
Comprehensive Distributed Garbage Collection by Tracking Causal
Dependencies of Relevant Mutator Events.

Sylvain R.Y. Louboutin* Vinny Cahillt
Distributed Systems Group!

Department of Computer Science!
Trinity College, Dublin 2 , Ireland

Abstract

Comprehensive distributed garbage collection an object-
oriented distributed systems has mostly been addressed
via distributed versions of graph-tracing algorithms,
a legacy of centralised garbage collection techniques.
Two features jeopardise the scalability of these ap-
proaches: the bottleneck associated with having t o reach
a global consensus before any resource can actually be
reclaimed, and the overhead of eager log-keeping. This
paper describes an alternative approach to comprehen-
save distributed garbage collection that entails comput-
ing the vector-time characterising the causal history of
some relevant events of the mutator processes compu-
tations. Knowing the causal histories of these events
makes it possible to identify garbage objects that are
not identifiable b y means of per-site garbage collection
alone. Computing the vector-times necessary to iden-
tify garbage is possible without the unbounded space
overheads usually associated with dynamically recon-
structing vector-times of arbitrary events of distributed
computations. Our approach integrates a lazy log-
keeping mechanism and therefore tackles both of the
aforementioned stumbling blocks of distributed garbage
collection,

Keywords: comprehensive global garbage detec-
tion, causal dependencies, mutator events, lazy log-
keeping, scalability, robustness.

1 Introduction

Automated garbage collection in object-oriented sys-
tems is often advertised as a means of obviating the
burden and hazard of explicit resource management,
i.e., as a lesser evil or expensive convenience, which

'Email: Sy1vain.LouboutinOdsg.cs.tcd.ie
t E-mail: Vinny.Cahill@dsg.cs.tcd.ie
iURL: http://www.dsg.cs.tcd.ie/
Ifax: (+353-1) 6772204

could nevertheless be avoided altogether under ap-
propriate circumstances. This might be true in the
context of a centralised system where each thread of
control independently manages its own private object
graph, i.e., where the visibility, accessibility, and lifes-
pan of objects does not extend beyond the scope of the
thread that created them. However, we contend that
automated distributed - or global - garbage collec-
tion is necessary and unavoidable in a distributed sys-
tem featuring persistent and shared objects [13, 141.
In this case, objects may outlive the thread(s) that
created them and may be shared by threads that can-
not have an up-to-date, consistent, and comprehensive
view of the overall object graph spanning a number of
disjoint address spaces scattered among autonomous
processors.

Traditional global garbage collection algorithms
based on the iterative graph tracing approach are com-
prehensive, i.e. , inherently able to detect all garbage,
including distributed cycles of garbage, but make it
necessary to account for all live objects in the system
before garbage objects can be detected and their re-
sources reclaimed. Garbage is detected in at most, but
no sooner than, one iteration of the algorithm. In par-
ticular, distributed global garbage collection requires
that every site in the system eventually participates in
every iteration. This drawback, inherent to all graph
tracing based global garbage collection algorithms and
referred to as the consensus bottleneck, as well as the
overhead of eager log-keepzng (see §2.3), jeopardises
the scalability of these approaches.

This paper describes a new approach to global
garbage collection that entails reconstructing the
vector-times that characterize the causal history of
some relevant events of the mutator processes com-
putation. These events are those that result in mod-
ifications to the inter-site paths in the global object
graph. It will be shown that knowing the causal
history of these events makes it possible to identify

516 0-8186-7813-5/97 $10.00 0 1997 IEEE

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:26 from IEEE Xplore. Restrictions apply.

http://www.dsg.cs.tcd.ie

garbage objects that are not identifiable by means of
per-site garbage collection alone. This algorithm is
intrinsically comprehensive, although it is not based
on a graph-tracing algorithm, and hence its scalabil-
ity is not hampered by the aforementioned consensus
bottleneck. Its message complexity depends on the
number of garbage objects, rather than the number
of live objects, as is the case for graph tracing based
approaches. Moreover, its underlying lazy log-keeping
mechan i sm, does not require additional control mes-
sages, even in the case of third party exchanges of ref-
erences, guaranteeing the robustness of the algorithm.
Loss of messages cannot cause erroneous identification
of live objects as being garbage, i.e., message loss does
not compromise the safety of the algorithm. Instead,
loss of messages can only cause residual garbage to
remain undetected.

