
Processing Transactions over Optimistic Atomic Broadcast Protocols�

Bettina Kemme? Fernando Pedoney Gustavo Alonso? André Schipery

?Information and Communication Systems yOperating Systems Laboratory
Institute of Information Systems Computer Science Department

Swiss Federal Institute of Technology (ETH) Swiss Federal Institute of Technology (EPFL)
ETH Zentrum, CH-8092 Z¨urich IN-Ecublens, CH-1015 Lausanne

E-mail: fkemme,alonsog@inf.ethz.ch fFernando.Pedone,Andre.Schiperg@epfl.ch
http://www.inf.ethz.ch/department/IS/iks/ http://lsewww.epfl.ch/

Abstract

Atomic broadcast primitives allow fault-tolerant cooper-
ation between sites in a distributed system. Unfortunately,
the delay incurred before a message can be delivered makes
it difficult to implement high performance, scalable appli-
cations on top of atomic broadcast primitives. Recently,
a new approach has been proposed which, based on op-
timistic assumptions about the communication system, re-
duces the average delay for message delivery. In this pa-
per, we develop this idea further and present a replicated
database architecture that employs the new atomic broad-
cast primitive in such a way that the coordination phase of
the atomic broadcast is fully overlapped with the execution
of transactions, providing high performance without relax-
ing transaction correctness.

1. Introduction and Motivation

Atomic Broadcast [6, 5] primitives are a well known
mechanism to increase fault tolerance and to provide a se-
mantically rich framework to develop distributed systems.
Unfortunately, it is also recognized that atomic broadcast
suffers from scalability problems [4, 8] as it involves coor-
dination between sites before messages can be delivered.

Recently, a new atomic broadcast protocol has been pro-
posed which, based on optimistic assumptions about the
network, reduces the average delay for message delivery to
the application [18]. This protocol uses the order in which
messages arrive at each site as a first optimistic guess, and
only if a mismatch of messages is detected, further coordi-
nation between the sites is needed to agree on a total order.

�Part of this work has been funded by Swiss Federal Institute of Tech-
nology (ETH and EPFL) within the DRAGON Research Project (Reg-Nr.
41-2642.5)

In this paper we develop this idea further, and show how
applications can take advantage of the optimistic assump-
tion by overlapping the coordination phase of the atomic
broadcast algorithm with the processing of transactions.
Our general database framework is based on broadcasting
updates to all replicas, and using the total order provided by
the atomic broadcast to serialize the updates at all sites in
the same way [1, 12, 11, 16, 17, 19]. The basic idea is that
the communication system delivers messages twice. First, a
message is preliminary delivered to the database system as
soon as the message is received. The transaction manager
uses this tentative total order to determine a scheduling or-
der for the transaction and starts executing the transaction.
The commitment of the transaction, however, is postponed.
When the communication system has determined the defini-
tive total order, it delivers a confirmation for the message. If
tentative and definitive orders are the same, the transaction
is committed, otherwise further measures have to be taken
to guarantee that the serialization order obeys the definitive
total order. If the time it takes to receive confirmation of the
message order is comparable to the time it takes to execute
a transaction, and tentative and definite order are mostly the
same, then the overhead of atomic broadcast mechanism has
been hidden behind the cost of executing a transaction.

The results reported in this paper make two important
contributions. Firstly, our solution avoids most of the
over head of atomic broadcast by overlapping the process-
ing of messages (execution of transactions) with the algo-
rithm used to totally order them. Secondly, our approach
compares favorably with existing commercial solutions for
database replication [20] in terms of performance and con-
sistency. While most systems achieve performance by using
asynchronous replication mechanisms (update coordination
is done after transaction commit) our solution offers com-
parable performance and at the same time maintains global
consistency.

The paper is structured as follows. In Section 2 we de-
scribe the system model. In Section 2.1 we present the
atomic broadcast primitive used in our database algorithms.
The optimistic transaction processing is described in Sec-
tion 3, and its correctness proof in Section 4. Queries are
discussed in Section 5, and Section 6 concludes the paper.

2. Model and Definitions

A replicated database consists of a group of sites
N = fN1; N2; : : : ; Nng which communicate by exchang-
ing messages. We assume asynchronous (no bound on
transmission delays) and reliable communication (a mes-
sage sent byNi to Nj is eventually received byNj). Sites
can only fail by crashing (i.e., we exclude Byzantine fail-
ures), and always recover after a crash. We assume a fully
replicated system, i.e., each siteNi contains a copy of the
entire database. Data is accessed by executing transactions.

