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Abstract

A self-routing permutation network capable of rout-
ing all n! permutations of its n inputs to its n out-
puts is presented. The network implements the binary
radix sorting on the structure of the generalized base-
line nelwork, a modified model of the original baseline
network. The network has O(N log® N) hardware com-
plexity and O(log® N) delay time for N-inputs. The
network makes use of the localized bit information in-
stead of the global information in routing procedure.
This strategy leads to the reduction of both the hard-
ware and the delay time compared with other compa-
rable networks. The resulting hardware is simple, and
has a good regularity.

1 Introduction

A permutation network is a switching device which
is capable of routing any of all possible n! permu-
tations of its n inputs to its n outputs simultane-
ously without any path conflict. The permutation net-
work can be utilized in switching systems and par-
allel processing systems to provide high communica-
tion bandwidth[1, 2]. Well-known permutation net-
works are crossbar network and cellular interconnec-
tion arrays(3, 4]. However, they require too much hard-
ware cost(O(N?) switching nodes) to implement. The
Benes network can also realize all permutations us-
ing a global routing algorithm[5]. The fastest global
routing algorithm known for the Benes network needs
O(log® N)! time when a fully interconnected parallel
computer with N processing elements is used[6). The
excessive overhead is rather costly than the network
itself.

A self-routing permutation network has been of great
interest and much work has been reported. One ma-
jor advantage of self-routing over global routing is the
fast routing time. Nassimi and Sahni[7], and Boppana
and Raghavendra(8] showed that rich classes of permu-
tations can be self-routed on the Benes network with
simple switch setting strategies. In these algorithms
switch setting is determined simply by checking a bit
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of the destination address. However, these algorithms
cannot self-route all permutations.

At the expense of more hardware and proper strat-
egy, a self-routing permutation network can be imple-
mented. In other words, the global routing scheme
can be hidden in the hardware so that the network
can be regarded as self-routing. As an example, the
Batcher’s sorting network[9] can be used as a self-
routing permutation network. The Batcher’s network
can be implemented with the hardware complexity of
O(Nlog? N) and the delay time of O(log® N). Also,
a self-routing permutation network was presented by
Koppelman and Orug[11]. The network was derived
from particular Clos network called the complementary
Benes network by modifying the input stage switches,
and has O(log® N) delay time and O(N log® N) hard-
ware complexity. The network needs less hardware
than the Batcher’s network, but it has a longer de-
lay time, complex routing scheme and less regularity
of hardware.

In this paper, we present a self-routing permutation
network that has less hardware and smaller propaga-
tion delay than the forementioned two networks. The
network named baseline nesting baseline(BNB) net-
work has basic interconnection of the baseline network
but each switching stage is replaced by nested net-
works. The nested network also has the interconnec-
tion of the baseline network, but the switching devices
in each stage are specially designed. The Batcher’s net-
work uses compare/swap elements throughout the net-
work. Each of the element compares logN-bit to route
the inputs properly. The BNB network implements the
binary radix sorting algorithm on the generalized base-
line network(GBN), a modified model of the original
baseline network. "Thus, each stage uses only ohe bit
of the destination address for routing. More reduction
of the hardware complexity and propagation delay is
also obtained by the localization of the routing infor-
mation processing. The network has a simple routing
strategy and a good regularity of the hardware. The
analysis shows that the BNB self-routing permutation
network needs one third of the hardware needed by the
Batcher’s network and the delay time is two thirds of
that of the Batcher’s network.

In section 2, the baseline network is introduced. Also
the GBN and some notations are defined. In section



3, a 1-bit slice GBN named bit-sorier network is pre-
sented, and the structure of BNB self-routing permu-
tation network is described in terms of the GBN. Also,
the routing algorithm is presented. In section 4, the
structure of a splitter which is the core of the self-
routing scheme is presented together with the algo-
rithm. The hardware complexity and propagation de-
lay time are analyzed in section 5, and the complexi-
ties are compared with other two comparable networks.
The conclusion is presented in section 6.

2 The Generalized Baseline Network

In this section, the structure of the baseline network
is described and some notations are defined to derive
the BNB self-routing permutation network in terms of
GBN’s.

An N-input baseline network has m = log N stages
of switching elements, from stage-0 to stage-(m — 1)
beginning with the source side. Let the binary repre-
sentation of an integer 1 (0 < i < N — 1) be

(bm—1bm—2 -+ -brby—1 - -b1bo),

and the 2%-unshuffle (1 < k < m) of m-bit number ¢,
Uir(i), be

Ukm(l) = (bm—lbm-2 . ~bkb0bk-1 . bl)

Let Z(7,j) and O(3,5), 0<i<m—-1,0<j<N-1,
be the j-th input and output of stage-z.

