Processing Transactions over Optimistic Atomic Broadcast Protocols

Bettina Kemmé& Fernando Pedoihe Gustavo Alonso André Schipet

*Information and Communication Systems TOperating Systems Laboratory
Institute of Information Systems Computer Science Department
Swiss Federal Institute of Technology (ETH) Swiss Federal Institute of Technology (EPFL)
ETH Zentrum, CH-8092 ifich IN-Ecublens, CH-1015 Lausanne
E-mail: {kemme,alonsp@inf.ethz.ch {Fernando.Pedone,Andre.Schip@repfl.ch
http://www.inf.ethz.ch/department/IS/iks/ http://lsewww.epfl.ch/
Abstract In this paper we develop this idea further, and show how

applications can take advantage of the optimistic assump-
tion by overlapping the coordination phase of the atomic
broadcast algorithm with the processing of transactions.
the delay incurred before a message can be delivered makeSU" 9eneral database framework is based on broadcasting
it difficult to implement high performance, scalable appli- UPdates to all replicas, and using the total order provided by
the atomic broadcast to serialize the updates at all sites in

cations on top of atomic broadcast primitives.edently, S i
a new approach has been proposed which, based on Op_the same way [1, 12, 11, 16, 17, 19]. The basic idea is that

timistic assumptions about the communication system, re-tN€ communication system delivers messages twice. First, a
duces the average delay for message delivery. In this pa-MeSSage is prellmlnary dellvgred to the databa;e system as
per, we develop this idea further and present a replicated SCON @S the message is received. The transaction manager
database architecture that employs the new atomic broad-US€S this tentative t.otal order to determlne a schedullng'or-
cast primitive in such a way that the coordination phase of der for the'transactlon and start; executing th.e transaction.
the atomic broadcast is fully overlapped with theseution 1 N€ commitment of the transaction, however, is postponed.
of transactions, providing high performance without relax- When the communlganon system has determined the defini-
ing transaction correctness. tive toj[al order, it plgl!vers a confirmation for the message. .If
tentative and definitive orders are the same, the transaction
is committed, otherwise further measures have to be taken
1. Introduction and Motivation to guarantee that the serialization order obeys the definitive
total order. If the time it takes to receive confirmation of the
Atomic Broadcast [6, 5] primitives are a well known message prder is compgrable to the Fime it takes to execute
a transaction, and tentative and definite order are mostly the

mechanism to increase fault tolerance and to provide a se- hen th head of atomic broadcast hanism h
mantically rich framework to develop distributed systems. same, then the overhead of atomic broadcast mechanism has

Unfortunately, it is also recognized that atomic broadcast Pe€N hidden behind the cost of executing a transaction.

suffers from scalability problems [4, 8] as it involves coor- . . .
o : : The results reported in this paper make two important
dination between sites before messages can be delivered. o) .)
contributions. Firstly, our solution avoids most of the

Recent!y, anew atomic brgadcgst protoco] has been PrO%ver head of atomic broadcast by overlapping the process-
posed which, based on optimistic assumptions about the

X ing of messages (execution of transactions) with the algo-
network, reduces the average delay for message delivery WQithm used to totally order them. Secondly, our approach
the application [18]. This protocol uses the order in which i

. : ! S ompares favorably with existing commercial solutions for
messages arrive at each site as a first optimistic guess, an

v if & mismatch of m is detected. further coord atabase replication [20] in terms of performance and con-
ontyl ‘E tvi itt:h 0 it e?sarl]gez ‘Z te ecre ' lrj] t?)tal orderSiStenCy' While most systems achieve performance by using
nation between the sites s heeded to agree on a asynchronous replication mechanisms (update coordination
*Part of this work has been funded by Swiss Federditiris of Tech- is done after transaction commit) our solution offers com-

nology (ETH and EPFL) within the DRAGON Research Project (Reg-Nr. paraple performance and at the same time maintains global
41-2642.5) C0n5|5tency.

Atomic broadcast primitives allow fault-tolerant cooper-
ation between sites in a distributed system. Unfortunately,

The paper is structured as follows. In Section 2 we de- _Spontaneous Ordered Messages

scribe the system model. In Section 2.1 we present the
atomic broadcast primitive used in our database algorithms.
The optimistic transaction processing is described in Sec-
tion 3, and its correctness proof in Section 4. Queries are
discussed in Section 5, and Section 6 concludes the paper.