2.1. Atomic Broadcast with Optimistic Delivery

Communication is based onatomic broadcastproviding
an ordering of all messages in the system, i.e., all sites re-
ceive all messages in the same order.

Although there exist many different approaches on how
to implement total order [6, 5, 7, 14, 21], all of them re-
quire some coordination between sites to guarantee that all
messages are delivered in the same order at the different
sites. However, when network broadcast (e.g., IP-multicast)
is used, there is a high probability that messages arrive at
all sites spontaneously totally ordered [18]. To illustrate
the spontaneous total order property of local area networks,
Figure 1 describes an experiment conducted on a cluster of 4
sites (Ultrasparc 1 workstations) connected by an Ethernet
network (10 Mbits/s), where all sites simultaneously send
messages using IP multicast. The figure shows the percent-
age of spontaneously ordered messages vs. the interval be-
tween two consecutive messages on each site. For example,
for this configuration, if each site sends one message each 4
milliseconds, around 99% of the messages arrive at all sites
in the same order.

Only recently, an Optimistic Atomic broadcast proto-
col that takes advantage of these characteristics has been
proposed [18]. It first checks whether the order in which
messages are received is the same at all sites. If so, the
algorithm does not require any further coordination be-
tween sites to reach an agreement on the order of such mes-
sages. Since the verification phase introduces some addi-
tional messages, there is a tradeoff betweenoptimisticand
conservative(non-optimistic) decisions. However, mes-
sages are never delivered in the wrong order to the appli-
cation.

82

84

86

88

90

92

94

96

98

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5P
er

ce
nt

ag
e

of
 s

po
nt

an
eo

us
 o

rd
er

ed
 m

es
sa

ge
s

Time between broadcast in msec

Spontaneous Ordered Messages

Figure 1. Spontaneous total order in a 4-site-
system

The approach proposed here is a moreaggressiveversion
of the protocol in [18]. If a spontaneous total order is the
normal case, it seems to be a waste of time to delay the
delivery of a message until the sites agree to this same total
order. Instead, one could optimistically process messages
as they arrive. If a message is processed out of order, one
has to pay the penalty of undoing what has been processed
so far, and redo it again in the proper order. This approach
is conceptually similar to virtual time [10].

We define an atomic broadcast with optimistic delivery
by three primitives.TO-broadcast(m) broadcasts the
messagem to all sites in the system.Opt-deliver(m)
delivers a messagem optimistically to the application
once it is received from the network.Opt-deliver
does not guarantee total order. We consider the or-
der perceived by the application by receiving the se-
quence ofOpt-delivered messages as atentative or-
der. TO-deliver(m) deliversm definitively to the ap-
plication. The order perceived by the application by receiv-
ing the sequence ofTO-delivered messages is called
the definitive orderand is the same at all sites. In prac-
tice,TO-deliver(m) will not deliver the entire body of
the message (whichOPT-deliver(m) already did), but
rather deliver only a confirmation message that contains the
identifier ofm.

The Atomic Broadcast with Optimistic Delivery is spec-
ified by the following properties.

Termination: If a site TO-broadcasts m, then
every site eventually Opt-delivers m and
TO-delivers m.

Global Agreement: If a site Opt-delivers m

(TO-delivers m) then every site eventually
Opt-delivers m (TO-delivers m).

Local Agreement: If a site Opt-delivers m then it
eventuallyTO-delivers m.

Global Order: If two sites Ni and Nj TO-deliver
two messagesm and m0, then Ni TO-delivers
m before it TO-delivers m0 if and only if Nj

TO-delivers m before itTO-delivers m0.
Local Order: A site first Opt-delivers m and then

TO-delivers m.
These properties state that every mes-

sage TO-broadcast by a site is eventually
Opt-delivered and TO-delivered by every site
in the system. The order properties guarantee that no site
TO-delivers a message beforeOpt-delivering it,
and every message isTO-delivered (but not necessarily
Opt-delivered) in the same order by all sites.