Definition 1 : A 2F-unshuffle connection of 2™ lines,
U™, between stage-i and stage-i + 1 is a set of connec-
tions such that

0G,5) =I(i+1,Ul(j)), where 0<j<2™ ! O
The construction of a baseline network can be de-
scribed by a recursive process[12]. An N-input baseline
network consists of an N x N switching block in stage-
0 and two succeeding %-input baseline networks. The
process can be applied to the succeeding blocks recur-
sively. Using the above definition, the connection be-
tween stage-z and stage-(i + 1) of the baseline network
for (0 <t < m-—2)is given by,

0(,5) =Z(i+1,U™_;(j)), where 0<j<2™ "
The BNB network structure is based on the baseline
network since the interconnection of the baseline net-
work fits the binary radix sorting algorithm naturally.
In order to describe the self-routing BNB permutation
network, we define some notations in addition to those
already given.

Let SB(i) i=1,2,--- be a 1-bit slice 2' x 2 switching
box. Note that any 2'-input and 2-output switching
device can be considered as switching box SB(i). Also,
let sw(i) be a 1-bit slice 2/ x 27 primitive form of switch-

ing box which has 2/=! of 2 x 2 switches each of which
is controlled by an external signal, i.e., a sw(¢) needs

2¢-1 external control signals.
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Figure 1: 8-input Generalized Baseline Network,
B(3,SB)

Definition 2 : An N ((;z 2™)-input, m-stage gener-
alized baseline network(GBN) 1s a network which has
2% of SB(m — i)’s in each stage-i and 2™ ‘-unshuffle
connections between stage-i and stage-(i + 1), i =
0,1,---,m—=1. 0O

GBN may consist of any specific kind of switching box,
SBi,k = 0,1,2,---. Let By(m,SBg) denote an 1-bit
slice N(= 2™)-input, m-stage GBN which consists of
switching boxes, SBr(l), l = m,m—1,---,1. Also, let
Bi(m,SB:) be a g-bit slice 2™-input GBN of which the
k-th slice has 27 of SBy(m — i)’s in stage-i. Note that
each slice of B]Z(m,SBk) may have a different switch-
ing box as primitive switching element though they
have exactly the same structures. Also, note that a
2'-input GBN can be considered as a 2* x 2* switching
box, SB(#). Since a 2™~* x 2™~ switching element
of stage-i is connected to the succeeding two 2m~i~1-
input GBN’s recursively, stage(column)-% of the GBN
has 2 SB(m — k)’s. In Fig.1, the notations of 8-input
generalized baseline network and the process of the re-
cursive construction is shown. As shown, Fig. 1 can
be described by B(3,SB), which uses switching box,
SB(3), and which has 2% inputs and 3 stages. As de-
scribed above, stage-0 has 1 SB(3) and stage-1 has
2! $B(2)’s and so on. If we construct an N-input gen-
eralized baseline network with simple 2 x 2 switching
elements, sw(2)’s, then each stage has —g’— 2x 2 switches,
and the baseline network given in [12] is obtained.

3 BNB Self-Routing Permutation Net-
work

3.1 The Bit-Sorter Network

In this subsection, the structure of the bit-sorter net-
work(BSN) is described. The BSN will play a major
role in the routing to be introduced. The BSN is a
GBN which consists of special switching boxes named
splitters defined below. The splitters generate the flags
by decoding the inputs. The switches are set by the



flags. We first define a particular switching box which
is the primitive switching box of the BSN network. The
structure will be described in detail and the correctness
of the function will be proved in next section.

Let the inputs and outputs of a certain 27 x 27 1-bit slice
switching box we are regarding be s’(j) and s°(j)
0 <j <27~ 1. In addition, let M(s°(j)), 0 <
Jj £ 27 —1, be the number of the outputs, such that
j is even and s°(j) = 1. And, let M,(s°(4)) be the
number of the outputs of which j is odd and s°(j) = 1.
The same notation is used for the inputs.

Definition 3 : A splitter, sp(p), is a 2P x 2P 1-bit slice
switching element which can self-route its inputs to the
outputs by decoding its inputs, so that M.(sC(j)) =
My(s°()) ,0< <2 —1,forp>2 p=1,it
routes the inputs such that s°(0) = 0 and s°(1) = 1.0

It is assumed that the number of the inputs, s?(j) = 1
is even for p > 2. Also, for p = 1, it is assumed that
one input is 0 and the other is 1. The BSN is defined
with the splitter defined above.