We proceed as follow: $2 lays the background for
this paper by discussing how global garbage collection
algorithms address the issues of partitioned address
spaces and distribution by decoupling local and dis-
tributed aspects of garbage collection. The ritle of
log-keeping is introduced leading to a short survey
of traditional comprehensive global garbage collection
algorithms outlining the main flaws of these graph-
tracing approaches. $3 introducing our alternative ap-
proach, explaining how garbage can be identified from
the causal histories of some of the events of the muta-
tor processes computation, and introduces the way in
which our algorithm computes the vector-times char-
acterising these causal histories, using an underlying
lazy log-keeping mechanism. $4 details how our ap-
proach compares wi+,h a related algorithm, proposed
by Schelvis [16], that relies on an eager log-keeping
mechanism, which compromises its scalability and ro-
bustness. $5 summarises the contribution of this pa-
per.

2 Background
An object is a contiguous portion of address space and
a container of references to other objects. Objects
are the vertices and references the edges of a directed
graph. Some objects known as roots, constitute the
“entry points” for the application processes that ac-
cess and modify the object graph. An object that is
not reachable from any of these roots, i.e., when there
is no longer a directed path along the edges of the ob-
ject graph, from any root t o the object, is garbage.
Garbage objects must be collected in order to reclaim
their resources. In a distributed system, this object
graph is partitioned over a number of independent ad-
dress spaces - or si tes - themselves distributed over
a set of autonomous physical hosts. Edges of the ob-

Local Objects -

Figure 1: Root set used for local garbage collection.

ject graph may or may not cross site boundaries. In
a loosely-coupled distributed system, each site inde-
pendently manages its own resources. Thus, distribu-
tion demands some degree of decoupling between local
garbage collection and what we later define as global
garbage detection.

2.1

An approach inspired by Bishop [3] to scavenging a
partitioned address space can be generalised to de-
scribe all decentralised global garbage collection algo-
rithms, i.e., algorithms that allow autonomous local
garbage collectors to proceed concurrently. In this ap-
proach, per-site garbage collection is performed locally
and independently of any other site. The root set used
for local garbage collection consists of some local roots
- tlhe local root set - i.e., objects arbitrarily desig-
nated as roots, plus some global roots - the global
root set - i.e., local objects that are alleged to be
referenced from other (possibly remote) sites.

(Once a reference to some object crosses its site
boundary, it is not possible to determine locally
whether or not it is still reachable from any root. The
local garbage collector must therefore conservatively
consider it to be a global root. Until proven otherwise,
all local objects reachable from this root are consid-
ered to be live, as are any objects reachable from local
roots. Figure 1 shows the different root sets.

‘The union of the local root set and global root set
is a superset of the actual root s e t . The actual root
set of a given site contains only the roots from which
all the live objects, and only the live objects of that
site, can be reached. The actual root set of a site is
the union of the local root set and the set of remotely
reachable global roots. Only global garbage detection
can determine whether or not a given global root is
still remotely referenced.

Partitioned Address Spaces & Root Sets

517

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:26 from IEEE Xplore. Restrictions apply.

Taking full advantage of the decentralised nature
of a distributed system entails maintaining a conser-
vative approximation of the actual root set for each
individual site locally, and progressively ridding it of
objects that are no longer remotely referenced. We
refer to the process of maintaining this conservative
approximation to the actual root set as log-keeping.
The process of removing objects that are no longer re-
motely referenced from the global root set is known as
Global Garbage Deteci ion (GGD).

2.2 The Global Root Graph

The global roots of each individual site taken together
form a distributed graph known as the global root
graph. A vertex of the object graph that has had at
least one incoming edge that crosses its site boundary
is a global root and becomes a vertex of the global
root graph. Every outgoing path from a global root,
which crosses its site boundary (via some vertices of
the object graph collocated on the same site), becomes
a single edge in the global root graph. A root of the
global root graph is a root of the object graph that
has such an outgoing path from it that crosses its site
boundary.

Figure 2 depicts an object graph in its upper por-
tion and the corresponding global root graph in its
lower portion. As every edge of the global root graph
crosses some site boundary, these boundaries become
implicit and hence need not be represented.

As the distributed object graph evolves, a global
root on some site may no longer be remotely reachable.
This means that there is no longer a path from any
root to this object along the edges of the global root
graph. Such an object can be discarded from the set of
global roots of its site, narrowing the root set of that
site down to a better approximation of its actual root
set. GGD can therefore be described as performing
garbage collection of the global root graph. A global
root discarded by GGD may however remain reachable
from some local root, i.e., it is up to local garbage
collection to detect and collect actual garbage.

2.3 Log-keeping

Log-keeping is essentially the task that application
processes - or mutators - must perform in addi-
tion to their own computation, in support of GGD.
Log-keeping serves two purposes:

1. It keeps track of objects to which references have
crossed their site boundary, i.e., log-keeping iden-
tifies global roots.

2. Log-keeping also contributes to maintaining ad-
ditional information depending on the choice of

’ % -

Site 1 Site 2
-, \

Figure 2: An object graph and its global root graph.