2.2. Transaction Model

One way to interact with a database is to use stored pro-
cedures. A stored procedure allows to encapsulate complex
interactions with the database into a single procedure which
is executed within the database context. Since both data ma-
nipulation and the flow control of the program are executed
within the scope of the database system, this approach leads
to better performance and simplified access.1

For the purposes of this paper, we assume that all data
access isdone through stored procedures, with one transac-
tion corresponding to one stored procedure. Since the de-
tails of transactions are hidden by the use of stored proce-
dures, we use a simplified version of the traditional transac-
tion model [3]. Transactions access the database by reading
and writing (updating) objects of the database. Transactions
execute atomically, i.e., a transactionT either commits or
aborts all its results. It is possible for two or more transac-
tions to access the database concurrently. Two transactions
conflict if both access the same objectX and at least one of
the transactions updatesX. A historyH is a partial order
of a set of committed transactions and reflects one possible
execution. All conflicting transactions contained inH are
ordered. A historyH is serial if it totally orders all trans-
actions. Two histories,H1 andH2, are conflict equivalent
if they are over the same set of transactions and they or-
der conflicting transactions in the same way. A historyH

is said to be serializable if it is conflict equivalent to some
serial history.

The correctness criterion for replicated database systems
is 1-copy-serializability: despite the existence of multiple
copies an object appears as one logical copy and the system
only allows serializable histories. Formally, a database sys-
tem provides 1-copy-serializability if for all possible execu-
tions the following holds:2 H =

S
H Hi is serializable with

H1;H2; : : : ;Hn being the histories at sitesN1; : : : ; Nn.
1In fact, many commercial databases base their replication solutions on

the use of stored procedures [20].
2LetH = (�; <H) be a history where� is a set of transactions, and

<H is a set defining a transitive binary relation between transactions in

CQ1

CQ2

CQ3

Queues
Class

Ti Tm

Tj

Tl TnTk

Conflict
Classes

C2

C1

C3

Figure 2. Conflict classes and their class
queues

2.3. Concurrency Control

Serializing the execution of conflicting transactions is
achieved through concurrency control. To simplify the pre-
sentation, we assume a rather simple model of concurrency
control. We assume that each stored procedure (or transac-
tion) belongs to one of several disjointconflict classes. The
transactions of one class are only allowed to access objects
of a certain partition of the database and different conflict
classes work on different partitions. This means that trans-
actions within one conflict class have a high probability of
having conflicts while transactions from different conflict
classes do not conflict.

With this assumption,concurrency controlis done as
follows (Figure 2). For each conflict classC there exists
a FIFO class queueCQ. When a transactionT 2 C, is
started, it is added toCQ. WhenT is the only transaction
in C then its execution can be started. When there are al-
ready other transactions queued inC, T has to wait. When a
transaction commits (it must be the first one in its queue), it
is removed from the queue and the next transaction waiting
starts to execute. Transactions in the same conflict class are
executed sequentially. When they are in different classes,
their execution is not ordered. It is easy to see that this pro-
tocol guarantees serializability because conflicting transac-
tions are fully serialized.

This mechanism is a simplified version of the standard
lock table used in existing database systems [9]. The differ-
ences are that a transaction may enter step by step several
entries into a lock table, one for each data it accesses (fine
granularity 2-phase locking), while our approach queues a
transaction in exactly one class queue when the transaction
begins.3

�. If H 0 andH 00 are two histories, thenH = H 0

S
H
H 00 is such that

� = �
0

S
�
00 and<H=<0

H

S
<00

H
.

3This approach has the advantage that transactions are never involved
in deadlocks, which is the case with lock tables.

We would like to note, however, that the ideas of this pa-
per can also be applied to a more general concurrency con-
trol model. In [13], we present solutions using finer granu-
larity locking.

2.4. Replica Control

We use a variation of the read-one/write-all (available)
approach forreplica control [3]. When a user submits a
query (i.e., a transaction that does not update any data) to
siteN , the query is executed locally atN . However, when
a user sends the request for an update transaction toN , N
broadcasts the request to all sites so that the updates are ex-
ecuted at all sites. Stored procedures support this approach
very well. Since they are predefined, the type of the trans-
action (query or update transaction) can be declared in ad-
vance. We first focus on update transactions only. Queries
are considered in Section 5.

The basic idea to guarantee the same serialization order
at all sites is to use the total order provided by the atomic
broadcast to decide on the order of conflicting transactions.
This means that whenever two transactions belong to the
same conflict class we guarantee that they are executed and
committed in the order they areTO-delivered .