100

98
96
04 |
92 +
90
2. Model and Definitions 81
86
84 |

A replicated database consists of a group of sites
N = {Ny, Na,..., N, } which communicate by exchang-
ing messages. We assume asynchronous (no bound on
transmission delays) and reliable communication (a mes- Figyre 1. Spontaneous total order in a 4-site-
sage sent byv; to NV; is eventually received by;). Sites system
can only fail by crashing (i.e., we exclude Byzantine fail-
ures), and always recover after a crash. We assume a fully
replicated system, i.e., each si¥ contains a copy of the
entire database. Data is accessed by executing transactions. The approach proposed here is a maggressiverersion

of the protocol in [18]. If a spontaneous total order is the
2.1. Atomic Broadcast with Optimistic Delivery normal case, it seems to be a waste of time to delay the
delivery of a message until the sites agree to this same total
Communication is based atomic broadcasproviding order. Instgad, one could opFimisticaIIy process messages
. .) . as they arrive. If a message is processed out of order, one
an ordering of all messages in the system, i.e., all sites re- .
has to pay the penalty of undoing what has been processed

ceive all messages in the same order. so far, and redo it again in the proper order. This approach
Although there exist many different approaches on how . ’ g prop ' PP

. is conceptually similar to virtual time [10].
to implement total order [6, 5, 7, 14, 21], all of them re- W dpf' y tomic broadcast Lth] timistic deli
quire some coordination between sites to guarantee that alt) the etine f‘t‘.n a (_)rrglcb rog cats Wi OE |m|ds Ic tetl;]/ery
messages are delivered in the same order at the differen y three primitives.TO-broadcast(m) broadcasts the

sites. However, when network broadcast (e.g., IP-muIticast)m(T.Ssagen to all sites in thtg sy ?tenl?p;[-d?::ver(i n?
is used, there is a high probability that messages arrive atoIe IVErs a messagen optimistically o the application
once it is received from the networkOpt-deliver

all sites spontaneously totally ordered [18]. To illustrate q i tee total ord Wi ider th
the spontaneous total order property of local area networks, oes not guarantee total order. ¢ consider he or-

Figure 1 describes an experiment conducted on aclusterofzpIer perceived bY the application by receving the se-
sites (Ultrasparc 1 workstations) connected by an EthernetiY€nce ofOpt-deIlvered _ messages as @ntative or-
network (10 Mbits/s), where all sites simultaneously send dgr. TO-dellver(m) dghverSm deflmtn{ely'to the ap- .
messages using IP multicast. The figure shows the percentpl'caﬂon' The order percelyed by the appllcatlon.by receiv-
age of spontaneously ordered messages vs. the interval benY the. sequence oTO-gjellvered Messages 13 called
tween two consecutive messages on each site. For examplé.he def|n|t|v¢ orderand IS the same at all sutgs. In prac-
for this configuration, if each site sends one message each Ece,TO-deIlver(m) will not deliver the entire body of

milliseconds, around 99% of the messages arrive at all sitesthe message (whlo@PT-Qellvgr(m) already did), pUt
in the same order. rather deliver only a confirmation message that contains the

identifier ofm.

Only recently, an Optimistic Atomic broadcast proto- h . d ith Lo i .
col that takes advantage of these characteristics has beep. The Atomic Broadcast with Optimistic Delivery is spec-

proposed [18]. It first checks whether the order in which 'ed by the following properties.
messages are received is the same at all sites. If so, thEermination: If a site TO-broadcasts m, then

82

Percentage of spontaneous ordered messages

0 05 1 15 2 25 3 35 4 45 5
Time between broadcast in msec

algorithm does not require any further coordination be- ~ €very site eventually Opt-delivers m and
tween sites to reach an agreement on the order of such mes- 10-delivers m.

sages. Since the verification phase introduces some addfzlobal Agreement: If a site Opt-delivers m
tional messages, there is a tradeoff betweptimisticand (TO-delivers ~ m) then every site eventually
conservative(non-optimistic) decisions. However, mes- Opt-delivers m (TO-delivers ~ m).

sages are never delivered in the wrong order to the appliLocal Agreement: If a site Opt-delivers m then it

cation. eventuallyTO-delivers m.

