
Agent Migration between Incompatible Agent Platforms

Pauli Misikangas and Kimmo Raatikainen
Department of Computer Science, University of Helsinki

P.O. Box 26 (Teollisuuskatu 23), FIN-00014 UNIVERSITY OF HELSINKI, Finland
email:fpauli.misikangas,kimmo.raatikaineng@cs.helsinki.fi

Abstract

Several agent platforms of general purpose exist — for
example, Voyager, Jade, and Grasshopper — each of which
provide an environment for building and executing software
agents. Unfortunately, the platforms are usually incompat-
ible with each other. Thus, agents built for one platform
cannot be used in another platform, nor can they interact
with agents in other platforms. Some effort is put into stand-
ardizing agent communication and migration in FIPA and
in OMG, but these standards are not yet supported by most
of the existing platforms. Therefore, we should find some
other ways to allow interaction between agents in different
platforms.

In this paper we will show that it is possible to make plat-
form independent agents that are able to migrate between
incompatible platforms. We will also describe how mes-
sages can be delivered to agents in other platforms, and
show how to build platform independent service agents that
are used via method calls. The ideas have been tested in
practice with Voyager, Jade, and Grasshopper platforms.

1. Introduction

The software agent society has re-invented the old prob-
lem of several incompatible systems, which has annoyed
programmers for decades in the forms of operating systems,
programming languages, and so on. There are dozens of dif-
ferent agent platforms including Voyager [9], Jade [1], and
Grasshopper [6],each of which has the same basic func-
tions extended with some fancy features. Unfortunately, the
general rule is that these platforms are incompatible with
each other. Therefore, agents built for one platform cannot
be used in another platform. And even worse, agents cannot
communicate with other agents that reside in another plat-
form. This means, for example, that a shopping agent built
for platformX cannot buy products sold by agents in other
platforms.

Agent system developers are hopefully looking to FIPA
[4] and OMG [8] which are trying to standardize agent com-
munication and migration. If everything goes well, some
day we will have nice standards supported by most of the
agent platforms. However, it would be unrealistic to hope
that all agent platform vendors will support those stand-

ards in the near future. In the worst case, some vendors
might create their own extensions or competitive standards
because “the existing standard was not adequate.” If they
have enough customers and applications to back up their
opinions, the agent world will split and we are back with
the original problem.

Thus, there are good reasons for trying to develop tech-
niques that would narrow the gap between agent platforms.
At least, we should be able to re-use the same agent source
code in different platforms. This is analogous to writing
portable programs that can be compiled under different op-
erating systems. A commonly used technique for this is to
separate all system specific code into modules that are used
through a system independentapplication programming in-
terface(API). The advantage of this approach is that only
those API modules must be re-implemented foreach sup-
ported operating system. This simple idea can easily be ap-
plied to agents as well. We can separate the platform spe-
cific part of an agent and create an interface for it. The
rest of the agent is platform independent and can be used in
other platforms without modifications.

This idea can be elaborated even further. In this paper
we will show that it is possible to make platform independ-
ent agents that are able to migrate between incompatible
platforms — for example, between Voyager and Jade. In
addition, we will describe how to deliver messages between
agents running in different platforms so that the message
passing is transparent to the sender and the receiver. We
will also outline the principles of building platform inde-
pendent service agents so that they can be exploited by us-
ing normal method calls. Finally, we will present a simple
example agent that has been used to test agent migration
between Voyager, Jade, and Grasshopper platforms.

2. Background

Every project that is planning to take advantage of agents
must choose whether to use an existing agent platform or
to build one of its own. The choice is not easy because
there are several platform candidates and none of them out-
does others in all respects. Especially, if one is developing a
commercial product, such as shopping agents for electronic
commerce, one should try to select the platform which will
have the most users in the future. Whichever is selected,
it might turn out to be the wrong decision in the long run.



On the other hand, building a new platform is even more
risky since users who are already using some agent system
will probably not be very anxious to move to a new sys-
tem. However, many research projects that are not aiming
to build a commercial product might find the development
of a new agent platform a fascinating solution.

The dilemma of using an existing agent platform
versus building a new one was also faced in the Monads
project1 [3]. Our goal is to advance working in wireless
environments, i.e. a laptop computer or an advanced PDA
connected to a fixed network via wireless networks, such
as GSM Data [7], GPRS [2], wireless LAN [10], by using
intelligent and adaptive agents. Since none of the existing
agent platforms is designed to be used with wireless con-
nections, we were tempted to build an agent system of our
own. Another possibility was to modify an existing plat-
form so that it suits our purposes better. In both cases, the
result would have been a system that is incompatible with
existing ones.