Definition 4 : A 2% x 2% bit-sorter network(BSN) is
a 1-bit slice GBN, B(k, sp(1)), (1 <! < k) in which the
splitters are the switching elements of the network. O
That is, BSN is a 1-bit slice GBN which uses a spe-
cific switching box, splitter, which is defined above as
a primitive switching element. Thus, 2% x 2¥ BSN
has k stages and 2' of sp(k — I)’s in each stage-l,

0 <1<k~ 1. Note that, since the splitters self-route
their inputs to the outputs, the BSN is a self-routing
network.

Theorem 1 If ezactly half of the 2% inputs are 0°(1’s),
a bit-sorter network(BSN) routes its inputs 1o the out-
puts so that for all outputs, s°(3),

(¢

Proof : Let us consider a 2% x 2% bit-sorter net-
work(BSN). Then, the BSN is a B(k,sp(l)), 0 <1<
k — 1 by definition. Therefore, it has k stages and
2" of sp(k ~ I)’s in stage-l (0 < I < k ~1). With
the assumption that the number of the inputs with
s1(7) = 1 and that of the inputs with s1(j) = 0 are
the same, exactly half of the inputs(i.e., 2¥=! inputs)
are 1(or 0, equivalently). In the first stage of the BSN,
the sp(k) receives the inputs and splits them so that
M.(s°(j)) = M,(s°(j)) by Definition 3. Since BSN
is a GBN, sp(k) and the two subsequent sp(k — 1)’s
are connected by a 2%-unshuffle connection. Therefore,
the even numbered outputs of the sp(k) are connected
to the upper sp(k — 1) and the odd numbered outputs
are connected to the lower sp(k — 1). Consequently,
both of the subsequent two half-size sp(k — 1)’s receive
282 inputs of s1(j) = 1, equally. If this procedure
continues for (k — 1) stages recursively, at the final
stage, all the 28=1 sp(1)’s, which are 2 x 2 switching

if j 1s even

O
s7(4) ifis odd. O
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Figure 2: BNB Self-routing Permutation Network,
B(3,B3(i,SBy))

elements, receive two inputs, of which one is s/(j) = 0
and the other is s/ (j) = 1. This final stage switching
elements again split their two inputs by the bit, i.e.,
route the input of 0 bit to the upper output and the
other to the lower one by the definition of the splitter.
Therefore, all the even numbered outputs of the BSN
have 0 and all the odd numbered outputs have 1. O

3.2 The Structure of the Network

In this subsection the structure of the BNB self-routing
permutation network is described in terms of GBN’s
and the bit-sorter networks defined in the previous sub-
section. Also, the self-routing scheme is presented with
the structure. First, we define the structure of the BNB
network.

Let Z(z,j) be the input of the BNB self-routing net-
work. Also, assume that the word length of Z(z, j) is
¢ = m + w, where m bits are for the destination ad-
dress and w bits are for the data word. The bits of the
I(3,4), bi ;(T) 0 <1< m=1, are for the destination
address and b7 ;(Z) is the most significant bit(MSB) of
the address. Thus the whole network will be g of 1-bit
slice networks. The slices of the networks needed for
w-bit data words are only for the general description
of the network and they are not involved in the routing
of the network. They will follow the routing decided
by the bit-sorter network.

Definition 5 : A g¢-bit slice 2(= N)-input
BNB self-routing permutation network is a GBN,
B(m,B}(:,SB:)),0 < k < ¢—1, where

ifk#i
ifk=71,

Br(7) = sw(j)
5B+ (j) { sp(j)
and b¥;(Z)’s of Z(i,7)’s are input to the k-th slice,
Bi(i,SBy)’s. O

As defined, the structure of the BNB network can be

described as 2 level nesting of GBN. The N(= 2™)-
input BNB network has the structure of a GBN,
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Figure 3: A Profile of BNB Self-routing Permutation
Network

B(m, SB,), where the switching boxes of the GBN are
again the g-slice GBN’s, SB,(i) = Bi(i,SB;,). We
refer to the GBN’s of different levels as main network
and nesled network, respectively. The N{= 2™)-input
main network has 2¢ of 2% x 2™~% switching boxes in
each stage-i, where the 2™~% x 2™~% switching boxes
are ¢-bit slice 2™~%-input nested GBN’s. Each nested
network consists of ¢ slices of 1-bit slice GBN. Note
that each bit, bf)j () of I(i, j) is connected to the k-th
slice of the network.