Global Order: If two sites IV; and N; TO-deliver Conflict

Class
two messagesn and m/, then N; TO-delivers Classes Queues
m before it TO-delivers m’ if and only if NV
TO-delivers m before itTO-delivers ~ m/. c1 CQL o— i -
Local Order: A site first Opt-delivers m and then
TO-delivers m. - cQ2 --

These properties state that every mes-
sage TO-broadcast by a site is eventually
Opt-delivered and TO-delivered by every site e cQ3 -
in the system. The order properties guarantee that no site

TO-delivers a message befoi@pt-delivering it,
and every messageT®-delivered (but not necessarily Figure 2. Conflict classes and their class
Opt-delivered) in the same order by all sites. gueues

2.2. Transaction Model

One way to interact with a database is to use stored pro-2.3. Concurrency Control
cedures. A stored procedure allows to encapsulate complex
interactions with the database into a single procedure which Serializing the execution of conflicting transactions is
is executed withinthe database context. Since both data mazchieved through concurrency control. To simplify the pre-

nipulation and the flow control of the program are executed sentation, we assume a rather simple model of concurrency
within the scope of the database system, this approach leadggntrol. We assume that each stored procedure (or transac-
to better performance and simplified access. tion) belongs to one of several disjounflict classesThe

For the purposes of this paper, we assume that all datgransactions of one class are only allowed to access objects
access islone through stored procedures, with one transac-of 5 certain partition of the database and different conflict
tion corresponding to one stored procedure. Since the degjasses work on different partitions. This means that trans-
tails of transactions are hidden by the use of stored proce-actions within one conflict class have a high probability of
dures, we use a simplified version of the traditional transac-aying conflicts while transactions from different conflict
tion model [3]. Transactions access the database by reading|asses do not conflict.
and writing (updating) objects of the database. Transactions \ysth this assumptiongoncurrency controis done as

execute atomically, i.e., a transacti@neither commits or ¢o)16,ys (Figure 2). For each conflict clags there exists
aborts all its results. It is possible for two or more transac- 5 FlFQ class queug’Q. When a transactio € C, is

tions to access the database concurrently. Two transactiong;arted. it is added t6'Q. WhenT is the only transaction
conflictif both access the same objécand at least one of i, ¢ then its execution can be started. When there are al-

the transactions 'updatés. A h.istoryH is a partial order _ready other transactions queuediri’ has to wait. When a

of a set of committed transactions and reflects one possiblgangaction commits (it must be the first one in its queue), it
execution. All conflicting transactions containedfihare s removed from the queue and the next transaction waiting
ordered. A historytl is serial if it totally orders all trans- giars 19 execute. Transactions in the same conflict class are
actions. Two histories{; and H, are conflict equivalent gy acited sequentially. When they are in different classes,
if they are over the same set of transactions and they Orpeir execution is not ordered. It is easy to see that this pro-
der conflicting transactions in the same way. A histty 50| guarantees serializabilitgbause conflicting transac-

is said to be serializable if it is conflict equivalent to some iyns are fully serialized.

serial history. . . This mechanism is a simplified version of the standard
: The correctness criterion for repllcayed database SYSteM, i table used in existing database systems [9]. The differ-
IS 1?copy-ser.|allzablllty despite the gxstence of multiple ences are that a transaction may enter step by step several
copies an Ob]e(.:t appears as one logical copy and the Systeng e into 4 lock table, one for each data it accesses (fine
only allows serializable histories. Formally, a database Sys'granularity 2-phase locking), while our approach queues a

tgm provides ljcopy-serlallzablllty |ffqr all po§5|ble EXECU- transaction in exactly one class queue when the transaction
tions the following holds: H = (U H; is serializable with begins3

Hy, Hs, ..., H, being the histories at sites;, ..., N,.

11 fact, many commercial databases base their replication solutions on®- If H’ andH"' are two histories, theW = H'| J,, H" is such that
the use of stored procedures [20]. =3 U S and<g=<Yy U <4

’Let H = (%, <z7) be a history wher& is a set of transactions, and 3This approach has the advantage that transactions are never involved
<y Is a set defining a transitive binary relation between transactions in in deadlocks, which is the case with lock tables.