Our decision was to build the Monads system on top of
an existing agent platform that uses Java as the basic agent
implementation language. However, we were not ready to
commit ourselves to a single platform. Instead, we designed
a system that can easily be implemented for several plat-
forms so that user-level Monads applications will work on
each of them. Furthermore, Monads agents are able to in-
teract with native agents, such as pure Voyager agents, to
operate in agent servers without Monads support, as well as
to migrate and to send messages to another platform via the
Monads Agent Gateway, which is described in Section 4.

Figure 1 outlines the basic conceptual architecture of
the Monads System. All Monads agents are built upon
the Monads API, which defines the operations and services
needed by the agents. The operations and services are im-
plemented using the corresponding functionality of the un-
derlying platform whenever possible. If some operations
are not supported by the underlying platform or they should
be optimized for a wireless connection, we use our own im-
plementation instead. Since the underlying agent platform
is not modified in any way, native agents can be used to-
gether with the Monads agents.

3. Separating agent’s head and body

Every agent platform has a unique set of services and in-
terfaces of its own. Many platforms have a special agent
superclass from which all agents must be derived, for ex-
ample. This means that each platform has a uniqueagent

1The partners of the Monads project are Nokia Mobile Phones,
Nokia Research Center, Sonera Ltd., and the University of Hel-
sinki. The project is also funded by the National Techno-
logy Agency of Finland (TEKES). The project homepage is at
http:/www.cs.helsinki.fi/research/monads

Native Agents

Monads Agents Monads Service Agents

Monads API

Low Level System Services

Agent PlatformMonads Services

Figure 1. Conceptual architecture of the Mon-
ads system

programming interfacethat includes everything needed in
programming agents and agent-server intercommunication
(see Figure 2). Such an interface defines, among other
things, how agents send and receive messages, how agents
register and look up services, and how agents move between
agent servers, and so forth.

Unfortunately, agent programming interfaces of different
platforms are usually incompatible with each other. This
is the greatest obstacle for agent migration between plat-
forms as depicted in Figure 3. If we could transfer the state
and classes of an agent to another platform and wake up the
agent, even then the agent could not do anything useful in
this foreign environment because it does not know how to
use local services. Actually we would not even reach that
point because different types of agent servers do not have
common protocols for sending or receiving agents, classes,
and messages.

In Monads we have solved the problems mentioned
above by separating the platform independent part of an
agent (the’head’) from the platform specific part (the
’body’. The agent body and head communicate with
each other by calling abstract methods in the classes of
AgentHead andAgentBody as shown in Figure 4. The
AgentBody provides some basic operations needed by
agents, such assend message, move agent, and find ser-
vice. TheAgentHead defines some methods such asre-
ceive messagethat are needed when an agent server or some
other agent wants to communicate with the head. The main
program of an agent is in the head (classMyAgent ), which
also implements the methods in theAgentHead , defin-
ing what the agent will do when a message arrives, and
so on. The body (classXBody) extends the platform spe-
cific agent superclassXAgent , if the platform has one,
and implements the operations defined in theAgentBody .
Whenever the head wants to operate with an agent server—
send a message, for example—the head calls a method
available in theAgentBody . The body then performs the
operations necessary to fulfill the request in the particu-
lar platform. Analogously, the body handles method calls



xA1

Ax
2

X

Agent
Platform

XAgent

xAgentOp2()
xAgentOp1()

...

MyAgent
xAgentOp1()

...
xAgentOp2()

X

Agent
Platform

X’s interface

agent

Figure 2. Interface between agent and platform

xA1 1
yA

2
yA

Ax
2

X

Agent
Platform

Agent

Y
Platform

migration

conflict

Figure 3. Unsuccessful agent migration because of incompatible interfaces

made to the XAgent by calling corresponding methods in
theAgentHead .2

The body part of an agent must be implemented for every
platform we want to support. However, it is the same for
every agent, so the task needs to be done only once. The
body should be kept as small as possible, containing only
those operations that are absolutely necessary to survive
in native servers without any Monads support. Thus, the
AgentBody interface should contain at least the following
operations:

Move: Move to another agent server by using the agent
transfer services of the underlying platform.

Send Message:Send a text message—for example, a FIPA
ACL message—by using native communication ser-
vices. The body should also be able to receive such
messages.

Find Service: Find a service by name and return the iden-
tifier of the service agent. This is done by using native
yellow pages service.

2The class structure in Figure 4 can be seen as an instance of theAd-
apter design pattern [5]. In fact, theXBody is a two-way adaptersince
it adapts interfaces to both directions — from head to platform and vice
versa.