In Fig. 2, B(3, B3(i,SBg)), 0 < k < 2, is shown. Each
input has 3 bits, i.e., the nested networks have three
1-bit slices. The MSB of the input is input to slice-0.
Note that the bit-sorter network is the i-th slice of each
nested network in stage-i of the main network from
Definition 5. Each bit-sorter network in a nested net-
work determines the routing of the whole nested net-
work which it belongs to. The other slices in a nested
network follow the routing of the bit-sorter network.
The profile of the BNB self-routing network is shown
in Fig. 3. The figure shows 1-bit slice of the BNB net-
work out of ¢-bit slices. From Definition 4 and 5, the
bit-sorter network is obtained if the SB(I)’s( ! = 1,2, 3)
are replaced by sp({)’s in Fig. 3.

In order to identify the nested GBN’s, we denote the
I-th nested GBN from the top of the stage-i of the
main network by NB(3,1), 0 <1 < 2* — 1. Also, let
the bit-sorter network(the i-the slice) of the NB(i,I;
be BSN(i,l). Then, the main network has NB(0,0
in the first stage, NB(1,0) and NB(1,1) in the sec-
ond stage and so on, as specified in Fig. 3. Note that
NB(i,l) is a 2™~*- input ¢-bit slice GBN. The 2™7*-
input 1-bit slice nested GBN’s in the stage-i of the
main network are B (i, SBy)’s. Each of them consists
of 99 of 2™=i=J x 2™~#-J switching boxes in the stage-
j of the nested network (0 < j < m —i—1). All the
gm=i=j yx 9m=i=j gwitching boxes are simple switch-
ing boxes, sw(m — i — j)’s, except the i-th slice of the
nested network (z is the stage number of the main net-
work). The i-th slices of nested networks in stage-i

5m

of the main network consist of 27 of sp(m — i — j)’s
in stage-j of the nested network. This i-th slice of
the nested network in stage-i of the main network is a
bit-sorter-network(BSN), which is able to self-route its
inputs to the outputs. In stage-i of the main network,
bit-i, b} ;(Z), of all the inputs Z(4, j) are connected to
the i-th slice of the nested network. As mentioned, the
i-th slice of NB(i,k) is a 2™ *-input bit-sorter net-
work.

In summary, the BNB network is a GBN in which
the switching boxes are again the g¢-bit slice nested
GBN’s of corresponding input sizes. The nested net-
works are also GBN’s which consist of simple switches
except the i-th slices. The i-th slices of the nested base-
line networks are bit-sorter networks of corresponding
input sizes which consist of splitters. That is, only
one slice(é-th slice, where i is the stage number of the
main network) out of g-slices of the nested network,
Bi(i,SBr) 0 < k < ¢ —1, is a bit-sorter network.
Tzf]e bit-sorter network can self-route its inputs to the
outputs as defined. All the other (¢ — 1)-slices of the
nested network consist of 27 sw(i — j)’s. A sw(i — j)
consists of 227971 sw(1), ie., 2 x 2 simple switches.
All the sw(1)’s in other slices of the nested network
follow the routing of the bit-sorter networks.

3.3 The Self-Routing Algorithm

The permutation capability comes from the proper
function of splitters. Since stage-i and stage-(i + 1)
of the BNB network is connected by a 2™~*-unshuffle
connection, U?_,, the outputs of a nested network,
NB(i,l), in stage-i are connected to two half-size
nested networks, NB(i +1,2l) and NB(i + 1,20 + 1),
in the subsequent stage-(i + 1). That is, the even
numbered outputs are connected to the upper half-
size nested network and the odd numbered outputs are
connected to the lower one. Let BSN(i,1) be the bit-
sorter network in the NB(:,[), that is, BSN(3, ) is
the i-th slice of N B(z,1). Note that the input, Z(3, j), .
0 <j < N-1(=2™m-1), has ¢ = m+w bits each. The
m bits, (bf-,]-(Z), 0 <1< m~—1), are for the address,
in which b7 ;(Z) is the MSB of the address. Therefore,

slice-0 of the nested network is for the MSB of the input
addresses.

Also recall that all the sw(1)’s of NB(3,1)’s in stage-i of
the main network follow the routings of sw(1)’s in the
splitters located in the corresponding position in the
GBN structure of the BSN (4,1), which is the i-th slice
of the NB(i,1). Thus, the routings of the nested net-
work, N B(%,l)’s are determined by BSN(z,1)’s which
are the i-th shce of NB(,1)’s.

