.
}

A=A+P
}

4. The Availability of the file system is given by A.

The Availability is computed by following the path from each "fathomed-- type 1"

node to the root backwards. Each "include z"" along a path corresponds to Pi and each

20

"exclude i" corresponds to (1-pi). The product of the Pi's and (1-pi }'s is computed

along each such path, and aggregating the individual products gives the availability. The

following example will demonstrate this algorithm.

5.2. An Example

Here we describe an example to illustrate Algorithm AVAIL.

Example 1: Compute the availability for the following V vector:

v = (5,3,3,1,1)

The first step in implementing Algorithm AVAIL is to construct the quorum subset

tree. This is shown in Figure 1. Using this tree, the availability for this example is com­

puted as:

A = P 1P 2 + P 1(1-p 2)P 3 + P 1(1-p 2)(1-p 3)p 4P 5 + (1-p l)P 2P 3P 4 + (1-p l)P 2P 3(1-p 4)p 5.

6. Experimental Results.

We implemented the semi-exhaustive algorithm and compared its performance

agains~ the available copies algorithm [BERN84] which is a dynamic algorithm. The

results are presented in this section.

Algorithm SE-A was implemented for 7-site example networks. For each network,

we first generate an inter-site unit communications cost matrix. The costs are obtained

from uniform distributions in which the range is allowed to vary. The following uniform

distributions were used: U(l,l), U(l,5), and U(l,lO). For each distribution, the availabil­

ity cut-off was varied from 0.93 to 0.99 in intervals of 0.01. At each cut-off value, the

corresponding communications cost was computed using Algorithm SE-A. The results of

these computations are presented in Table 2. The total traffic volumes and the reliability

of each site, Pi are also given in this table.

21

(0,0 3)

Vl i

0,8)
(0,5,8)

V2 in V2 out V2 in V2 out

(8,0,5) (5,3,5) (3,5,5) (0,8,5)
Xl X2

V3 in V3 out V3i V3 out

(8,3,2)
(5,6,2) (6,5,2) (3,8,2)
V4 in X2 Xl V5 in

Xl V4 in V4 out

(7,5,1) (6,6,1)

XI V5 in
Xl

XI - Fathomed, Type 1

X2 - Fathomed, Type 2

Figure 1: Quorum subset tree for Example 1

22

A U(1,1) U(1,5} U(1 10)
0.93 39 95 101
0.94 39 96 101
0.95 44 101 107
0.96 44 111 120
0.97 53 119 140
0.98 62 128 146
0.99 78 167 240

Table 2: Static Algorithm: Minimum Communications Cost for 3 cost distributions (7 sites)
p = (0.91,0.90,0.89,0.87,0.86,0.85,0.84)
Total Traffic Volumes= (5,7,4,9,1,5,8)

To make a· comparison against the available copies algorithm we need to compute

the communications cost and availab_ility again. In the static case, the read and write

quorums ,were required to be equal as discussed in Section 2.2; therefore, the total com-

munications cost does not depend on the write ratio (Pw), defined as the fraction of all

transactions that are updates. In the dynamic case, however, this is not true, .and the

communications cost would vary for different values of Pw. In Table 3, we have com-

puted the communications cost for different values of Pw. The 3 columns correspond to

the 3 different distributions for the unit inter-site communications cost as in Table 2.

The rows of Table 3 correspond to different values of Pw. The total traffic volumes were

the same as in Table 2; however, the read and write traffic components were varied

depending upon Pw.

The availability in the dynamic case is computed differently than in the static case.

We now turn to describe our method for performing this computation. In the available

copies algorithm, transactions running at the time a site fails or recovers may have to be

aborted, and restarted. This will result in a time delay during which period the system

23

will be unavailable. We call this interval a reconfiguration interval, trecon. It is assumed

that each site has a mean time to failure (MTTF) and a mean time to repair (MTTR).

For simplicity, all sites are assigned the same value of MTTF and also of MTTR. To

make the analysis tractable, it is reasonable to further assume that each site will fail and

recover once, on the average, in an MTTF + MTTR cycle, and at each failure and

recovery point, the system will be unavailable for lrecon length of time. Thus, if availa-

bility is ~efined ·as the fraction of time for which the system is available during one

cycle, it may be expressed as:

2X trecon X n
1

MTTF+MTTR

In order to make the comparison against the optimized static algorithm, MTTF

was set at 6 hours, while MTTR was set to 44 minutes for each site. This translates to a

reliability of 0.87 4 in probabilistic terms which is the average Pi for the 7 sites in Table

2. Using a trecon value of 30 sees, and setting n to 7, the availability is 0.98.

Pw U(1,1) U(1,5) U(1,10)
0.05 12 34 73

0.1 24 75 141
0.15 36 108 199
0.2 48 139 256
0.3 72 213 422
0.4 96 282 502
0.5 120 364 675

Table 3: Dynamic Algorithm: Communications Cost versus Pw for 3 cost distributions (7 sites)
j5 = (0.91,0.90,0.89,0.87,0.86,0.85,0.84)
Total Traffic Volumes= (5,7,4,9,1,5,8)

A = 0.98

24

1",

Several interesting conclusions may be drawn from the results in Tables 2 and 3.

First, if cost minimization is the main objective, then the dynamic algorithm is superior

when Pw is below a cut-off. However, this cut-off becomes smaller as the range of varia­

tion of cij increases. For instance, if the distribution chosen is U(1,1), then the cut-off is

0.15, while for distributions U(1,5) and U(l,IO), the cut-off reduces to 0.10 and 0.05

respectively. This means that as the variation in cij increases, the dynamic algorithm

becomes less attractive if cost minimization is the main objective.