3. Optimistic Transaction Processing

In this section, we show how transactions are executed
in the system, and present the OTP-algorithm for optimistic
transaction processing.

3.1. Execution Model

Figure 3 depicts the coordination of the communica-
tion manager and the transaction manager to execute up-
date transactions. The communication manager receives
and ordersTO-broadcasted requests. TheTentative
Atomic Broadcastmodule, receives the messages, and im-
mediatelyOpt-delivers them to the transaction man-
ager. In the transaction manager part of the system, the
Serializationmodule takes the messages, analyzes the cor-
responding transactions and adds them to the correspond-
ing class queue, i.e. it determines the serialization order
on behalf of theOpt-delivered messages. TheExecu-
tion module executes the transactions of the class queues
concurrently as long as they do not belong to the same con-
flict class. However, whenever they conflict, they are or-
dered according to the tentative order. If two transactions
T1 andT2 conflict, andT1 is tentatively ordered beforeT2,
then T2 has to wait untilT1 commits before it can start
executing. However, transactions are not committed until
they areTO-delivered and their definitive order is de-
termined. Once the communication manager, via theDefini-

tive Atomic Broadcastmodule, establishes a definitive total
order for a message, the message isTO-delivered to
theCorrectness Checkmodule of the transaction manager.
This module compares the tentative serialization order with
the serialization order derived from the definitive total or-
der. If they match, then theTO-delivered transaction
can be committed. If there are mismatches, then measures
need to be taken to ensure that the execution order is correct.
This may involve, as it will be later discussed, aborting and
rescheduling transactions.

CQj
CQi

Transaction ManagerCommunication Manager

Reorder

Commit
serial order

Definite
TO-deliver:

Serialization

Definitive

Module
Atomic Broadcast

serial order
Tentative

Opt-deliver:

Module

Tentative
Atomic Broadcast

Module

Module
Check

Correctness

Execution
Transaction

Class Queues
Tentative

serial
order

TO-broadcast

Tentative

Figure 3. Execution model

3.2. General Idea of the Algorithm

To better understand the algorithms described below,
the idea is first further elaborated using an example. As-
sume two sitesN andN 0 where the following tentative se-
quence of update transactions (messages) is delivered to the
database.
Tentative total order at N : T1; T2; T3; T4; T5; T6
Tentative total order at N 0 : T1; T3; T2; T4; T6; T5

Assume as well that there are three different conflict
classes and the distribution of the transactions isT1; T2 2

Cx, T3; T4 2 Cy, andT5; T6 2 Cz. When the scheduler
receives the transactions in tentative order, it places them as
follows in the queues:
At N : CQx = T1; T2 At N 0 : CQx = T1; T2

CQy = T3; T4 CQy = T3; T4
CQz = T5; T6 CQz = T6; T5

The transaction manager will then submit the execution
of the transactions at the head of each queue, i.e.,T1, T3,
andT5 are executed atN , andT1, T3, andT6 are executed at
N 0. The transaction manager will wait to commit a transac-
tion until it is totally executed and its ordering is confirmed.
Assume that the definitive total order turns out to be:
Definitive total order : T1; T2; T3; T4; T5; T6

This means that atN , the definitive total order is iden-
tical to the tentative order, while atN 0 the definitive order
has changed in regard to the tentative order forT2 andT3
and forT5 andT6.

Upon receiving the messages in definitive total order, the
transaction manager has to check whether what it did makes
sense. AtN , the tentative order and the definitive order are
the same, thus, transactionsT1, T3, andT5 can be commit-
ted and the next transactions in the queues executed.

At N 0, the total order is not the same as the tentative
order. However, the ordering betweenT2 andT3 is not rele-
vant because these two transactions do not conflict. Hence,
the transaction manager does not need to realize the mis-
match. However, the order betweenT5 andT6 is relevant
since they conflict. Given that the serialization order must
match the definitive total order of the communication sys-
tem in the case of conflicts, the transaction manager has to
undo the modifications ofT6 and first perform the ones of
T5 before it reexecutesT6.