GGD strategy. For instance the contents of the
logs may consist of a “weight” as in “weighted
reference counting” schemes [a, 19, 61 or the iden-
tity of the recipient of a reference as in “reference
listing” schemes [15].

These logs, which may be either centralised or dis-
tributed, together constitute a consistent, although
not necessarily complete, snapshot of the object graph.
The logs are consastent if they reflect a consistent
cut of the distributed mutator computation [l]. This
means that if the occurrence of some event of the mu-
tator computation is recorded in these logs, then all
events that causally precede it have also been recorded.
Such a snapshot may be built incrementally by the
mutator processes as the overall object graph evolves
and remains consistent provided that there are no race
conditions between control messages necessary for log-
keeping. The logs may form an incomplete snapshot
because log-keeping alone is not necessarily sufficient
to identify garbage.

We distinguish two strategies for log-keeping: ea-
ger and lazy. The former may require additional con-
trol messages to be sent by the mutator processes,
while the latter does not.

When an object reference crosses a site boundary,
an eager log-keeping mechanism attempts to immedi-
ately update the log maintained for the target object.
If this log is collocated with the corresponding object,
or maintained by some centralised service, this may in-
volve additional control messages when exchanging ref-
erences to some third-party remote object. This may
in turn lead to race conditions between these control

518

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:26 from IEEE Xplore. Restrictions apply.

messages and control messages used to signify the de-
struction of edges in the global root graph. This race
condition could jeopardise the consistency of the logs
and ultimately can compromise the safety of GGD.
Ensuring the consistency of these logs under such con-
ditions, i.e., when eager log-keeping is used, can be
rather costly and compromise the robustness of GGD
as explained in $3.

Lazy log-keeping prevents this race condition from
occurring by postponing the delivery of control mes-
sages used to signify the creation of new edges in the
global root graph until they become necessary, as ex-
plained in $3.4.

2.4 Pitfalls of Distributed Graph Tracing

Comprehensive GGD has mostly been addressed via
distributed versions of graph-tracing [7] based algo-
rithms. Two phases can usually be identified in these
GGD algorithms [lo, 9, 41. The first phase involves
detecting live objects, while the second phase makes
sure that the first one is complete.

These algorithms are better described as live ob-
ject detection rather than genuine garbage collection
algorithms because garbage is characterised as being
everything that is not alive. Live objects may be ei-
ther detected directly by colouring the object graph in
situ [lo, 91, or indirectly from the logs maintained by
the log-keeping mechanism. The contents of these logs
may be used to reconstruct consistent representations
of the overall object graph that can be traced locally,
either by a conceptually centralised service [ll], or by
each site that is participating in GGD [4].

Once it has been determined that all live objects
have been accounted for, or that enough information
has been collected to reconstruct a consistent represen-
tation of the object graph, garbage objects can then
be safely identified and their resources reclaimed, This
termination detection is often performed as a distinct
phase [lo, 9, 41, although using a conceptually cen-
tralised log-keeping service obviates an explicit termi-
nation detection phase [l l] . Moreover Tel has also
shown how these two phases can be superimposed [18,

To increase concurrency, multiple GGD iterations
may overlap and proceed concurrently, e.g., an ap-
proach using time-stamps [9] makes it possible to inter-
leave any (bounded) number of iterations. However,
all sites in the system are still required to eventually
participate in completing any given GGD “iteration”
and must reach some kind of consensus.

In summary, two features of graph-tracing based
GGD approaches jeopardise their scalability: on one
hand the bottleneck associated with having to reach

pp.193-2261.

global consensus before any resource can actually be
reclaimed, i.e., the “consensus bottleneck.” On the
0the.r hand, these GGD algorithms must either rely on
eage.r log-keeping in order to benefit from the flexibil-
ity amd increased parallelism of autonomous per-site
garbage collector or must use exhaustive in situ global
graph tracing.

3 An Alternative to Graph Tracing
Comprehensive approaches are therefore generally be-
lieved to be necessarily unscalable [15]. As a con-
sequence, comprehensiveness has often been traded-
off for scalability under the assumptions that dis-
tributed cycles are relatively rare, and that only
grap h-tracing algorithms can be intrinsically compre-
hensiive [6, 2, 191. Instead, in the absence of empirical
evidence to the contrary, we contend that distributed
cycles of garbage are as likely to occur as local cycles,
and that intrinsically comprehensive GGD algorithms
can, in fact, be scalable as well.