We would like to note, however, that the ideas of this pa- tive Atomic Broadcastnodule, establishes a definitive total
per can also be applied to a more general concurrency conerder for a message, the messagd @-delivered to
trol model. In [13], we present solutions using finer granu- the Correctness Checknodule of the transaction manager.

larity locking. This module compares the tentative serialization order with
the serialization order derived from the definitive total or-
2.4. Replica Control der. If they match, then th€0O-delivered transaction

can be committed. If there are mismatches, then measures
We use a variation of the read-one/write-all (available) need to be taken to ensure that the execution order is correct.
approach foreplica control[3]. When a user submits a This may involve, as it will be later discussed, aborting and
query (i.e., a transaction that does not update any data) taescheduling transactions.
site N, the query is executed locally &t. However, when

a user sends the request for an update transaction 9 W OTp;'ndtglt'ivveer' .
broadcasts the request to all sites so that the updates are ex=— - womic broacast- T S5r81EH"
ecuted at all sites. Stored procedures support this approach Module _
very well. Since they are predefined, the type of the trans- Te"jt've
action (query or update transaction) can be declared in ad- Tentative C;,S%;”S % Transaction
vance. We first focus on update transactions only. Queries sertl e — Execution
are considered in Section 5. TO-deliver: | Reorder
The basic idea to guarantee the same serialization order Definitive | | gt | (e mess | COMML
at all sites is to use the total order provided by the atomic Atomic Broadcast Sheck
broadcast to decide on the order of conflicting transactions. o
This means that whenever two transactions belong to the Communication Manager Transaction Manager
same conflict class we guarantee that they are executed and
committed in the order they afeD-delivered . Figure 3. Execution model
3. Optimistic Transaction Processing 3.2. General Idea of the Algorithm

To better understand the algorithms described below,
the idea is first further elaborated using an example. As-
sume two sitesV and N’ where the following tentative se-
guence of update transactions (messages) is delivered to the
database.

Tentative total order at N : Ty, Ty, 15, Ty, 15, Ts

Figure 3 depicts the coordination of the communica- Tentative total order at N': Ty, Ts, Ty, Ty, Ts, Ts
tion manager and the transaction manager to execute up- ASSume as well that there are three different conflict
date transactions. The communication manager receives!asses and the distribution of the transactioriisl; €
and ordersTO-broadcasted requests. Theentative Cu» T3, Ta € Cy, andTs,Ts € C.. When the scheduler
Atomic Broadcasmodule, eceives the messages, and im- '€CeIVes the transactions in tentative order, it places them as
mediatelyOpt-delivers them to the transaction man- follows in the queues:
ager. In the transaction manager part of the system, thedt N : CQ. = T1, Ty At N': CQ. = Ti, Ty

In this section, we show how transactions are executed
in the system, and present the OTP-algorithm for optimistic
transaction processing.

3.1. Execution Model

Serializationmodule takes the messages, analyzes the cor- CQy = T3, Ty CQy = T5, Ty
responding transactions and adds them to the correspond- CQ. = 15, Ts cQ. = 1Ts, Ts

ing class queue, i.e. it determines the serialization order The transaction manager will then submit the execution
on behalf of theDpt-delivered messages. ThExecu- of the transactions at the head of each queue,fie.75,

tion module executes the transactions of the class queue@nd’s are executed aV, and1, 75, and/; are executed at
concurrently as long as they do not belong to the same condV’. The transaction manager will wait to commit a transac-
flict class. However, whenever they conflict, they are or- tion until it is totally executed and its ordering is confirmed.
dered according to the tentative order. If two transactions/Assume that the definitive total order turns out to be:

T, andTy, conflict, and? is tentatively ordered befors,, De finitive total order : T, Ty, T3, Ty, Ts, Ts

then Ty has to wait until7}; commits before it can start This means that aV, the definitive total order is iden-
executing. However, transactions are not committed until tical to the tentative order, while &’ the definitive order
they areTO-delivered and their definitive order is de- has changed in regard to the tentative orderfipand 75
termined. Once the communication manager, vidxeni- and for7s and7s.