To detect such conflicts the transaction manager marks
transactions when they areTO-delivered . Assume the
point in time whenT6 andT5 have beenOpt-delivered
and T6 is ordered beforeT5 in the conflict queue
CQz. When T5 is TO-delivered (note, thatT5 is
TO-delivered beforeT6), the transaction manager of
N 0 performs a correctness check. It looks in the queue
and scans through the list of transactions. The first trans-
action isT6 andT6 is not markedTO-delivered . The
wrong order is detected and the updates ofT6 can be un-
done using traditional recovery techniques [3].T6 will then
be appended to the queue afterT5. The transaction manager
then marksT5 TO-delivered . When at a later timepoint
T6 is TO-delivered , the transaction manager performs
again a correctness check. It looks in the queue and scans
through the list of transactions. The first transaction is now
T5. SinceT5 is markedTO-delivered the transaction
manager knows that this time the scheduling ofT5 before
T6 was correct and no rescheduling has to take place. Thus,
T6 is simply markedTO-delivered .

Note that, whenever transactions do not conflict, the dis-
crepancy between the tentative and the definitive orders
does not lead to any overhead (seeT2 andT3 atN 0). Hence,
in the case of low to medium conflict rates among trans-
actions, the tentative and the definitive order might differ
considerably without leading to high abort rates.

3.3. Algorithm

In the following, we present the OTP-algorithm for op-
timistic transaction processing. For simplicity, we divide
the algorithm into different parts according to the different
modules described in Section 3.1. Note that these different
modules do not necessarily represent different threads of ex-
ecution but rather separate the different steps in the lifetime
of a transaction. Since all modulesaccess the same common
data structures, some form of access control between the
modules is necessary (for instance, by using semaphores).

UponOpt-delivery of messagem containing
transactionTi:
S1 AppendTi to the corresponding queueCQ
S2 MarkTi aspending andactive
S3 if Ti is the only transaction inCQ
S4 Submit the execution of the transaction
S5 end if

Figure 4. Serialization Module

Upon complete execution of transactionTi of
classC:
E1 if Ti is markedcommittable (see next module)
E2 CommitTi and removeTi fromCQ

E3 Start executing the next transaction inCQ
E4 else
E5 MarkTi executed
E6 end if

Figure 5. Execution Module

Moreover, we assume without further discussing them here
that there are two functions, commit and abort, that perform
all the operations necessary to commit or abort a transaction
locally.

Care must be taken that at most one transaction of
each conflict class is executed at a time, and that trans-
actions do not commit before they are both executed and
TO-delivered to guarantee that the serialization order
obeys the definitive total order. To do so, we label each
transaction with two state variables. Theexecution state
of a transaction can beactive or executed . The de-
livery statecan bepending (after Opt-deliver) or
committable (afterTO-deliver).

The serialization module is activated upon
Opt-delivery of a transaction (Figure 4). It appends
Opt-delivered transactions to their corresponding
conflict classes (S1), to mark that this serialization order
is still tentative (S2), and to submit the execution of
transactions when there are no conflicts (S4).

The execution module has to inform the transaction man-
ager about completely executed transactions (Figure 5).
When a transaction is both executed andTO-delivered
(E1), it can commit (E2). If a transaction has completely
executed before itsTO-delivery , it must be marked ac-
cordingly (E5). Note that only the first transaction in a
queue can be markedexecuted .

The correctness check module is activated upon
TO-delivery of a transaction. Figure 6 depicts the dif-
ferent steps (txn used as shortcut for transaction). The mod-
ule verifies whether the preliminary execution of a transac-
tion was correct and reschedules the transaction if this is not
the case.

UponTO-delivery of messagem
containing transactionTi of classC:
CC1 Look for the entry ofTi in CQ

CC2 if Ti is markedexecuted
(can only be the first txn inCQ)

CC3 CommitTi and remove it fromCQ
CC4 Start executing the next txn inCQ
CC5 else(not fully executed or not the first txn)
CC6 MarkTi committable
CC7 if first txnTj in CQ is markedpending
CC8 AbortTj
CC9 end if
CC10 ScheduleTi before first txnTk in CQ

that is markedpending
CC11 if Ti is now the first txn inCQ
CC12 Submit the execution ofTi
CC13 end if
CC14 end if