Our alternative to graph-tracing consists in an-
alyzing the mutator processes computatzon, focusing
on those aspects directly relevant to GGD, and sub-
sequently referred to as “log-keeping events.” Re-
constructing the causal history of a given log-keeping
event, using known techniques, e.g., [8], might require
that each site or object maintains a rather large local
history of events. We show however that it is possi-
ble to do so with reasonable space overhead because
log-keeping events are not events of an arbitrary com-
putation (see $3.3).

3.1 Log-keeping Events

The execution of the mutator computation can be rep-
resented as a space-time diagram where each global
root appears as a process exchanging log-keeping con-
trol messages with other global roots. An event num-
ber j for a process i is denoted e i , J .

There are two kinds of log-keeping control mes-
sages, indicating respectively the creation or the de-
struction of an edge in the global root graph. When-
ever a new edge is created, or an existing edge is re-
moved, from some global root to another one, a log-
keeping control message is conceptually sent from the
former to the latter. A log-keepzng event corresponds
to receiving a log-keeping control message. There are
two lkinds of log-keeping events that correspond re-
spectively to the creation or destruction of an edge to
the corresponding global root. These events are re-
ferred to respectively as edge creatzon events and edge
destructzon events.

Figure 3 represents the evolution of a global root
graph used throughout the reminder of this paper to

5 19

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:26 from IEEE Xplore. Restrictions apply.

illustrate our algorithm. Figure 4 shows the corre-
sponding space-time diagram. In this particular ex-
ample, each object is assumed to be located on its
own site, and as a result, the actual object graph is
identical to its corresponding global root graph. This
graph evolves according to the following scenario: a
root object 1 creates an object 2 (event e2,1). Object
2 creates object 3 (event e3,1) and then object 4 (event
e4 , l) . Object 2 subsequently sends object 4 a message
containing a reference to object 3, creating an edge
from object 4 to object 3 (event e3,2) . Similarly, ob-
ject 2 sends object 3 a message containing a reference
to object 4 hence creating an edge from object 3 to
object 4 (event e 4 , ~) . Object 2 then sends a reference
denoting itself to object 4 creating an edge from object
4 to object 2 (event e2,2). The last modification to the
global root graph by the mutator process represented
in Figure 3 is the destruction of the edge from the root
to object 2 (event e 2 , ~) . Subsequent modifications to
this global root graph are due to GGD as explained
later on.

The log-keeping mechanism contributes to main-
taining a direct dependency vector (DDV) similar
to what Fowler & Zwaenepoel [SI describe. Log-
keeping events are numbered sequentially, i.e., time-
stamped, at each process with a monotonically increas-
ing counter. The DDV of an event is derived from
the DDV of its local predecessor by including its own
time-stamp, and the time-stamp of its direct remote
predecessor.

The value 0 in a dependency vector indicates that
no log-keeping message has yet been received from the
corresponding global root. On the other hand, E rep-
resents the time-stamp of the direct remote predeces-
sor of an edge destruction event, i.e., it indicates that
the last log-keeping control message received from the
corresponding global root was an edge destruction log-
keeping control message. Edge creation events and
edge destruction events are represented as black dots
or white triangles respectively in Figure 4.

3.2 Characterization of Garbage

Unlike the DDV that the log-keeping mechanism con-
tributes to maintaining, the full vector-time of an
event takes the transitive closure of causal dependen-
cies into account, and fully characterises the causal
history of the corresponding event,

The DDV of event e3,1 in Figure 4, denoted
D D V (e 3 , 1) , is (0,1,1,0). It indicates that the events
directly (and causally) preceding e3,l are e2,l and e g , ~
itself. On the other hand, the full vector-time char-
acterising the causal history of event e 3 , l , denoted
V (e 3 , 1) , is (1,1, 1,0) (see Figure 5).

Figure 3: Evolution of a global root graph.

Schwarz & Mattern [17] demonstrate that if two
events a and b of a distributed computation are
causally related, i.e., a 4 b , then V(a) < V(b). This
partial order relation between vector-times U and v of
dimension m is defined as follow (from [17]):

1. u I v i f f u [l c] I v [k] f o r k = l , . . . , m
2. U < v iff U 5 v and U # v

Our approach is based on the idea that it is possible to
construct a vector-time that characterises the events
responsible for the creation of all the paths to a global
root that actually exist when some event occurs, and
no other events, and, in turn, makes it possible to iden-
tify garbage in the global root graph. For instance, in

520

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:26 from IEEE Xplore. Restrictions apply.

2

3

4

Figure 4: Space-time diagram corresponding to the
scenario of Figure 3.

Event
e1,1

e2,1

e2,2

e2,3

e3,l

e3,2

e3,3

e4,l

e4,2

e4,3

Figure 5: Dependency vectors of the log-keeping
events of Figure 4.