Upon receiving the messages in definitive total order, the UponOpt-delivery of messagen containing
transaction manager has to check whether what it did makes transaction?}:
sense. AtV, the tentative order and the definitive order are sS1 Appendr; to the corresponding qued&y

the same, thus, transactiofig 75, and7s can be commit- S2 MarkT; aspending andactive
ted and the next transactions in the queues executed. S3 if T; is the only transaction i6'Q
At N’, the total order is not the same as the tentative S4 Submit the execution of the transaction
order. However, the ordering betwe&nhandTs; is not rele- S5 end if
vant because these two transactions do not conflict. Hence;
the transaction manager does not need to realize the mis- Figure 4. Serialization Module

match. However, the order betweg&p and 7 is relevant

since they COI"lﬂ.I(?t. Given that the serlallzatlon.or(jer must Upon complete execution of transactitinof

match the definitive total order of the communication sys- classC":

tenc] mﬂghe Caj.ﬁf. oftgonflgs, thg]Erar:sac';lon rr:ra]lnager hafs ©Er f T; is markedcommittable (see next module
undo the modifications dfs and first perform the ones o E2 CommitT; and removel} from C'Q

T; before it reexecutess. . E3 Start executing the next transactior(if)
To detect such conflicts the transaction manager markg E4 else

transactions when they af@-delivered . Assume the E5 MarkT: executed

pointin time wherils and7; have beei®pt-delivered E6 endif Z

and Ts is ordered beforeTs in the conflict queue
CQ.. WhenT; is TO-delivered (note, thatTs is
TO-delivered befores), the transaction manager of
N’ performs a correctness check. It looks in the queue
and scans through the list of transactions. The first trans-
action is7s and7; is not markedTO-delivered . The
wrong order is detected and the updatedgfcan be un-
done using traditional recovery techniques [B].will then
be appended to the queue affer The transaction manager
then markg/s TO-delivered . When at a later timepoint
Ts is TO-delivered | the transaction manager performs
again a correctness check. It looks in the queue and scan
through the list of transactions. The first transaction is now
T5. SinceTs is markedTO-delivered the transaction
manager knows that this time the schedulind/pfbefore
T was correct and no rescheduling has to take place. Thus
15 is simply markedr O-delivered

Note that, whenever transactions do not conflict, the dis- o
crepancy between the tentative and the definitive ordersO
does not lead to any overhead (§geandT; at N'). Hence,
in the case of low to medium conflict rates among trans-
actions, the tentative and the definitive order might differ
considerably without leading to high abort rates.

Figure 5. Execution Module

Moreover, we assume without further discussing them here
that there are two functions, commit and abort, that perform
all the operations necessary to commit or abort a transaction
locally.

Care must be taken that at most one transaction of
each conflict class is executed at a time, and that trans-
actions do not commit before they are both executed and
TO-delivered to guarantee that the serialization order
%beys the definitive total order. To do so, we label each
transaction with two state variables. Threcution state
of a transaction can bactive or executed . Thede-
livery statecan bepending (after Opt-deliver) or
tommittable (afterTO-deliver).

The serialization module is activated upon

pt-delivery of a transaction (Figure 4). It appends

pt-delivered transactions to their corresponding

conflict classes (S1), to mark that this serialization order
is still tentative (S2), and to submit the execution of
transactions when there are no conflicts (S4).

The execution module has to inform the transaction man-
. ager about completely executed transactions (Figure 5).
3.3. Algorithm When a transaction is both executed di@-delivered

(E1), it can commit (E2). If a transaction has completely

In the following, we present the OTP-algorithm for op- executed before it§O-delivery it must be marked ac-
timistic transaction processing. For simplicity, we divide cordingly (E5). Note that only the first transaction in a
the algorithm into different parts according to the different queue can be markezkecuted
modules described in Section 3.1. Note that these different The correctness check module is activated upon
modules do notecessarily represent different threads of ex- TO-delivery of a transaction. Figure 6 depicts the dif-
ecution but rather separate the different steps in the lifetimeferent steps (txn used as shortcut for transaction). The mod-
of atransaction. Since all modulascess the same common ule verifies whether the preliminary execution of a transac-
data structures, some form of access control between thdionwas correct and reschedules the transaction if this is not
modules is Bcessary (for instance, by using semaphores).the case.

UponTO-deﬁvery of messagen This means thdl; has beermO-delivered , but notT;

containing transactioff; of classC" and735 and the execution df; is still in progress. If now
CC1 Look for the entry of; in C'Q T3 is the next one to b&0O-delivered (beforel?) it is
CC2 if T; is markedexecuted simply rescheduled betwed&h and7; (CC10). Since, the

(can only be the first txn in'Q) first transaction/1, is committable (it only waits for its ex-
CC3 Commitl; and remove it fronC'Q ecution to finish) it will not be aborted. Hence the result is
CC4 Start executing the next txn @) CQ = Ti[a,d], Ts[a,c], Ty[a, p].