Figure 6. Correctness Check Module

Since each message isOpt-delivered before it is
TO-delivered (Local Order property), it is guaranteed
that there is an entry for a transactionT in its correspond-
ing class queue (CC1). The first transaction of a class
queue commits whenever it isTO-delivered and to-
tally executed (CC2,CC3) (both events must be true) and
the execution of the next transaction in the class queue
can be submitted (CC4). If a transaction cannot be com-
mitted immediately upon itsTO-delivery it is marked
committable (CC6) to distinguish between transactions
whose final serialization order has been determined and
those whereTO-delivery is still pending. The last part
of the protocol checks whether the tentative and the defini-
tive order are different for conflicting transactions. If so,
abort (CC7,CC8) and reordering (CC10) take place. Note
that abort does not mean that the aborted transaction will
never be executed and committed. The aborted transac-
tion will be reexecuted at a later point in time. The pro-
tocol guarantees that allcommittable transactions are
ordered before all pending ones in the class queueCQ (due
to step CC10). In particular, if transactionT of queueCQ
is TO-delivered and the first transaction inCQ is still
pending, all transactions beforeT are pending. Therefore,
step CC10 schedulesT to be the first transaction in the
queue (CC11), and step CC12 keeps the execution of trans-
actions in this queue running.

We illustrate this further with two examples. In the
following we use the shortcutsa for active , e for
executed , p for pending and c for committable .
Firstly, a class queue has the following entries

CQ = T1[a; c]; T2[a; p]; T3[a; p]:

This means thatT1 has beenTO-delivered , but notT2
andT3 and the execution ofT1 is still in progress. If now
T3 is the next one to beTO-delivered (beforeT2) it is
simply rescheduled betweenT1 andT2 (CC10). Since, the
first transaction,T1, is committable (it only waits for its ex-
ecution to finish) it will not be aborted. Hence the result is

CQ = T1[a; c]; T3[a; c]; T2[a; p]:

In the second example, the queueCQ has the form:

CQ = T1[e; p]; T2[a; p]; T3[a; p]:

This means that none of the transactions is
TO-delivered but T1 is already executed. In this
case, ifT3 is the first one to beTO-delivered (before
T1 andT2), the first transactionT1 must be aborted since
it is still pending (CC8). After this,T3 can be rescheduled
beforeT1 and submitted. This means that the execution of
T1 is rescheduled after the execution ofT3 and the result is

CQ = T3[a; c]; T1[a; p]; T2[a; p]:

4. Correctness

Note that in this section we only look at update trans-
actions. Queries are handled in the next section. In what
follows we prove that the OTP-algorithm is starvation free
and provides 1-copy-serializability. Starvation free means
that a transaction that isTO-delivered will eventually
be committed and not rescheduled forever. We use the fol-
lowing notation: for two transactionsTi andTj , we write
Ti !Opt Tj if Ti is Opt-delivered beforeTj . Simi-
larly, we writeTi !TO Tj if Ti is TO-delivered before
Tj . For Theorem 5.1 we assume a failure free execution.

Theorem 4.1 The OTP-algorithm guarantees that each
TO-delivered transactionTi eventually commits.

Proof We prove the theorem by induction on the position
n of Ti in the corresponding class queueCQ.
1. Induction Basis:If Ti is the first transaction inCQ (n =

1), it is executed immediately (S3-S4,E3,CC4,CC11-
CC12) and commits after its execution (E1-E2,CC2-
CC3).

2. Induction Hypothesis: The theorem holds for all
TO-delivered transactions at positionsn � k, for
somek � 1, i.e., all transactions that have at mostn-1
preceding transactions will eventually commit.

3. Induction Step:Assume now, a transactionTi is at po-
sition n = k + 1 when the correctness check module
processesTi’s TO-delivered message. LetTj be
any of the transactions ordered beforeTi in CQ. Two
cases can be distinguished:
a.) Ti !TO Tj : When the correctness check mod-

ule processes theTO-delivery of Ti, Tj is still
pending. This means, step CC10 will scheduleTi

beforeTj , and hence, to a positionn0 � k. There-
fore, according to the induction hypothesis,Ti will
eventually commit. Note that due to the reordering
processTj might be moved out of the firstk posi-
tions. Since it has not yet beenTO-delivered
this does not violate the induction hypothesis.

b.) Tj !TO Ti: SinceTj has a positionn0 � k, the
induction hypothesis assures thatTj will eventually
commit and be removed fromCQ. When this hap-
pens,Ti is at most at positionk, and hence, will
eventually commit according to the induction hy-
pothesis. 2

Lemma 4.1 Each site executes and orders conflicting
transactions in the definitive order established by the atomic
broadcast.