Figure 4, the global root 2 is reachable from global
root 4 in the global root graph when event e2,2 occurs,
because e4,2 4 e2,2 in the execution graph. This can
be shown by comparing their respective vector-times:
V (e 4 , ~) < V(e2,2), i.e., (1 , 1 , 2 , 2) < (1 , 2 , 2 , 2) . On the
other hand when event e2,3 occurs, it is possible to
determine directly from the vector-time of this event
- which is (T,3,2, 2), see Figure 5 - that global root
2 is no longer reachable. The vector-time of event
e3,2 however does not yet reflect the fact that object
3 has also ceased to be reachable. (When compar-
ing vectors-times, the time-stamp of the direct remote
predecessor of an edge destruction event, indicating
that there is no longer an edge in the global root graph
via the corresponding global root, is treated as if no
edge creation event had ever been sent from this global
root, i.e., as 0.) Detecting the absence of a live path to
this object requires additional edge-destruction con-
trol messages to be sent by the GGD algorithm as part

of the finalisation of those garbage objects already de-
tected.

However, these vector-times cannot be used to
char,acterise the existence or the absence of a path
between two global roots in the global root graph if
both kinds of log-keeping events are undifferentiated.
Whenever a path is created in the global root graph,
there is a corresponding path of causally related edge
creation events in the execution graph. When an ex-
isting path in the global root graph is broken as the
result of the destruction of some edges in the object
graph, there is a corresponding edge destruction event
in the execution graph. Edge-creation events that re-
flect the creation of paths to the object that receives an
edge-destruction control message via the object that
sent it, must therefore not be taken into account when
comlputing the full vector-time of the edge-destruction
event. The full vector-time must therefore be recon-
structed dynamically and cannot be incrementally up-
dated by piggy-packing some kind of vector-time to
each message exchanged between mutator processes.

3.3 Algorithm

An algorithm that illustrates quite intuitively how
vector-times characterising the causal history of an
event can be dynamically reconstructed from partial
information gathered locally by each process is the al-
gorithm proposed by Fowler & Zwaenepoel [$I. This
algorithm, proceeds by recursively gathering the DDVs
of the causal predecessors of the event, and therefore
assumes the existence of some backward pointer from
each event to its direct remote predecessor [l?, 81. It
also requires an unbounded space overhead to cope
with keeping the DDVs of every past event as far back
as might be needed.

Our algorithm similarly gathers partial informa-
tion logged locally, but takes advantage of fact that
the imodel introduced in $3.1 does not describe an ar-
bitrary distributed computation, but only the creation
and destruction of edges in the global root graph. This
provides us with forward pointers to all remote causal
successors of an event by following the actual edges of
the global root graph. Knowing these forward point-
ers, one may incrementally reconstruct the causal his-
tories of log-keeping events, or rather the dependency
vectlors characterizing them, by repeatedly circulat-
ing increasingly accurate approximations of these de-
pendency vectors, along the paths of the global root
graph, until the complete transitive closure, i.e., the
full vector-time, has been determined.

The initial approximation of the vector-time of
some event ei,j is similar t o the DDV mentioned in
$3.1. This vector, noted D V (e i , j) , records the latest

521

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:26 from IEEE Xplore. Restrictions apply.

index of each of the predecessors of event e i , j , i.e.,
characterising the event itself, all of its local predeces-
sors, and all of the direct remote predecessors of these
events. This vector can be transitively merged with
the dependency vectors of its causal predecessors un-
til the full vector-time is obtained. This is the case,
when the only difference between the vector-time re-
ceived from the direct remote predecessor of ei,j and
DV(ei , j) itself, lies in ei, j’s own index j. The result-
ing algorithm shown in Figure 6 can be summarized
as follow:

1. Each vertex i in the global root graph maintains a
log D E . Each entry in this log is a vector contain-
ing the best locally held approximation for the de-
pendency vector of the latest known log-keeping
event of the corresponding global root.

2. Whenever a global root receives a dependency
vector from another global root adjacent to i t , the
received vector is merged with the corresponding
log entry. A new approximation of the vector-
time for the latest log-keeping event can then be
computed from the updated contents of the log. If
this newly computed dependency vector is the ac-
tual full vector-time and indicates that the global
root is no longer reachable from an actual root,
the global root is removed from the global root
graph.

3. This new dependency vector is in turn sent along
the out-bound edges of the global root graph to
each adjacent global root.