Get Native Proxy: Get an object reference to an agent or
its proxy. The identifier of an agent is given as a para-
meter and the type of the return value isObject , that
is the superclass of all Java classes. The head must
know the actual interface class of the agent and must
cast the reference to the interface class. After this the
head can use normal Java method calls to communic-
ate with the agent.

Typically, when a Monads agent arrives at an agent
server, it first searches for some Monads services—the
Monads Naming Service, for example—and starts using
them if they are available. However, the agent can also op-
erate in non-Monads agent servers by using the operations
listed above. Although the set of operations is very limited,
it is sufficient for many useful tasks.

4. Advantages of head-body partition

In the previous section we described the basic idea of di-
viding agents into platform specific and platform independ-
ent parts—into the body and the head. In this section we
show the advantages we can gain from this partition.



X.systemOp1()

X

Agent
Platform

XAgent

xAgentOp2()
xAgentOp1()

... ...

bodyOp1()
bodyOp2()

AgentBody

XBody

xAgentOp2()

...

bodyOp1()
bodyOp2()

xAgentOp1()

head

X’s interface

implements

X

interface
Platform independent

head.headOp1()

MyAgent

...

headOp1()
headOp2()

body

AgentHead
headOp1()
headOp2()
...

Figure 4. Separating the platform independent part of an agent

4.1 Head migration

The head-body partition allows us to use the source code
of the head in several platforms. In fact, the compiled ver-
sion of the head is also portable. This reflects the principal
idea of this paper: Maybe we could move an instance of
the head class to another platform at run time? If we use
Java as the agent implementation language, the transfer is
fairly easy since Java offers tools of object serialization and
deserialization. In other words, we can transform an object
into byte stream and vice versa. Thus, we can serialize a
head, send it to another platform, deserialize it, and connect
it to a new body. After these steps the agent is again ready
to run but now in a different platform. However, we need
a service that performs all the steps needed for the agent
migration.

The Monads Agent Gateway(MAG) provides connec-
tions between agent servers of different platforms as de-
picted in Figure 5. The MAG is actually just a service
agent that opens a socket connection to another MAG when
needed. When an agent wants to migrate to another plat-
form, the MAG splits the agent into the head and the body
but only the head is transferred to the destination platform.
At the receiving end, the local MAG creates a newbody for
the received head and joins them together; see Figure 6.

The body part stays alive in the original platform and
waits until the head comes back and is re-connected to the
body. It is important that the head is connected to the same
body as before because the identity of a head-body agent
is associated to the body. Thus, it would be impossible to
reach an agent after destroying itsbody because the identi-
fier of the agent becomes invalid by doing that. In order to
find the right body for a head, identifiers of heads’ bodies

Sx

Sx

Sx

Sy

Sy

Sy

Sy

Sy

Sy

Sy

Sz

Sz

Sz

Sx

Sx

Sz

1 3

4

5

1

2

4 6

2

4

3
1

3

7

5

2

Agent
Servers

Agent Platform Z

Agent Platform X

Monads

Agent Servers with
Monads Services

Agent Platform Y

Agent
Gateway

Figure 5. Agent platforms connected with
Monads Agent Gateways

in different platforms must be stored into the head. When a
MAG receives a head, it can check whether the head already
has a body in the platform or a new body should be created.

4.2 Message delivery between platforms

A commonly used method of agent communication is to
send text messages between agents. If compared to method
calls, text messages have the advantage of being independ-
ent of the platform, programming language, class interfaces,
and location of communicating agents. It is enough that the
sender and the receiver agree on the meaning of messages,
and there are some ways to deliver text messages between



Agent

Y
Platform

X

Agent
Platform

head

xB1

xB2 1
yA

1
yB

H

H

2

1migration via
Monads Agent Gateway

body for platform X body for platform Y

Figure 6. Moving the head of an agent to another agent platform

the source and the destination.

FIPA ACL [4] is a promising candidate for a common
agent communication language. FIPA is also giving stand-
ards on how messages are delivered between platforms.
Thus, when agent platform vendors start to use these stand-
ards in their products, we have a unique agent communic-
ation system. However, this is not going to happen in the
near foreseeable future. Of course, we can already use FIPA
ACL in communication between our agents but the plat-
forms are not able to deliver messages in that form to agents
in another platform. However, FIPA ACL messaging is sup-
ported by the Monads Agent Gateway.