Theorem 2 The BNB neiwork defined can self-route
any permutation of the inpuls to the outpuils. D

Proof : Recall that a 2™-input BNB network is a
GBN, B(m,B}(¢,5B;)), 0<i<m-1,1<k<qg-1.
Each stage-i of the main GBN has 2° of ¢-bit slice
2m~i_input GBN’s, Bf(m — i,SBy), of which the é-
th slices are bit-sorter networks(BSN’s). Assume the



inputs are a permutation of 0 through N — 1(N = 2™),
then exactly 2™~! inputs will have 0’s(1’s, equiva-
lently) in bit-0. The BSN(0,0) of NB(0,0) sorts
the inputs and routes them to its outputs so that for
all outputs O(i, 5), b?‘j((.')) =0 if j is even, and
b ,(0)=1 ifjis odd. As mentioned, all other slices
of the NB(0,0) follow the routing of the BSN(0,0).
Since the connection between NB(0,0) and succeed-
ing NB(1,0) and NB(1,1) is a 2™-unshuffle connec-
tion, NB(1,0) will receive all the even numbered out-
puts of NB(0,0) and N B(1,1) will receive all the odd
numbered outputs of NB(0,0). That is, NB(1,0) re-
ceives all the outputs of N B(0,0) of which bit-0 1s 0,
and N B(1,0) receives the outputs of which bit-0 is 1.
Consequently, stage-1 receives the inputs sorted by bit-
0. In stage-1, BSN(1,0) of NB(1,0) and BSN(1,1)
of NB(1,1) route the network. Since BSN(1,0) and
BSN(1,1) are slice-1 of the nested networks, they
take b} ;(Z)’s of the inputs. BSN(1,0) and BSN(1,1)
route their inputs so that all the even numbered out-
puts have b} ;(Z) = 0 and the odd numbered outputs
have b} ;(Z) = 1. Again, by the 2"~ '-unshuffle con-
nection, U%_,, between stage-1 and stage-2, N B(2,0)
and NB(2,2) receive those inputs having b} ;(Z) = 0,
and NB(2,1) and N B(2, 3) receive those inputs having
bz{j (Z) = 1. Of course, from the routing of stage-0, the
inputs of NB(2,0) and NB(2,1) have Y ;(Z) = 0, and
the inputs of NB(2,2) and N B(2,3) have b7 ,(T) = 0.
This procedure continues recursively to the final stage.
Then at the final stage, i.e., stage-(log N — 1) of the
main network which has 2™~! of sp(1)’s, the in-
puts are already sorted from the top switch to the
bottom one by bit-0 through bit-(m — 2) except bit-
(m —~ 1). Bit-(m — 1) is the least significant bit of
the address. The sp(1)’s will have one input with
577 HZ) = 0 and the other with 67571(Z) = 1. Fi-
nally, by definition of the splitter, they send the inputs
with b;’jj_l(I) = 0 to the even numbered outputs and

send the inputs with b:nj_l(I) = 1 to the odd numbered

outputs. That is, the inputs(the destination addresses)
are routed(sorted) to the outputs where they are des-
tined. Therefore, if the inputs are a permutation of
the destination addresses (0 through N — 1), the BSN
self-routes its inputs to the outputs. O

4 The Splitter

In the previous subsection, we showed that if the
splitters route their inputs to its outputs so that
Me(s°(5)) = Me(s®(j)) as defined, the BNB network
can self-route any permutation of the inputs. The per-
mutation capability basically comes from the idea of
splitters and the connections of the network. In this
section, we present the switch setting algorithm and
the design of the splitter.

A 2P x 27 splitter which is the primitive switching ele-
ment of the bit-sorter network consists of two parts: a
2P-input arbiter and a sw(p).
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Figure 4: 8-input Splitter, sp(3)

Definition 6 : A 2P-input arbiter, A(p), is a tree-
structured function logic which generates flags to set
the switching box, sw(p), in the sp(p) so that the split-
ter may work as defined. O

Thus, sp(p) has a sw(p) and an A(p). The structure of
an 8-input splitter, sp(3) is shown in Fig. 4. As shown,
it consists of an 8-input arbiter, A(3), which has tree
structure, and an 8 x 8 switching element, sw(3).

An arbiter, A(p), in a sp(p) is a 1-bit slice 2P-input
function logic tree. When the bit inputs go up the
logic tree, each node of the arbiter sends up state in-
formation to its parent to receive flag from its parent.
A node generates the flags itself or receive the flag from
its parent on condition and sends down the flags to its
children. As will be described later, switches are set
autonomously using the flags.