On the other hand, if the cost of the dynamic algorithm is compared against its

static counterpart which gives the same availability, then the above Pw cut-offs increase

to 0.25, 0.2, and 0.1 respectively. Therefore, the Pw space within which the dynamic

algorithm does better becomes larger. Clearly, Pw lS a critical factor in choosing

between the static and dynamic algorithms.

Secondly, while different static vote assignments lead to various values of availabil­

ity and communications cost, in the dynamic case there is one availability value, 0.98.

Table 2 shows that the static method can give a higher availability of 0.99. Therefore, if

availability maximization is the main goal then the static technique seems to outperform

the dynamic one. Of course, trecon and n are critical parameters in computing the avai­

lability from the formula above, and if these are both decreased, then availability would

naturally increase.

7. Conclusions

An optimization model was developed for the problem of assigning votes to sites so

as to minimize the communications cost subject to a given availability constraint. This

problem has exponential complexity and no efficient solution procedure that would run

in reasonable time is known. (Complete enumeration is an obvious solution method,

25

though clearly not a feasible one). A semi-exhaustive algorithm to solve this problem

was discussed in detail and also implemented. This algorithm employs an efficient tech-

nique for computing the availability of a vote assignment. The signature concept was

used to prune the exponential space of vote combinations and to generate only non-

equivalent combinations.

Finally, the optimized static algorithm was compared against the available copies

method, a dynamic algorithm. It was found that no one type of algorithm uniformly

dominates the other. Ranges over which each type of algorithm does better were deter-

mined. Dynamic algorithms were better for a small value of the write ratio, Pw, and low

variability in the inter-site communications cost. On the other hand, static algorithms

were better if the goal was to maximize availability. Also, if the goal was to minimize

cost, then the range of Pw values over which the dynamic algorithm does better is very

small. Finally, ease of implementation must also be considered, and on this account

static algorithms are a big winner.

This study clearly shows that a more detailed analysis of static algorithms against

dynamic algorithms would be a very useful exercise. In this paper, the treatment of

dynamic algorithms has been restricted to just one type, the available copies method.

Future work is anticipated to evaluate other dynamic ,algorithms, perhaps using more

elaborate models. Further work is also needed to develop more efficient heuristic solution

methods to the vote assignment problem.

References

[BARB86] Barabara, D., Garcia-Molina, H., and Spauster, A., "Protocols for Dynamic
Vote Reassignment", Technical Report, Department of Computer Science,
Princeton University, May 1986.

[BERN84] Bernstein, P.A., and Goodman, N., "An Algorithm for Concurrency Control
and Recovery in Replicated Distributed Databases", ACM Transactions on
Database Systems 9(4), pp 596-615, December 1984.

26

[BERN87] Bernstein, P., Hadzilacos, V., and Goodman, N., Concurrency Control and
Recovery in Database Systems, Addison Wesley Publishing Co., 1987.

[DAVI85] Davidson, S. B., Garcia-Molina, H., and Skeen, D., "Consistency in Parti­
tioned Networks", ACM Computing Surveys 17(3), pp 341-370, September
1985.

[EAGE81] Eager, D.L., "Robust Concurrency Control in Distributed Databases",
Technical Report CSRG #135, Computer Systems Research Group, Univer­
sity of Toronto, October 1981.

[EAGE83] Eager, D.L., and Sevcik, K.C., "Achieving Robustness in Distributed Data­
base Systems", ACM Trans. Database Syst. 8(3), pp 354 - 381, September
1983.

[ELAB8_5] El Abbadi, A., Skeen, D., and Cristian, F., "An Efficient, Fault-Tolerant
Protocol for Replicated Data Management", Proc. 4th ACM SIGACT­
SIGMOD Symp, on Principles of Database Systems, pp 215- 228, Portland,
Oregon, March 1985.

[GARC84] Garcia-Molina, H., and Barbara, D., "Optimizing the Reliability Provided
by Voting Mechanisms", Proc. 4th International Conference on Distributed
Computing Systems, pp 34~346, May 1984.

[GARC85] Garcia-Molina, H., and Barbara, D., "How to Assign Votes. in a Distributed
System", Journal of ACM, Vol. 32, No. 4, pp 841-860, October 1985.

[GIFF79] Gifford, D.K., "Weighted Voting for Replicated Data", Proc. 7th ACM
SIGOPS Symp. on operating Systems Principles, pp 150 - 159, Pacific
Grove, CA, December 1979.

[HERL87] Herlihy, M., "Dynamic Quorum Adjustment for Partitional Data:", ACM
Trans. on Database Systems, Vol 12, No 2, pp 17~194, June 1987.

[JAJ087] Jajodia, S. and Mutchler, D., "Dynamic Voting", Proc. 1987 ACM SIG­
MOD, pp 227-238, San Francisco, CA, May 1987.

[KUMA88] Kumar, A., and Segev, A., "Optimizing Voting-Type Algorithms for Repli­
cated Data", Lecture Notes in Computer Science, Vol 303, J.W. Schmidt, S.
Ceri and M. Missekoff (eds.), pp 428-442, Springer-Verlag, March 1988.

[STON79] Stonebraker, M., "Concurrency Control and Consistency of Multiple Copies
of Data in Distributed lngres", IEEE Transactions on Software Engineering
3(3), pp 188-194, May 1979.

[THOM79] Thomas, R. H., "A Majority Consensus Approach to Concurrency Control",
ACM Trans. on Database Systems 4(2), pp 180-209, June 1979.

27

l• ~

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT

1 CYCLOTRON ROAD
BERKELEY, CALIFORNIA 94720

.,.-(