Many platforms provide operations for sending mes-
sages. In the platforms that do not support messages, we
can define a common agent interface that has the operation
receiveMessage(String message) . Thus, agents
can send messages to each other by calling this method.
When somebody sends a message to a head-body agent, the
message goes to the body first. If the head is present, the
body delivers the message to the head. If the head has gone
to another platform, the body has two choices: It can either
store the message until the head comes back or ask the MAG
to deliver the message to the head. In the latter case, MAG
on the receiving side will forward the message to its des-
tination by using the normal communication services of the
local platform.

This kind of message delivering, which is transparent to
the sender, i.e. the sender does not notice that the receiver
is in another platform, is possible only when the receiving
agent has a body in the sender’s platform. However, agents
can also send messages to other agents by using the MAG
directly if they know the identifier of the receiver in the tar-
get platform.

4.3 Using platform independent services via
method calls

The use ofRemote Method Invocation(RMI) in agent
communication simplifies the programming of agents. In-
stead of sending messages, we can use normal method calls
to request services from agents. In practice, all method calls
are handled by aproxy objectwhich provides exactly the
same call interface as the target agent. The proxy forwards
all calls to the actual agent by using either local method calls
or RMI if the target agent is in another host. The caller does
not need to know the actual location of the agent called: the
proxy will take care of that.

When an agent wants to use a service via method calls,
it must first ask the underlying platform to create a proxy
for the service agent. Typically, platforms provide an op-
eration which uses the agent identifier or service name as a
parameter and returns an object reference to the proxy. In
order to use this reference, the caller must first cast the type
to the interface class of the service that must be known in
advance.

Let us assume that we have created a platform independ-
ent service agent using the head-body partition described
in Section 3. The implementation of the service is in the
head and it is to be used through a separate service interface
class. Now we would like to register this service into the
underlying platform so that other agents could start using
the service. Unfortunately, most platforms refuse to register
the head as a service agent, because it does not derive the
platform specific superclass of agents. On the other hand,
we cannot register the body either since it does not imple-
ment the interface class of the service. The only solution
seems to be to change the body so that it will provide the
necessary interface. But then we have to make abody for
each head-platform combination, or do we?



Not necessarily. In the current Monads system proto-
type, we use a trick that takes advantage on the dynamic
class handling of the Java language. We use the same class
name for the body implementation in all platforms. So, in-
stead of naming them asVoyagerBody or JadeBody ,
all body implementations are namedMonadsBody . Thus,
we can create a body class for our service that extends the
MonadsBody and implements the service interface by del-
egating all requests to the head, as shown in Figure 7. The
same service body class can be used in all platforms — only
the implementation of its superclassMonadsBody varies
between platforms. In addition, the source code for the ser-
vice body class can be generated automatically when given
a list of the interfaces that are to be supported.

Use of platform independent service agents gives some
additional requirements for the MAG implementation. We
must ensure that the body object created for a service head
is always an instance of the service body class. Therefore,
we store the name of the body class into the head. When a
MAG receives an agent head, it checks whether the head
needs a special body class or the normal body class can
be used. We must also be careful with the class loading
between MAGs. The service body class should always be
transferred together with the head, but theMonadsBody
must not be transferred because every platform has its own
implementation of that class.

We admit that this trick of ours violates “the spirit of pure
object-oriented programming” a little, because it is based
on special features of Java. There are alternatives, though.
Service body classes could also be obtained in the following
ways:
— When a head is created for the first time or it arrives

at a platform where it has not been before, it gives a
list of the interface classes that should be supported by
the body extension. These classes are given to a ’body
generator’ which creates the Java source code for the
service body. This class is compiled to bytecode by a
normal Java compiler.

— The head carries a template of the service body source
code with it. This is just like the code created by the
body generator but the name of the superclass is left
open. For each platform, the appropriate superclass
name—XBody in platformX, for example—is put into
the source code before compilation. Thus, we do not
need to use body generator but we must transfer addi-
tional data with the head.

— If all platforms into which the agent may migrate are
known in advance, the necessary service body classes
can be created and compiled beforehand. Class gen-
eration and compilation during migration are avoided,
but all body classes must be transferred with the head.

We have not implemented the alternative methods listed
above, because they all introduce more overhead than the

method we are using.