We use sw(1)’s as the primitive switching device of the
design. Thus, a sw(p) has 2771 2 x 2 switches. By
the unshuflle connection of the GBN defined, the two
outputs of 2 x 2 switches of a sp(p) are always split
into the upper sp(p — 1) and the lower sp(p — 1) of
the subsequent stage. That is because one of the two
outputs of a sw(1l) is even numbered and the other
is odd numbered output and all the even numbered
outputs are connected to the upper half-size splitter,
sp(p — 1) and odd numbered outputs are connected to
the lower one by the unshuffle connection.

Let the two outputs of the 2 x 2 switches, the upper
and the lower output, be named as OU and OL, re-
spectively.

Definition 7 : A type-1 pair for a 2 x 2 switch is a
pair of the same inputs 0 and 0, or 1 and 1.

A type-2 pair refers to the input pair of different bits,
Oand 1,0or 1 and 0. O

The switch setting is determined by the inputs and the
flag from the arbiter. That is, the input bit is XOR-
ed with the flag from the arbiter. This switch setting
signal is sent to all other sw(1)’s in the corresponding
locations of other slices in the same nested network, so
that other slices are routed in the same way with BSN.
The following switch setting algorithm will split the



inputs so that M,(s°(j)) = M,(s°(j)). Consequently,
those two succeeding sp(p— 1)’s have the same number
of 0’s and 1’s.

Let s'(j) be the input and f(j) be the flag from the
arbiter.

Algorithm :

1. Each node of the splitter sends up the XOR of the
two input bits to its parent.

2. If the XOR of the two input bits is 0, then it gener-
ates the flags itself and sends down 0 to its upper
child and 1 to the lower one regardless of the flag
from its parent.

3. If the XOR of the two inputs is 1, then it sends
down the flag from its parent to both of its chil-
dren.

4. At the root of the tree, the XOR of the two inputs
is echoed as the signal from its parent.

5. The switch setting is

) ={

Lemma 1 : If the flags of the type-2 pair from the
arbiter are 0’s (the inputs of the type-2 pair receive the

same flags by the algorithm), the input of s'(j) = 1 is
always routed to OL and the input of s/(j) = 0 is
routed to OU. Also, if the flags are 1’s, the input of
s'(j) = 1 is always routed to OU and the input of
s'() = 0 is routed to OL. O

This lemma is obvious from the switch setting strategy.

oU ifs’()® f(j)=0
oL ifs'(j)® f(j) = 1.

Theorem 3 A 27 x 2?7 splitter, sp(p) routes its inputs,
s'(j), 0 < j < 2 —1, to its oulpuls by funciion-
ing on the inpuis using the described algorithm so that
M (s°(j)) = M,(s°(j)), forp < 2. Ifp =1, then it
routes the inputs such that s°(0) = 0 and s(1) = 1. O

Proof: For a 2°-input splitter, sp(p), it has an A(p)
and a sw(p) which consists of 22~! sw(1)’s. The out-

puts of 227! sw(1)’s are connected to the succeeding
two half-size splitters, sp(p — 1)’s. Since the connec-
tion between them is a 2P-unshuffle connection of GBN,
the even numbered outputs are connected to the upper
sp(p—1) and the odd numbered outputs are connected
to the lower one. Also, since one of the output of a
sw(1) is even numbered output and the other is odd
numbered output, the two outputs of the sw(1) are al-
ways split to the succeeding upper and lower half-sized
splitters, sp(p — 1). Thus, as long as the type-1 pair
is concerned, the 1’s(or 0’s) are split to the upper and
lower sp(p — 1)’s equally regardless of the switch set-
tings, exzchange or straight. For the type-2 pair, the
XOR of the two inputs is 1, so the node sends up 1
and sends down the flag from its parent. Whenever the
XOR of two inputs is 0 at any node, the node sends
down 0 to the upper child and 1 to the lower child re-
gardless of the flag from its parent. Since the XOR
of type-2 pair is 1, it goes up until it meets another
1 from another type-2 pair to result in 0 on XORing.