The pseudo-code of our algorithm is shown in Fig-
ure 6. For the purposes of illustration, an algorithm
similar to the algorithm of Fowler & Zwaenepoel [8]
is used (procedure ComputeV). This procedure is how-
ever applied to a strictly local structure, i.e., recursive
invocations do not involve any remote invocation. The
test of the predicate i A (a) in the recursive procedure
ComputeV stops the recursion if the time-stamp of the
direct remote predecessor of an edge-destruction event
is encountered. This predicate therefore evaluates to
true for either a null time-stamp, i.e., A(0) is true, or
the tirne-stamp of the direct remote predecessor of an
edge-destruction event, i.e., A(E) is true. The proce-
dure Receive corresponds to the code executed when a
dependency vector w is received by a global root i from
an adjacent global root m. The vector m may be the
contents of an edge-destruction control message which
is the case when A(w[m]) is true, this vector may there-
fore contain the time-stamps of delayed edge-creation
events as explained in 53.4.

Receive (i: process, v: vector, m: process)
if v[m] > D E [i] [m] A A(w[m]) then

DK[i][i] + +
for all k do

end for
DK[i] [k] = m a z (D K [i] [k] , w[k])

else
DK[i] [m] = maz(DK[i] [m] , v[m])
for all k do

end for
D K [m] [k] = m a z (D K [m] [k] , w[k])

end if
for all IC # i do

end for

ComputeV(i)
if V # D K [i] then

V [k] = 0

V[i] = DK[i] [i]

DK[i] = v
for all k E Acquaintancesi do

end for

for all k E Acquaintancesi do

send (k , V) - - to remote successor k

else if l (3 k : -A(V[k]) A ruut (V[k])) then

v = D K [k]
V[i] = DK[i][i]
send (k , V) - - to remote successor k

end for
remove - - garbage detected

end if
end Receive

ComputeV (p : process)
for all p # p do

cx = DK bl [ql

%I =
if a > V[q] A -A(a) then

ComputeV(q)
end if

end for
end ComputeV

Figure 6: Global garbage detection algorithm.

3.4 Lazy Log-keeping

The model described in 53.1 assumes some kind of log-
keeping mechanism that is somehow able to immedi-
ately react to the creation of an edge in the global root
graph, even though this edge may have been created

522

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:26 from IEEE Xplore. Restrictions apply.

Figure 7: Lazy log-keeping.

by an exchange of messages involving some third party
(remote) object, and in such a way that there can-
not be any race conditions between log-keeping control
messages.

Each vertex i of the global root graph maintains
a two-dimensional log of dependency vectors, noted
OK. Conceptually, as explained in $2.3, whenever an
incoming edge (to this vertex) in the global root graph
is either created or destroyed, the vector D K [i] (one
of the entries of the log maintained by i) is updated,
with the latest event index of the remote vertex from
which the edge is pointing. DK[i] would therefore
be equivalent to the dependency vector described by
Fowler & Zwaenepoel [8].

Such an eager log-keeping mechanism would in-
volve exchanging additional control messages, e.g.,
when a message containing a reference denoting k is
sent from i to j, some control message must somehow
be sent to k as well. However, race conditions be-
tween log-keeping control messages must be avoided.
Although it is possible to implement such an eager
log-keeping mechanism (see §4), additional log-keeping
control messages compromise the scalability and ro-
bustness of the whole GGD. Instead, we adopt a lazy
log-keeping approach that avoids the problem alto-
gether [12]. Our lazy log-keeping mechanism updates
the logs as follows:

Whenever an object i sends a copy of its own ref-
erence object j, the log D E is updated as follows:

- DK[i] [j] = DK[i] [j] + 1
- Dvi[i][i] = DX[i][i] + 1

Whenever an object i sends to an object j a copy
of a reference denoting an object k, the log DK
(and not DVk) is updated as follows:

- D K [k] [j] = DK[k][j] + 1

On receiving the reference, the recipient, i.e., ob-
ject j , updates its own log as follows:

- Dqlil[.il = Dv;.lil[jl+ 1

In other words, whenever some object i sends a refer-
ence across a site boundary, only the logs of the objects
involved in the exchange are updated, and not the log
of the target (third party) object. Our lazy log-keeping
mechanism makes it possible to adequately update the
logs without requiring any additional control messages
to be sent, hence avoiding race conditions altogether.
This is illustrated in Figure 7 where the messages actu-
ally carrying the copy of the reference are represented
as liight grey arrows.

There can be more entries in the log D K than the
number of inbound edges towards i in the global root
graph, i.e., entries logged on behalf of remote third
party objects. Such an entry is eventually sent to this
third party object as part of the edge-destruction con-
troll message, when the edge from i to k is destroyed,
i.e.! multiple edge-creation control messages can be
bundled with an edge-destruction control message in
one atomic delivery.

An edge-destruction control message is sent by
the local garbage collector when the last reference to
a remote object is destroyed locally, i.e., when the
proxy for that remote object is collected. An edge-
destruction control message sent from an object i to
a remote obiect k essentially contains the contents of
the vector i E [k] maintained by object i on behalf of
object k, where DK[k][i] is replaced by DK[i][i] .