5. Example agent

The following example illustrates our approach. We
would like to make an agent that carries a message, mi-
grates to a given destination, displays the message using a
local service, and asks for a new message and destination.
We know that every agent server has aUser Interface Ser-
vice Agent(UIS) that can be used for user-agent interaction.
The service is registered under the name“UserInterface”
and implements the following interface:
public interface UserInterface {

void showMessage(String message);
String ask(String question);

}

We implement the agent by using the head-body par-
tition. We derive ourMessageAgent agent from the
AgentHead class that is the base class for all agent heads.
The actual agent program resides in thelive() method,
which is called by the body when the agent is created
or when the agent has migrated. As its first action, the
MessageAgent agent searches for the identifier of a local
UIS, requests a reference to it, and asks it to display the
message. Then the agent asks for a new message and the
address of the destination. Finally, it asks the body to move
to that destination. If the destination address points to an-
other platform, the body uses the Monads Agent Gateway
for migration, otherwise it calls the move operation of the
underlying platform.
public class MessageAgent extends AgentHead {

private String message;
public MessageAgent() {

super();
message = "Hello!";

}
public void live() {

String uis_id =
body.findService("UserInterface");

UserInterface uis =
(UserInterface)body.getProxy(uis_id);

uis.showMessage(message);
message = uis.ask("Message?");
String destination =

uis.ask("Destination?");
body.moveTo(destination);
// called again after migration

}
}

This example agent has been tested successfully with
Voyager, Jade, and Grasshopper. We implemented the UIS
for each platform and registered it to agent servers as a local
service (in Jade we used Monads Naming Service for regis-
tration). The message agent was able to migrate between
agent servers of different platforms via the MAG and use
all versions of the UIS without any problems.

We also made some preliminary performance measure-
ments to see how much overhead the Monads Agent Gate-



Object obj = X.lookup("MyService");
MyServiceI service = (MyServiceI) obj;
service.serviceOp1();

AgentBody

serviceOp1()
serviceOp2()
...

MyServiceI

serviceOp1()
serviceOp2()
...

MyService
serviceOp1()
serviceOp2()
...

MyServiceBody

X

Agent
Platform

((MyServiceI)head).serviceOp1();

head
MonadsBody

XAgent

AgentHead

Automatically generated
from class MyServiceI

Platform independent
service implementation

body

Figure 7. Calling a service method

way causes to agent migration. In these measurements, the
average time needed for agent migration via the MAG was
roughly the same as when using platform specific move op-
erations. One must remember, though, that MAG is not
meant to be used for agent migration inside a platform
butbetweenplatforms. Thus, making detailed performance
comparisons with other systems is impossible because al-
ternative systems do not exist.

6. Conclusions

It is useful to have different kinds of agent platforms
from which to choose. All platforms have their advant-
ages and drawbacks so one can select the one which suits
one’s purposes best. On the other hand, having multiple in-
compatible systems ruins the dream of having a world-wide
agent system in which agents could move between agent
servers and could interact with other agents. Agent platform
standards developed by FIPA and OMG may be the salva-
tion but even if they are successful, standardization takes
time.

In this paper we have taken a different approach to the
problem of incompatible platforms. We have shown that
some of the incompatibility problems can be solved with
a specialagent architecturein which all platform specific
code is separated from the platform independent main pro-
cedure of an agent. By using our design technique it is
possible to build agents that can migrate between different
platforms. However, these agents can not use all features of
the underlying platform. We have also described how mes-
sages can be delivered to an agent that has migrated to an-

other platform, and how to build platform independent ser-
vice agents that are used through normal method calls. The
ideas presented above have already been tested successfully
using Voyager, Jade, and Grasshopper platforms.

References

[1] F. Bellifemine, G. Rimassa, and A. Poggi. JADE — A
FIPA-compliant Agent Framework. http://www.practical-
applications.co.uk/PAAM99/abstracts.html.

[2] G. Brasche and B. Walke. Concepts, Services, and Protocols
of the New GSM Phase 2+ General Packet Radio Service.
IEEE Communications Magazine, 35(8):94–104, 1997.

[3] S. Campadello, H. Helin, O. Koskimies, P. Misikangas,
M. Mäkelä, and K. Raatikainen. Using mobile and intel-
ligent agents to support nomadic users. InProceedings of
ICIN 2000. Idera, 2000.

[4] Foundation for Intelligent Physical Agents.FIPA 97 Spe-
cification Part 2: Agent Communication Language, October
1998.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns - Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[6] IKV++ GmbH. Grasshopper. http://www.ikv.de/products/
grasshopper/index.html, 1999.

[7] M. Mouly and M.-B. Pautet.The GSM System for Mobile
Communications. Mouly and Pautet, 1992.

[8] Object Management Group.Mobile Agent System Interop-
erability Facilities Specification, 1998.

[9] ObjectSpace, Inc. Objectspace voyager. http://
www.objectspace.com/products/prodVoyager.asp, 1999.

[10] K. Pahlavan, A. Zahedi, and P. Krisnamurthy. Wideband
Local Access: Wireless LAN and Wireless ATM.IEEE
Communications Magazine, 35(11):34–40, 1997.