CC5 else(not fully executed or not the first txn)

X In the second example, the queli® has the form:
CC6 MarkT; committable

CC7 if firsttxnT} in C'Q is markedpending CQ = Tife,pl, Tza.p], Tsla, pl.) i
CCs8 AbortT; This means that none of the transactions is
CC9 endif TO-delivered but 7} is already executed. In this
CC10 Scheduld; before first txnT, in CQ case, if13 is the first one to bd0O-delivered (before

that is markegending Ty and13), the first transactiofl; must be aborted since
CC11 if 1; is now the first txn inC'Q) it is still pending (CC8). After this/s can be rescheduled
cCci12 Submit the execution &t beforeT; and submitted. This means that the execution of
CC13 endif T; is rescheduled after the executioniafand the result is
CCl4endif CQ = TS[aa C]a Tl[aap]a TZ[aap]‘

Figure 6. Correctness Check Module 4. Correctness

Since each message @pt-delivered before it is Note that in this section we only look at update trans-
TO-delivered (Local Order property), it is guaranteed actions. Queries are handled in the next section. In what
that there is an entry for a transacti@nin its correspond- follows we prove that the OTP-algorithm is starvation free
ing class queue (CC1). The first transaction of a classand provides 1-copy-serializability. Starvation free means
gueue commits whenever it iEO-delivered and to- that a transaction that iBO-delivered will eventually
tally executed (CC2,CC3) (both events must be true) andbe committed and not rescheduled forever. We use the fol-
the execution of the next transaction in the class queuelowing notation: for two transactioris; andZ;, we write
can be submitted (CC4). If a transaction cannot be com-T; —o,: T; if T; is Opt-delivered before}. Simi-
mitted immediately upon it§O-delivery it is marked larly, we writel; —7o 1} if 1; isTO-delivered before
committable (CC6) to distinguish between transactions T;. For Theorem 5.1 we assume a failure free execution.
whose final serialization order has been determined and
those wherdfO-delivery is still pending. The last part Theorem 4.1 The OTP-algorithm guarantees that each
of the protocol checks whether the tentative and the defini- TO-delivered transaction?; eventually commits.
tive order are different for conflicting transactions. If so,
abort (CC7,CC8) and reordering (CC10) take place. Note
that abort does not mean that the aborted transaction will
never be executed and committed. The aborted transac- 1), it is executed immediately (S3-S4,E3,CC4,CC11-
tion will be reexecuted at a Igter point in time.. The pro- CC12) and commits after its execution (E1-E2,CC2-
tocol guarantees that atlommittable transactions are cca)
ordered before all pending ones in the class que@gdue .
to step CC10). In particular, if transactidhof queueC'@
is TO-delivered and the first transaction i@'Q) is still
pending, all transactions befo¥eare pending. Therefore,
step CC10 scheduleg to be the first transaction in the
gueue (CC11), and step CC12 keeps the execution of trans-*"
actions in this queue running.

Proof We prove the theorem by induction on the position
n of T; in the corresponding class quetié).
1. Induction Basisif T; is the first transaction i6@'Q (n =

2. Induction Hypothesis: The theorem holds for all
TO-delivered transactions at positions < £, for
somek > 1, i.e., all transactions that have at mast
preceding transactions will eventually commit.
Induction Step:Assume now, a transactidh is at po-
sitionn = k& + 1 when the correctness check module
processed;’'s TO-delivered message. Lef; be

We illustrate this further with two examples. In the any of the transactions ordered befdiein CQ. Two
following we use the shortcuta for active , e for cases can be distinguished:
executed , p for pending andc for committable . a)T; —ro T;: When the correctness check mod-
Firstly, a class queue has the following entries ule processes tHEO-delivery of 7}, T is still

CQ = Tila,c], Tala, p], Ts[a,p]. pending. This means, step CC10 will schedijje

beforeT;, and hence, to a positiort < k. There- 5. Queries
fore, according to thenduction hypothesig; will
eventually commit. Note that due to the reordering
process!; might be moved out of the firgt posi-
tions. Since it has not yet bedrD-delivered
this does not violate the induction hypothesis.
b.)T; —ro T;: SinceT; has a positiom’ < k, the
induction hypothesis assures tiHatwill eventually
commit and be removed frofi@). When this hap-
pens,T; is at most at positio, and hence, will
eventually commit according to thaduction hy-
pothesis.