3.5 Granularity and Clustering

$3.11 describes our model of log-keeping events using
a finer granularity than is actually necessary. Each
glolbal root is modeled as a process in the space-time
diagram. Actually, one need not distinguish between
individual remote objects which can be lumped to-
gether as one “process.” Two distinct objects will
always be assigned distinct event indexes, and since
the propagation of dependency vectors is actually done
along the paths of the global root graph, there is no
ambiguity as to the recipients of these vectors. From
the point of view of an external observer, collocated
objects on some remote “process” are indistinguishable
from one another, i.e., two distinct events may either
be associated to two distinct objects, or to the same
object at two distinct times. Our lazy log-keeping
mechanism 1121 uses object clusters [5] as the gran-
ularity of the information it maintains.

523

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:26 from IEEE Xplore. Restrictions apply.

l O . O . l . 0) I I

Figure 8: Evolution of the logs of the objects shown in
Figure 3 according to the algorithm listed in Figure 6.

3.6 Example

Figure 8 depicts the evolution of the logs of each of the
global roots already illustrated in Figure 3 and Fig-
ure 7. GGD is only triggered when the edge between
1 (the actual root) and 2 is removed.

Figure 8 is made of three columns, one for each
global root, except 1 which never changes because it is
an actual root. Reading from the top of each column,
each box represents the state of the log of the corre-
sponding global root, one box for every modification of
the log, starting just one stage before initiating GGD,
i.e., just before DvZ merges the vector (T,O, 0,O) sent
from 1. Therefore, the first row shows the state of
the different logs as updated by the lazy log-keeping
mechanism described in 93.4. The sign >> is used to
indicate the dependency vector sent to successors.

4 Related Work
Schelvis [161 previously proposed a comprehensive al-
ternative to graph-tracing GGD, that proceeds by
analysing the mutator processes computation graph,
although the author describes his own algorithm as
an incremental graph-tracing algorithm. It is there-
fore not surprising that this algorithm has often later
been either overlooked or misidentified in the litera-
ture [4, 151.

Schelvis’s algorithm entails determining for each
global root, the potential existence or absence of open
paths to that root, by constructing tame-stamp pack-

e t s from its local logs. A time-stamp packet is a form
of dependency vector characterizing the causal his-
tory of some log-keeping events. An eager log-keeping
mechanism keeps track of the creation and destruc-
tion of edges between any two global roots, as the
graph evolves. Whenever an edge in the global root
graph is either created or destroyed, packets are re-
peatedly propagated down the paths that are poten-
tially affected by this modification, until each global
root along these paths has determined whether or not
i t remains potentially reachable from an actual root.

Unlike the approach described in this paper, time-
stamp packets characterise the potential existence or
absence of paths to a global root via only one of the
global roots adjacent t o it. Schelvis’ approach actu-
ally consists in a depth first tracing of the mutator
processes computation graph. As a result, it suffers
from a worse message complexity than our own algo-
rithm when processing recursive data structures such
ils double linked lists, or any cyclic structure contain-
ing subcycles. For instance, identifying the ik elements
of a double linked list that becomes disconnected from
the object graph as garbage, requires O(iks) messages
using Schelvis’ algorithm, while our approach requires
only O (k) messages.

5 Conclusion
This paper describes a novel approach to GGD that
entails computing the vector-time characterizing the
causal history of some relevant events of the mutator
computation, i.e., log-keeping events. This algorithm
evaluates whether or not an object is garbage directly
from knowledge of the mutator computation instead
of examining its by-product, i.e., the object graph.

Algorithms similar t o the aforementioned Fowler
& Zwaenepoel’s algorithm [8] require that each process
stores the dependency vectors of all its previous events.
Our algorithm avoids the space overhead that could
be expected from a method dynamically reconstruct-
ing causal dependencies, because it is not necessary
for the purposes of GGD to compute the vector-time
of every log-keeping event of the mutator computa-
tion. In other words, this algorithm may not be able
to compute V(ei,,) for all j , but eventually comes up
with V (e i , k) where ik > j which is sufficient to deter-
mine whether the corresponding vertex i has become
garbage (because garbage is a stable property).

The major drawbacks of our approach are its
unbounded detection latency, and a space overhead
greater than that of a graph tracing approach. How-
ever, unlike other algorithms that dynamically recon-
struct vector-times, this algorithm does not require
any form of “back pointer” to (causally) preceding

524

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:26 from IEEE Xplore. Restrictions apply.

events, and does not make it necessary to maintain
dependency vectors for all events of the distributed
computation, which would lead to unbounded space
overhead. It takes advantage of the fact that the
vector-times of interest characterise the causal his-
tory of non-arbitrary events of the mutator processes.
These events are those related to the creation or de-
struction of paths in the object graph.