579

2y 2d

*——

)

1

|
;o]

Figure 5: The Schematic of a Function Node of the
Arbiter

Then, the node which has 0 as a result of XOR sends
down 0 to one child and 1 to the other child. That is,
the type-2 pairs are always paired as long as the total
number of the type-2 pairs is even, and half of them
receive 0 and the other half receive 1 as flags. Con-
sequently, the number of type-2 pairs which receive 0
flags and which receive 1 flags are the same. From
Lemma 1, the type-2 pair which receives flags of 0 al-
ways routes the input of s/(j) = 1 to OL. Also, the
type-2 pair which receives flags of 1 always routes the
input of s/(§) = 1 to OU. Therefore, the same num-
ber of inputs which have bit 1 are routed to OU’s and
OL’s, i.e., M.(s°(j)) = M,(s°(5)). O

It is assumed that the number of the inputs having
s'(j) = 1 is even for p < 2, and the inputs are differ-
ent(l.e., 0 and 1) for p = 1. This assumption is always
satisfied since we assume that the inputs are the per-
mutation of the numbers 0 through 2™. In Fig. 4, only
one of the two flags from the arbiter is used for a pair
of inputs in switching setting under the assumption of
no conflict. However, the other flags and the other in-
puts can be used to deal with the conflicts if needed in
some applications.

The implementation of the schematic logic of the func-
tion node is shown in Fig. 5. An arbiter has a tree
structure of the function nodes as mentioned. In Fig. 5,
z; and z, are the inputs from the children, and z, is
the information sent up to the parent. z4 is the flag
from the parent, and y; and y, are the flags from the
parent. As shown, for the type-1 pair, the node al-
ways generates y; = 0 and y2 = 1 regardless of the
flag from the parent. For the type-2 pair, it sends the
flag from the parent to the children. All the function
nodes of the arbiter are the same. So, the structure is
regular and simple. No other strategies are needed to
set the switches. The whole BNB self-routing network
basically needs only the function nodes shown in Fig. 5
and the 2 x 2 switches, sw(1)’s.

5 The Analysis of Complexities

In this section, the hardware complexity and propaga-
tion delay are analyzed and they are compared with
those of the Batcher’s odd-even sorting network and
the network presented by Koppelman [11].



5.1 Hardware Complexity

Let Cpnp(N) and Cnp(N) be the hardware com-
plexity of the N-input BNB self-routing -permutation
network and N-input nested baseline network, respec-
tively. Then, the hardware complexity of the N-
input BNB self-routing permutation network can be
expressed by the recurrence equation

Cons(N)=2-Cans(5) +Crs(N). (1)

The cost of the P-input nested network is also de-
scribed by the recurrence equation. Let w be the
length of the data word, then we need log P bits for
the destination address and w bits for the data. Thus,
(log P+w) slices of 1-bit slice networks are needed, and
one of them is BSN. BSN has an arbiter in addition to
the switching elements needed for other slices. As a
consequence, the cost of a P-input nested network is

CNB(P) = CNB,SW](P)'(logp+w)+CNB,A(P)7 (2)

where Cyp,sw1(P) is the cost of the switches in an 1-
bit slice of a P-input nested network, and Cnp a(P) is
the cost of the arbiter in a P-input bit-sorter network
slice of P-input nested network. Since P-input nested
GBN has log P stages,

P
Cnpswi(P) = (5 -log P) - Csw,

where, Csw 1s the cost of a 2 x 2 switch.

The arbiters have tree structures, so the number of a
P-input arbiter has P — 1 nodes. Therefore, the cost
of arbiters in a P-input bit sorter network is described
by the recurrence equation

Cng,a(P)

®3)

Ca(P)+2-Ca(%)

(P=1)+2-Ca(3)

P
2

(4)

I

P P
(Plog(g) -3 +1)-Crn,

where Cpy is the cost of a node. Note that A(1) does
not consist of the function nodes. It is a wiring since
the input bit itself is the switch setting signal for A(1).

From equation (1), (3) and (4), the cost of a nested
network is given by,

P
Cnp(P) = (5 -log P(log P + w)) - Csw

(5)

Finally, from the recurrence equation (1) and (5), the
total cost of N-input self-routing BNB permutation
network is described by,

Cpnp(N)=2-Cpnp(§)+ Cnp(N)
= (£log’ N+ Xlog’ N + Elog N
+y;fi(log2 N +log N)) - Csw
+(Xlog? N~ NlogN + N — 1) - Crn.

P P
+(Plog(5) ) +1)-Crn.

(6)
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5.2 Propagation Delay

Since the arbiters are the 1-bit slice function logics,
each node does not have logic units like log N-bit
adders which may cause propagation delay inside the
node.