A configuration consisting of sites all performing ex-
actly the same update transactions is only useful for fault-
tolerance purposes. A more common setting will be a sys-
tem where the main load are read-only queries which can be
processed locally while a certain amount of updates must be
performed at all sites. Therefore, a protocol needs to be not
only tuned for updating transactions but also for queries.

In particular, it is not reasonable to require queries to
belong to a single conflict class but allow the access to mul-
tiple classes. Since queries often access a lot of data, access
to a single class would make it necessary to choose a very
coarse granularity for the conflict classes, thereby reduc-
ing concurrency. Furthermore, queries should be handled
dynamically, i.e., queries neither need to know in advance
their conflict classes nor should update transactions be de-
Proof Let 7; andT; be two conflicting transactions be- |ayed too long by preceding queries (what would be the case

Lemma4.1 Each site executes and order®ndlicting
transactions in the definitive order established by the atomic
broadcast.

longing to the same conflict clags and let7; —ro ;. if queries are added to their classes when they start).

We have to show that; commits beford’;. We can distin- However, queries cannot simply be added to a class

guish two cases: gueue when they want to access an object of this class
1.T; —op: Tj: This means thal; is included intoC'Q for the first time. Such a protocol would violate 1-copy-

before;. We have to show that this order can never serjalizability. The problem is the fact that update trans-
be reversed and henck, executes and commits before actions of different conflict classes could now be indirectly
Tj. The only time the order could change according ordered by queries that access both classes. For example,
to the protocol is when the correctness check modulesych a protocol would allow the following serialization or-

processes th€O-delivery of 7j. However, atthat gers for the queuesQ, andC'Q,, at sitesN and\':
time, 7; is either already executed and committed or Al N: CQ,= Ty, Ts, Q, Ts

it is markedcommittable , because of; —ro 7;. _
Hence, CC10 does not affef. 0Qy= 1Ty, Q, T, Ts

2. T; —op¢ T;: This means thaf is included intoC'Q ALN": CQr= T, QT Ts
beforeT;. We show that this order is reversed exactly CQy= Ti, Ts, Q, Ts
once and hencel; commits beforel;. When; is This means thaf) implicitly builds the serialization or-

TO-delivered , 7} might already be executed (when derT, — Q — Ts at siteN, while @’ leads to the order

it is the first transaction in the queue) but cannot be Ts — Q' — Ty atN' [2].

committed kecause it is not yetO-delivered but To avoid such situation, we ensure that the execution
still marked as pending. Therefore, the protocol pro- at gl sites is equivalent to the total order of the atomic
cesses step CC10 and reordéreforeT;;. This order proadcast (i.e., whenevél, —ro T; then the serializa-
cannot be changed anymoredausel; is now marked tion order at all sites i — 7). To combine 1-copy-
committable . = serializability with dynamic queries and fast execution for
updating transactions, we use shapshots for queries (similar
to Oracle snapshots [15]). To provide consistent snapshots
for queries, different versions of the data of a conflict class
Proof Since all sites execute the same update transac-are maintained. Each data is labeled with the index of the
tions, the local histories of all sites contain the same trans-transaction that created the version (assuming that transac-
actions. Lemma 5.1 proves that in all these histories con-tions are indexed according to th@©-delivery ,i.e. if
flicting transactions are always processed in the same order/; is TO-delivered before7j, thei < j). A query re-
namely the definitive order provided by the atomic broad- ceives an index when it starts. If was the last processed
cast. Therefore, all local histories are conflict equivalent to TO-delivered message, the index for the queryiis.

each other. This guarantees the ‘ipg” property, i.e., all ~ When a queryy; 5 wants to access a conflict clasor the

the copies behave in the same way. Moreover, there is a sefirst time, it receives a snapshot of the data that has been cre-
rial history that is conflict equivalent to all those produced: ated by transactio®;, wherej = maz(k), k < 1,T, € C.

the one derived from the definitive total order established With this, we produce a serialization order that obeys the
by the atomic broadcast (“serializability” property). O total order.

Theorem 4.2 The OTP-algorithm provides 1-copy-
serializability.