Contrary to popular belief, comprehensive GGD
is therefore not necessarily based on an object graph-
tracing approach and intrinsically comprehensive al-
ternatives to traditional graph tracing based GGD are
possible. Combined with a lazy-log keeping mecha-
nism, this makes it possible to tackle the two problems
that jeopardise the scalability of GGD, namely the
overhead of eager log-keeping and what we described
as the consensus bottleneck. Additionally, messages
exchanged for GGD are idempotent, which contributes
to the robustness of our approach as neither loss nor
duplication of messages compromise the safety of the
algorithm.

References
[l] 0. Babaoglu and K. Marzullo. Consistent

global states of distributed systems: Fundamen-
tal concepts and mechanisms. Tech. Report
UBLCS-93-1, University of Bologna (UBLCS),
(Italy), Jan. 93.

[2] D.I. Bevan. Distributed Garbage Collection using
Reference Counting. In PARLE’87, pp. 176-187,
Jun. 87. LNCS, No.258/259.

[3] P. B. Bishop. Computer systems with a very
large address space and garbage collection. PhD
thesis, MIT, (USA), May 77. Tech. Report
MIT/LCS/TR-178.

[4] A. Bjornerstedt. Secondary Storage Garbage Col-
lection for Decentralized Object-Based Systems.
PhD thesis, The Royal Institute of Technology
and Stockholm University, (Sweden), Jun. 90.
Tech. Report 77.

[5] V. Cahill, S. Baker, C. Horn, and G. Starovic.
The Amadeus GRT - Generic Support for Dis-
tributed Persistent Programming. In OOF-
SLA’93, pp. 144-161, Sep. 93. Tech. Report
TCD-CS-93-37.

[6] P. W. Dickman. Distributed Object Management
in a Non-Small Graph of Autonomous Networks
with Few Failures. PhD thesis, Darwin College,
Cambridge University (UK), Sep. 91.

[7] E. W. Dijkstra, L. Lamport, A. J . Martin,
C. S. Scholten, and E. F. M. Steffens. On-the-Fly
Garbage Collection: An Exercise in Cooperation.

[8] J . Fowler and W. Zwaenepoel. Causal Distributed
Breakpoints. In ICDCS’90, pp. 134-141, May 90.

[9] J . Hughes. A Distributed Garbage Collection Al-
gorithm. In FPLCA’85, pp. 256-272, Sep. 85.
LNCS, No.201.

CACM, 21(11):966-975, NOV. 78.

[lo] N. C. Juul. Comprehensive, Concurrent, and
Robust Garbage Collection in the Distributed,
Object-Based System Emerald. PhD thesis,
DIKU, (Denmark), Feb. 93. Tech. Report
Nr.93/ 1.

Ell] R. Ladin and B. Liskov. Garbage collection of
a distributed heap. In ICDCS’92, pp. 708-715,
Jun. 92.

[12] S. Louboutin and V. Cahill. A lazy log-keeping
mechanism for comprehensive global garbage de-
tection on Amadeus. In OOIS’95, pp. 118-132,
Dec. 95. Tech. Report TCD-CS-95-13.

[13] S. Louboutin and V. Cahill. On Compre-
hensive Global Garbage Detection. In ER-
SADS’95, pp. 208-213, Apr. 95. Tech. Report
TCD-CS-95-11.

[14] S. Louboutin. A Reactive Approach to Compre-
hensive Global Garbage Detection. PhD thesis,
Trinity College, Dublin (Ireland), in preparation.

[15] D. Plainfossk. Distributed Garbage Collection and
Referencing Management in the Soul Object Sup-
port System. PhD thesis, Universitk Pierre &
Marie Curie - Paris VI (France), Jun. 94.

[l6] M. Schelvis. Incremental Distribution of Times-
tamp Packets: A New Approach To Distributed
Garbage Collection. In OOPSLA ’89, pp. 37-48,
Oct. 89.

[17] R. Schwarz and F. Mattern. Detecting causal
relationships in distributed computations: In
search of the holy grail. Distributed Computing,
7(3):149-174, 1994.

[l8] G. Tel. Topics in Distributed Algorithms. Cam-
bridge International Series on Parallel Computa-
tion, 1991. ISBN 0-521-40376-6.

[19] P. Watson and I. Watson. An efficient garbage
collection scheme for parallel computer architec-
tures. In PARLE’87, pp. 432-443, Jun. 87. LNCS,
No.258/259.

525

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:26 from IEEE Xplore. Restrictions apply.