Proof Let Ti andTj be two conflicting transactions be-
longing to the same conflict classC and letTi !TO Tj .
We have to show thatTi commits beforeTj . We can distin-
guish two cases:
1. Ti !Opt Tj : This means thatTi is included intoCQ

beforeTj. We have to show that this order can never
be reversed and hence,Ti executes and commits before
Tj . The only time the order could change according
to the protocol is when the correctness check module
processes theTO-delivery of Tj. However, at that
time, Ti is either already executed and committed or
it is markedcommittable , because ofTi !TO Tj .
Hence, CC10 does not affectTi.

2. Tj !Opt Ti: This means thatTj is included intoCQ
beforeTi. We show that this order is reversed exactly
once and hence,Ti commits beforeTj . WhenTi is
TO-delivered , Tj might already be executed (when
it is the first transaction in the queue) but cannot be
committed because it is not yetTO-delivered but
still marked as pending. Therefore, the protocol pro-
cesses step CC10 and reordersTi beforeTj . This order
cannot be changed anymore becauseTi is now marked
committable . 2

Theorem 4.2 The OTP-algorithm provides 1-copy-
serializability.

Proof Since all sites execute the same update transac-
tions, the local histories of all sites contain the same trans-
actions. Lemma 5.1 proves that in all these histories con-
flicting transactions are always processed in the same order,
namely the definitive order provided by the atomic broad-
cast. Therefore, all local histories are conflict equivalent to
each other. This guarantees the “1-copy” property, i.e., all
the copies behave in the same way. Moreover, there is a se-
rial history that is conflict equivalent to all those produced:
the one derived from the definitive total order established
by the atomic broadcast (“serializability” property). 2

5. Queries

A configuration consisting of sites all performing ex-
actly the same update transactions is only useful for fault-
tolerance purposes. A more common setting will be a sys-
tem where the main load are read-only queries which can be
processed locally while a certain amount of updates must be
performed at all sites. Therefore, a protocol needs to be not
only tuned for updating transactions but also for queries.

In particular, it is not reasonable to require queries to
belong to a single conflict class but allow the access to mul-
tiple classes. Since queries often access a lot of data, access
to a single class would make it necessary to choose a very
coarse granularity for the conflict classes, thereby reduc-
ing concurrency. Furthermore, queries should be handled
dynamically, i.e., queries neither need to know in advance
their conflict classes nor should update transactions be de-
layed too long by preceding queries (what would be the case
if queries are added to their classes when they start).

However, queries cannot simply be added to a class
queue when they want to access an object of this class
for the first time. Such a protocol would violate 1-copy-
serializability. The problem is the fact that update trans-
actions of different conflict classes could now be indirectly
ordered by queries that access both classes. For example,
such a protocol would allow the following serialization or-
ders for the queuesCQx andCQy at sitesN andN 0:

At N : CQx = T1; T2; Q; T3

CQy = T4; Q; T5; T6

At N 0 : CQx = T1; Q
0; T2; T3

CQy = T4; T5; Q
0; T6

This means thatQ implicitly builds the serialization or-
derT2 ! Q ! T5 at siteN , while Q0 leads to the order
T5 ! Q0 ! T2 atN 0 [2].

To avoid such situation, we ensure that the execution
at all sites is equivalent to the total order of the atomic
broadcast (i.e., wheneverTi !TO Tj then the serializa-
tion order at all sites isTi ! Tj). To combine 1-copy-
serializability with dynamic queries and fast execution for
updating transactions, we use snapshots for queries (similar
to Oracle snapshots [15]). To provide consistent snapshots
for queries, different versions of the data of a conflict class
are maintained. Each data is labeled with the index of the
transaction that created the version (assuming that transac-
tions are indexed according to theirTO-delivery , i.e. if
Ti is TO-delivered beforeTj, thei < j). A query re-
ceives an index when it starts. IfTi was the last processed
TO-delivered message, the index for the query isi:5.
When a queryQi:5 wants to access a conflict classC for the
first time, it receives a snapshot of the data that has been cre-
ated by transactionTj , wherej = max(k); k � i; Tk 2 C.
With this, we produce a serialization order that obeys the
total order.