Let Dsw be the delay of a 2 x 2 switch, and Dpy be
the delay of a node of an arbiter. The propagation de-
lay, DpnB,sw, of the switches in the network is given
by the total number of the stages in the network.

log N

Z k- Dsw
k=1

%log N(log N +1) - Dsw. (1)

DpnB,sw

Since each splitter in the nested network has an ar-
biter of corresponding size, the total propagation de-
lay of the arbiters in the self-routing BNB permutation
network is described by

Dpnp.ry =2 Y82 iyl Den
= (Llog® N +1og? N — £log N) - Dpn.

®)

Note that A(1) is only a wiring of the input bit to
switch for the setting. Therefore, the total propaga-
tion delay, Dpnp of the self-routing BNB permutation
network 1s, from (7) and (8), described by

1 4
DBNB (glogsN—HogzN— g1ogN).DFN

1 1
+(§log2N+ 5108 N) - Dsw. (9)

5.3 Comparison

As forementioned, the Batcher’s odd-even sorting net-
work can connect any permutation of its inputs to its
outputs without conflict. In this subsection, the hard-
ware and the delay time complexities are compared.
The number of comparison elements in the N(= 2™)-
input Batcher’s odd-even sorting network for one-bit
input is given by [9],

N N
Cce,par(N) = —4—log2N - ZIOgN +N-1. (10)

The comparison element of the Batcher’s sorting net-
work consists of switches and function logics for com-
parison. For the log(N)-bit address and w-bit data
word length, the total hardware complexity Cpar is

CBAT(N) = (%logsN + Mu;—_lllogz]\f
—(Me — N +1)log N + (N - 1)w) - Csw
+(%log3N - %logzN + (N —=1)log N) - Crn(11)

Tlle delay time of the Batcher’s sorting network, Dpar
is

1 1
Dpar = (§1°g3N+§log2N)'DFN
1. 5 1



Table 1: Hardware Complexities

Hardware 2x2 Function | Adder
Network Switches | Slices Slices
Batcher % log’ N % log° N | —
Koppelman[11] | Flog® N | Zlog”’ N | Nlog’ N
This paper Hlog® N | Hlog’ N | -

Table 2: Propagation Delay

[ Network [ Delay ]

Batcher Llog® N + %logl N

Koppelman([11] | 2log® N — log’N + Llog N + 1
This paper Llog® N + 3log” N — 2log N

In table 1, the complexities of three comparable net-
works are shown in terms of 2 X 2 switches and func-
tion logic units. The self-routing permutation net-
work(SRPN) presented by Koppelman, et. al. has
adder-slices for their ranking circuit and function log-
ics to route the inputs according to the routing table in
addition to the switches. We compare the complexities
assuming that those function and switch slices of the
three networks are comparable. As shown in Fig. 5,
the function node of the BNB network consists of few
gates. Also it is simple and regular.

Table 2 shows the propagation delay of the three net-
works. As shown, assuming Dgsw, Dry, Csw and
Crpn of the three networks are comparable, both the
hardware complexity and the delay time of the self-
routing BNB permutation network are smaller than
those of the Batcher’s and Koppelman’s. Note that
the highest term of the delay time is due to the delay
of the function nodes only, and the delay of the func-
tion node of this paper is only the delay of one gate.
For the lower order terms, the delays of switches and
function nodes are added together.

Compared with the Batcher’s network, the Koppel-
man’s network(SRPN) [11] saves hardware. It is ba-
sically because the network does not consist of com-
pare/swap units which the Batcher’s network consists
of throughout the network. Instead, it uses ranking
circuits and cube networks to route the inputs. The
ranking circuit is a tree which consists of four kinds of
adder nodes. The switches of the cube network are set
for bit sorting according to preset routing rules using
the rankings from the ranking circuit and the input
bits. Further reductions were obtained in this paper
by implementing the binary radix sorting on baseline
network structure. In contrast to the efforts to sort
bits with global informations, the splitting needs only
local bit informations. Each node of splitter needs two
bits from its two children and one bit from its par-
ent for decision. At the end of each stage of the main
network, the bits are completely split and the inter-
connection of the baseline network naturally groups
the sorted entries. The structure is also simple and
regular consequently. All nodes are the same one-bit
function logics.
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6 Conclusion

In this paper, we have presented the algorithm and the
structure of a self-routing permutation network. The
hardware cost complexity is O(N log3 N) and the prop-

agation delay is O(log® N). Though the complexities
are of the same order as those of the Batcher’s odd-
even sorting network, our network has less hardware
and smaller delay time. The analysis shows that the
network needs about one third of the hardware of the
Batcher’s network and the routing delay time is two
thirds of that of the Batcher’s network by the high-
est order term comparison. In addition, the routing
algorithm is simple, and the hardware has a good reg-
ularity.
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