6. Conclusion [8] R. Friedman and R. van Renesse. Packing messages as a
tool for boosting the performance of total ordering protocols.
Technical report, Departement of Computer Science, Cornell

In this paper, we present a new way of integrating com- University TR-95-1527, July 1995,

munication and database technology to build a distributed . .
and replicated database architecture. Taking advantage of[9 J- Gray and A. ReuterTransaction Processing: Concepts
the characteristics of today’s networks, we use an optimistic ~ 2d TechniquesMiorgan Kaufmann, 1993.

approach to overlap communication and transaction pro-[10] D. R. Jefferson. Virtual time. ACM Transactions on
cessing. In this way, the message overhead caused by the ~ Programming Languages and System3).404-425, July
need for coordination among the sites of a distributed sys- 1985.

tem is hidden by optimistically starting to execute transac- [11] B. Kemme and G. Alonso. Database replication based on

tions. Correctness is ensured by delaying transaction com- ~ group communication. Technical report, Department of
mitment until the message is definitively delivered. Computer Science, ETHufich, No. 289, February 1998.

We are aware that our concurrency model is restric- [12] B. Kemme and G. Alonso. A suite of database replica-
tive in that defining conflict classes and using stored pro- tion protocols based on group communication primitives. In
cedures is only feasible for applications in which coarse- Proc. of the Int. Conf. on Distributed Computing Systems
granularity locking does not result in performance degrada- ~ Amsterdam, The Netherlands, May 1998.

tion, or where one can tell in advance which fine-granularity [13] B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Using

objects are accessed by all transactions. We are working optimistic atomic broadcast in transaction processing sys-

on improving our concurrency model so that it accepts the tems. Technical report, Department of Computer Science,

same type of operations as in traditional systems. ETH Zdrich, March 1999.

[14] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K.
Budhia, and C. A. Lingley-Papadopoulos. Totem: A fault-
tolerant multicast group communication syste@ommuni-
cations of the ACWM39(4):54—63, April 1996.

We want to thank the anonymous reviewers for their [15] Oracle.Concurrency Control, Transaction Isolation and Se-

Acknowledgments

helpful advice. rializability in SQL92 and Oracle,71995. White Paper.
[16] F. Pedone, R. Guerraoui, and A. Schiper. Transaction re-
References ordering in replicated databases.16th IEEE Symp. on Re-
liable Distributed Systems (SRDS'9Durham, USA, Octo-
ber 1997.

[1] D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi. Ex-
ploiting atomic broadcast in replicated databasesEuro-
Par'97, Passau (Germany), August 1997.

[17] F. Pedone, R. Guerraoui, and A. Schiper. EXjsig atomic
broadcast in replicated databases. Hroc. of EuroPar

) o Southampton (England), September 1998.
[2] G. Alonso. Partial database replication and group commu-

nication primitives. In2nd Europ. Research Seminar on Ad-
vances in Distr. Systems (ERSADS;%hal (Switzerland),
March 1997.

[3] P. Bernstein, V. Hadzilacos, and N. Goodm&uncurrency
Control and Recovery in Database SysterAgdison Wes-
ley, Massachusetts, 1987.

[18] F. Pedone and A. Schiper. Optimistic atomic broadcast.
In Proc. of the 12th Int. Symp. on Distributed Computing
(DISC'98), September 1998.

[19] M. Raynal. Consensus-based managementof distributed and
replicated dataBulletin of the Techn. Comm. on Data Engi-
neering 21(4), 1998.

. o [20] D. Stacey. Replication: DB2, Oracle, or SybaBmtabase

[4] K. Blrmgn and T: Clark. P_erformance of the Isis distributed Programming & Design7(12), 1994.

computing toolkit. Technical report, Departement of Com-

puter Science, Comell University TR-94-1432, June 1994, [21] R.van Renesse, K. P. Birman, and S. Maffeis. Horus: A
flexible group communication systencomm. of the ACM

[5] K. Birman, A. S(_:hiper, and P: Stephenson. Lightweight 39(4):76-83, April 1996.
causal and atomic group multicasACM Transactions on) . .
Computer System8(3):272-314, August 1991. [22] A. Wool. Quorum systems in replicated databases: Science

or fiction? Bulletin of the Techn. Committee on Data Engi-
[6] T.D. Chandraand S. Toueg. Unreliable failure detectors for neering 21(4), 1998.

asynchronous systems. Rroc. of the 10th ACM Symp. on
Principles of Distributed Computingpages 325—-340, Au-
gust 1991.

[7] D. Dolev and D. Malki. The Transis approach to high avail-
ability cluster communicatiorCommunications of the ACM
39(4):63-70, April 1996.