6. Conclusion

In this paper, we present a new way of integrating com-
munication and database technology to build a distributed
and replicated database architecture. Taking advantage of
the characteristics of today’s networks, we use an optimistic
approach to overlap communication and transaction pro-
cessing. In this way, the message overhead caused by the
need for coordination among the sites of a distributed sys-
tem is hidden by optimistically starting to execute transac-
tions. Correctness is ensured by delaying transaction com-
mitment until the message is definitively delivered.

We are aware that our concurrency model is restric-
tive in that defining conflict classes and using stored pro-
cedures is only feasible for applications in which coarse-
granularity locking does not result in performance degrada-
tion, or where one can tell in advance which fine-granularity
objects are accessed by all transactions. We are working
on improving our concurrency model so that it accepts the
same type of operations as in traditional systems.

Acknowledgments

We want to thank the anonymous reviewers for their
helpful advice.

References

[1] D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi. Ex-
ploiting atomic broadcast in replicated databases. InEuro-
Par’97, Passau (Germany), August 1997.

[2] G. Alonso. Partial database replication and group commu-
nication primitives. In2nd Europ. Research Seminar on Ad-
vances in Distr. Systems (ERSADS’97), Zinal (Switzerland),
March 1997.

[3] P. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency
Control and Recovery in Database Systems. Addison Wes-
ley, Massachusetts, 1987.

[4] K. Birman and T. Clark. Performance of the Isis distributed
computing toolkit. Technical report, Departement of Com-
puter Science, Cornell University TR-94-1432, June 1994.

[5] K. Birman, A. Schiper, and P. Stephenson. Lightweight
causal and atomic group multicast.ACM Transactions on
Computer Systems, 9(3):272–314, August 1991.

[6] T. D. Chandra and S. Toueg. Unreliable failure detectors for
asynchronous systems. InProc. of the 10th ACM Symp. on
Principles of Distributed Computing, pages 325–340, Au-
gust 1991.

[7] D. Dolev and D. Malki. The Transis approach to high avail-
ability cluster communication.Communications of the ACM,
39(4):63–70, April 1996.

[8] R. Friedman and R. van Renesse. Packing messages as a
tool for boosting the performance of total ordering protocols.
Technical report, Departement of Computer Science, Cornell
University TR-95-1527, July 1995.

[9] J. Gray and A. Reuter.Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[10] D. R. Jefferson. Virtual time. ACM Transactions on
Programming Languages and Systems, 7(3):404–425, July
1985.

[11] B. Kemme and G. Alonso. Database replication based on
group communication. Technical report, Department of
Computer Science, ETH Z¨urich, No. 289, February 1998.

[12] B. Kemme and G. Alonso. A suite of database replica-
tion protocols based on group communication primitives. In
Proc. of the Int. Conf. on Distributed Computing Systems,
Amsterdam, The Netherlands, May 1998.

[13] B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Using
optimistic atomic broadcast in transaction processing sys-
tems. Technical report, Department of Computer Science,
ETH Zürich, March 1999.

[14] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K.
Budhia, and C. A. Lingley-Papadopoulos. Totem: A fault-
tolerant multicast group communication system.Communi-
cations of the ACM, 39(4):54–63, April 1996.

[15] Oracle.Concurrency Control, Transaction Isolation and Se-
rializability in SQL92 and Oracle7, 1995. White Paper.

[16] F. Pedone, R. Guerraoui, and A. Schiper. Transaction re-
ordering in replicated databases. In16th IEEE Symp. on Re-
liable Distributed Systems (SRDS’97), Durham, USA, Octo-
ber 1997.

[17] F. Pedone, R. Guerraoui, and A. Schiper. Exploiting atomic
broadcast in replicated databases. InProc. of EuroPar,
Southampton (England), September 1998.

[18] F. Pedone and A. Schiper. Optimistic atomic broadcast.
In Proc. of the 12th Int. Symp. on Distributed Computing
(DISC’98), September 1998.

[19] M. Raynal. Consensus-based management of distributed and
replicated data.Bulletin of the Techn. Comm. on Data Engi-
neering, 21(4), 1998.

[20] D. Stacey. Replication: DB2, Oracle, or Sybase.Database
Programming & Design, 7(12), 1994.

[21] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A
flexible group communication system.Comm. of the ACM,
39(4):76–83, April 1996.

[22] A. Wool. Quorum systems in replicated databases: Science
or fiction? Bulletin of the Techn. Committee on Data Engi-
neering, 21(4), 1998.

